
 
 
 
 

Heriot-Watt University 
Research Gateway 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Novel deep eutectic solvent-functionalized carbon nanotubes
adsorbent for mercury removal from water

Citation for published version:
Alomar, MK, Alsaadi, MA, Jassam, TM, Mohamed Akib, S, Hashim, MA & Schwandt, C 2017, 'Novel deep
eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water', Journal of
Colloid and Interface Science, vol. 497, pp. 413–421. https://doi.org/10.1016/j.jcis.2017.03.014

Digital Object Identifier (DOI):
10.1016/j.jcis.2017.03.014

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
Journal of Colloid and Interface Science

Publisher Rights Statement:
© 2017 Elsevier B.V.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and /
or other copyright owners and it is a condition of accessing these publications that users recognise and abide by
the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research
Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2025

https://doi.org/10.1016/j.jcis.2017.03.014
https://doi.org/10.1016/j.jcis.2017.03.014
https://researchportal.hw.ac.uk/en/publications/78681914-6d0e-4693-9f8e-dbb57a385384


Accepted Manuscript

Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mer-

cury removal from water

Mohamed Khalid AlOmar, Mohammed Abdulhakim Alsaadi, Taha M. Jassam,

Shatirah Akib, Mohd Ali Hashim, Carsten Schwandt

PII: S0021-9797(17)30256-4

DOI: http://dx.doi.org/10.1016/j.jcis.2017.03.014

Reference: YJCIS 22111

To appear in: Journal of Colloid and Interface Science

Received Date: 21 October 2016

Revised Date: 18 February 2017

Accepted Date: 2 March 2017

Please cite this article as: M.K. AlOmar, M.A. Alsaadi, T.M. Jassam, S. Akib, M. Ali Hashim, C. Schwandt, Novel

deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water, Journal of

Colloid and Interface Science (2017), doi: http://dx.doi.org/10.1016/j.jcis.2017.03.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jcis.2017.03.014
http://dx.doi.org/10.1016/j.jcis.2017.03.014


  

Novel deep eutectic solvent-functionalized carbon nanotubes 

adsorbent for mercury removal from water 

Mohamed Khalid AlOmara,b, Mohammed Abdulhakim Alsaadib,c,d*, Taha M. 
Jassame, Shatirah Akibg, Mohd Ali Hashimb,h, Carsten Schwandth,i  

aDepartment of Civil Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia 

bUniversity of Malaya Centre for Ionic Liquids, University Malaya, Kuala Lumpur 50603, 
Malaysia  

cNanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University of Malaya, 
50603 Kuala Lumpur, Malaysia 

dNational Chair Professor of Materials Science and Metallurgy, University of Nizwa, Sultanate of 
Oman 

dCivil engineering department, Faculty of engineering, Technology and Built Environment, UCSI 
University, Kuala Lumpur 56000, Malaysia  

fSchool of Energy, Geoscience, Infrastructure and Society (EGIS), Heriot-Watt University 
Malaysia, 62200, Putrajaya, Malaysia 

gDepartment of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia 

iDepartment of Materials Science and Metallurgy, University of Cambridge, UK 

*E-mail: mdsd68j@gmail.com, Tel: +60163630693, Fax: +60 3 7967 5311 

Abstract  

Due to the interestingly tolerated physicochemical properties of deep eutectic solvents (DESs), 

they are currently in the process of becoming widely used in many fields of science. Herein, we 

present a novel Hg
2+

 adsorbent that is based on carbon nanotubes (CNTs) functionalized by 

DESs. A DES formed from tetra-n-butyl ammonium bromide (TBAB) and glycerol (Gly) was 

used as a functionalization agent for CNTs. This novel adsorbent was characterized using Raman 

spectroscopy, Fourier transform infrared (FTIR) spectroscopy, XRD, FESEM, EDX, BET 

surface area, and Zeta potential. Later, Hg
2+

 adsorption conditions were optimized using 

response surface methodology (RSM). A pseudo-second order model accurately described the 

adsorption of Hg
2+

. The Langmuir and Freundlich isotherms models described the absorption of 

Hg
2+

 on the novel adsorbent with acceptable accuracy. The maximum adsorption capacity was 

found to be 177.76 mg/g.  

mailto:mdsd68j@gmail.com
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1. Introduction 

It is well known that mercury (Hg) is one of the most toxic elements in nature. Hg usually 

exists in seawater, fresh water, and in soil [1]. In addition, Hg is a waste product associated with 

many industries, including production of chlor-alkali, fossil fuels, various switches and wiring 

devices, measuring and control devices, lighting, and dental work [2]. According to the World 

Health Organization (WHO), the maximum allowable concentration of Hg in water is 1 µg/l. 

This value is due to its extremely hazardous effects even at low concentrations [3]. 

Many conventional techniques have been utilized to reduce Hg concentrations in water, 

including solvent extraction, precipitation, ion-exchange, reverse osmosis, membrane separation, 

coagulation, and photoreduction [4]. However, most of these methods have drawbacks such as 

high energy requirements or their association with large quantities of environmentally hazardous 

chemicals [5]. As a result, Hg removal from water using the adsorption technique proved to be 

the most applicable on an industrial scale [6, 7]. 

Recently, nanoparticles have been introduced as extremely effective adsorbents for many 

pollutants due to their unique features, small size, catalytic potential, high reactivity, and large 

surface area [8]. Carbon nanotubes (CNTs) have attracted the most attention in the field of water 

remediation [9]. However, CNTs have yet to be fully optimized in term of solubility, 

aggregation, and difficulty in manipulation. On the other hand, CNTs have shown a great affinity 

for interaction with different compounds, especially after surface functionalization [10-17]. 

Oxidative functionalization can enhance the surface charge of CNTs, but requires the use of 

strong acids and environmentally unfavorable chemicals. Consequently, the need for new types 



  

of economical and environmentally friendly functionalization agents is crucial for the 

development of novel applications [18, 19]. 

Recently, ionic liquids analogues, i.e., deep eutectic solvents (DESs) have utilized in many 

different scientific fields. DESs were first introduced by Abbot et al. in 2003 as a cheaper 

replacement for developed ionic liquids (ILs) [20]. Some researchers consider DESs to be the 

fourth generation of ILs, even though they are not entirely composed of ionic species [21]. 

Substantially, DESs can be simply defined as a mixture of two or more compounds that has a 

melting point lower than that of each individual compound [22]. Regarding environmental 

safety, DESs have met many of the criteria necessary to be considered environmentally friendly 

solvents, including availability, biodegradability, recyclability, flammability, and relatively low 

price compared to other conventional solvents [23]. Due to DESs’ physicochemical properties, 

they been used in a variety of applications [24, 25]. Most recently, DESs have achieved wide-

spread use in nanotechnology-related fields, with uses such as media for synthesis of 

nanoparticles [26-31], electrolytes in nanostructure sensors [32], and electrolytes in nanoparticle 

deposition [33-41]. Based on these applications, DESs have the potential to be used as 

economically and environmentally friendly functionalization agents. 

In this study, an ammonium-based DES was synthesized using tetra-n-butyl ammonium 

bromide (TBAB) with glycerol (Gly) as the hydrogen bond donor (HBD). Later, this TBAB 

based-DES was utilized as a functionalization agent for CNTs, which were then used as an 

adsorbent agent for Hg
2+

 ions from water samples. In addition, the functionalized CNTs were 

fully characterized as the novel adsorbent to study the effect of TBAB based-DES on the CNT 

surface. This characterization includes Raman spectroscopy, XRD diffraction, FTIR, FESEM, 

EDX, BET surface area, and zeta potential. The optimal removal conditions for Hg
2+

 were 



  

determined using Response surface methodology (RSM). Moreover, kinetics and isotherm 

studies were also performed at the optimal conditions. 

2. Experiments and Methods 

2.1 Chemicals and materials  

Multi-wall carbon nanotubes with specifications of D×L 6-9 nm × 5 µm ˃95% (carbon), 

TBAB, Gly, sulfuric acid (95%-97%), nitric acid (65%), potassium permanganate, sodium 

hydroxide pellets, and hydrochloric acid (36.5-38%) were all supplied by SIGMA- ALDRICH. 

A 1,000 mg/L mercury standard solution was supplied by MERCK. 

2.2 Functionalization of CNTs  

The surface of the pristine CNTs (P-CNTs) was functionalized by oxidation through to 

different procedures. The first procedure used sonication with KMnO4 for 2 hr at 65 °C [42]. The 

resulting oxidized CNTs are referred to as K-CNTs in this study. The second method involved 

refluxing P-CNTs with HNO3 (65%) for 1 hr at 140 °C, and the resulting acidified CNTs are 

referred to as N-CNTs in this study.  

The DESs were synthesized by mixing TBAB with Gly (HBD) using magnetic stirring at 400 

rpm and 80°C, until the DESs became a homogeneous liquid without any precipitate. The details 

of synthesis, characterization, and molar ratio options are based on our previous study [43]. Next, 

functionalization with the DESs was performed using sonication with 200 mg of P-CNTs, K-

CNTs, and N-CNTs, separately, with 7 ml of DES for 3 hr at 65 °C. The resulting functionalized 

CNTs will be referred to as PT-CNTs, KT-CNTs, and NT-CNTs, respectively. It should be noted 

that after each functionalization step, the functionalized CNTs were repeatedly washed and 

filtered with distilled water, using a vacuum pump and a PTFE 0.45 µm membrane, until the 

filtrate water pH was neutral. 



  

2.3 Characterization of functionalized CNTs  
All adsorbents were characterized using a Renishaw System 2000 Raman Spectrometer to 

obtain Raman shift spectra. The surface modification and functional groups that resulted from 

the functionalization processes were studied using Fourier transform infrared (FTIR) 

spectroscopy via a PerkinElmer® FTIR spectrometer USA with a range of 400-4,000 wave 

number and four times reputation. The structural phases were analyzed using X-ray powder 

diffraction (XRD) with a Shimadzu XRD 6000® at a scanning range of 2θ between 10°-80°. 

Furthermore, the surface charge was measured by conducting zeta potential tests using a 

Zetasizer (Malvern, UK). For the purpose of measuring the zeta potential, 2.5 mg of each 

adsorbent was dispersed in 5 ml of deionized water and subjected to sonication for 1 hr before 

the measurement. A fully Automated Gas Sorption System (micromeritics ASAP2020, 

TRISTAR II 3020 Kr®, USA) was used to study the selected samples surface area, based on the 

Brunauer-Emmett-Teller (BET) method by adsorption-desorption of nitrogen gas at -200 °C. A 

Field-Emission Scanning Electron Microscope (Quanta FEG 450, EDX-OXFORD) Thermo 

Fisher Scientific® USA was used to obtain high resolution nano-sized images for analysis of the 

morphology of all selected samples, along with an energy-dispersive X-ray spectrometer (EDX). 

Mercury ions were detected using ICP with an OES OPTIMA7000DV PerkinElmer® USA. 

2.4 Adsorption experiments 

A primary screening study was conducted to choose the adsorbent with the highest removal 

percentage. Samples consisting of 10 mg of each adsorbent (P-CNTs, K-CNTs, N-CNTs, PT-

CNTs, KT-CNTs, and NT-CNTs) were applied in batch experiments. An Hg
2+

 stock solution 

with a concentration of 5 mg/L and pH of 2.2 was prepared using distilled water. A similar 

screening experiment was repeated at pH 6.0. The experiments were conducted using 50 ml of 

contaminated water in a 250 ml flask with 10 mg of adsorbent. The flask was agitated using a 

mechanical system for 30 min at room temperature and an agitation speed of 180 rpm.  

http://en.wikipedia.org/wiki/Paul_H._Emmett
http://en.wikipedia.org/wiki/Edward_Teller


  

An estimation of the regression empirical relationship was conducted to assess the removal 

percentage (R) of Hg
2+

 and the adsorption capacity (Q) of KT-CNTs, utilizing response surface 

methodology (RSM) [44, 45]. The central composite design (CCD) was selected using the 

Design Expert V7.0 software. The effects and interactions of three parameters were investigated 

in this study, specifically pH (3 to 8), contact time (5 to 55 min), and adsorbent dosage (5 to 20 

mg). The experimental design, in terms of the actual parameters, alongside R and Q responses 

are listed in Table 1S (supported information). The optimization was performed at an initial 

concentration of 3 mg/L. The agitation speed was fixed at 180 rpm. 

The rate of ion transfer from the solute to the adsorbent surface and associated parameters are 

crucial and can be determined by studying the adsorption kinetics. The efficiency of the 

adsorption process is indicated by the kinetic rate of the adsorption system and, hence, can 

determine its potential applications. In this study, the removal conditions obtained from the 

optimization study were applied in the most usable kinetics models, i.e., pseudo-first order and 

pseudo-second order models. Eq. 1 and Eq. 2 describe the linear form of these two models, 

respectively. 

                                      (1) 

 

     
 

 

    
  

 

  
                                    (2), 

where k1 and qe are the slope and intercept calculated by plotting ln(qe–qt) vs time (t), 

respectively, for Eq. 1. qe is calculated as 1/(slope) and K2 is calculated as (Slope)
2
/ intercept. 

The slope and the intercept can be determined from a plot of      vs t. The qe and qt refer to the 

adsorption uptake at equilibrium and at time t, respectively, for Eq. 2.   

To thoroughly investigate the adsorption mechanism, which can be used for design 

purposes, it is also essential to define the adsorption isotherm for any novel adsorbents. Herein, 



  

the optimal removal conditions were used with 16 initial Hg
2+

 concentrations (1, 3, 5, 10, 15, 20, 

25, 30, 35, 40, 45, 50, 55, 60, 65, and 70 mg/L). The Langmuir and Freundlich isotherm models 

were used to describe the adsorption of Hg
2+

 on the novel adsorbent. Eq. 3 and Eq. 4 represent 

the linearized form of the Langmuir and Freundlich models [46-48], respectively.  
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                                            (4), 

where Ce is the initial equilibrium concentration, and qe is the amount of Hg
2+

 absorbed on the 

surface of the adsorbent. Ka and Qm are the adsorption equilibrium constant and the maximum 

adsorption capacity, respectively. In addition, qe is the uptake of adsorbent. KF and n are the 

isotherm constants for the Freundlich isotherm model.  

The desorption and regeneration study was achieved by drying KT-CNTs overnight at 

100 ˚C, which was primarily used to remove Hg
2+ 

with initial concentration of 3 mg/L under the 

equilibrium optimal removal conditions. Subsequently, different pH solutions were used to 

desorb Hg
2+

 from KT-CNTs by adding 6 mg of the dried KT-CNT to 50 ml of each solution and 

shaken at 180 rpm. During the desorption experiment, the concentration was measured at different 

time intervals. Eq. 5 calculated the Hg
2+

 desorption percentage (D%) [49].  

                                              (5), 

where D% is the desorption of Hg
2+

, and qD and qE are referring to the amount of Hg
2+

 

desorption with respect to time and the amount of adsorption at equilibrium, respectively.  



  

3. Results and discussion  

The screening studies showed that the KT-CNTs recorded the highest removal compared to 

other tested adsorbents. The significant effect of TBAB-based DESs on the removal percentage 

can be seen at both pH 2.2 and pH 6.0. Figure 1 illustrates the screening studies for the 

adsorption of Hg
2+

. 

For carbon-based materials, Raman spectroscopy is considered to be an essential 

characterization due its ability to indicate the degree of functionalization by comparing the 

intensity of the D band (ID) to that of the G band (IG) [50]. The ID/IG ratio was 1.11, 1.16, and 

1.175 for P-CNTs, K-CNTs, and KT-CNTs, respectively. This increase demonstrates the high 

level of covalent functionalization on the surface of the KT-CNTs through the addition of 

carboxylic functional groups or other sp3 groups. Furthermore, the third characteristic band 

known to indicate a carbon-based nanostructure is Dʹ, which appeared as a weak shoulder of the 

G-band at higher frequencies and can be considered a double resonance feature originating from 

disorder and defects. It is worth mentioning that the Dʹ band is undetectable in pure graphite; 

however, it can be observed in intercalated graphite and MWCNTs [51]. On the other hand, the 

functionalization with KMnO4 resulted in the presence of MnO2, which was confirmed by the 

two peaks at around 575 and 650 cm
-1

 in the K-CNTs spectrum [49, 52]. Next, the additional 

functional groups that resulted from the functionalization with TBAB-DES reduced the intensity 

of these peaks and appeared as a small hump. Figure 2 shows the main Raman peaks. 

Subsequently, FTIR analysis shows that functionalization with TBAB-based DESs results in 

formation of new functional groups. The N-H stretch is present at wavenumber 3172 cm
-1

 in the 

KT-CNT spectrum [53]. The presence of O-H is obvious in K-CNTs at 3478 cm
-1

, however, this 

peak disappeared after application of DESs as a functionalization agent, which caused some 

reduction to the surface. In addition, the presence of C-Br
-
 bonds can be observed in the range of 



  

550 and 650 cm
-1

 for KT-CNTs. The presence of new chemical groups after functionalization 

with DES provides proof of modification and the creation of various adsorption sites, and 

increases the adsorption capacity for Hg
2+

. Figure 3 shows the FTIR spectra for P-CNTs, K-

CNTs, and KT-CNTs. The XRD results displayed a typical spectrum of P-CNTs, where (002) 

and (001), representing the hexagonal graphite structure and the concentric cylinder structure, 

respectively, are located at 2θ around 26° and 42°, respectively, in the P-CNTs patterns [54]. 

Figure 4 shows the XRD patterns of P-CNTs, K-CNTs, and KT-CNTs. After functionalization 

by KMnO4, the peaks almost completely disappeared, which indicates that the deposition of 

MnO2 destroys the hexagonal graphite structure of the CNTs by conforming the CNTs into a 

non-stoichiometric, amorphous shape [55]. The presence of MnO2 was identified by the two 

peaks at 2θ around 38° and 65° in the K-CNTs pattern, which can be indexed as (20 l/11 l) and 

(02 l/31 l), respectively [49]. In the sequential functionalization step, the TBAB-based DES 

decreased the intensity of these peaks and the main peaks of CNTs were no longer present. This 

indicates the presence of more sp3 functional groups. Figure 5 shows the FESEM images for P-

CNTs, K-CNTs, and KT-CNTs. The presence of MnO2 and, furthermore, the TBAB-based 

DESs, are barely observable in the FESEM images, indicating that the MnO2 was embedded 

inside the CNTs. Furthermore, an EDX study for KT-CNTs after Hg
2+

 sorption was performed. 

Figure 1S shows the EDX spectrum of KT-CNTs after adsorption. Also, traceable amounts of 

Hg
2+

, Br
-
, O, and N were

 
seen in the EDX spectrum. 

The zeta potential is the electrical potential between the bulk fluid and the surface across the 

dielectrical layer attached to the suspended particles in a solution. This potential is a source of 

balancing electrostatic force that keeps the micro or nano particles stable in suspension or 

emulation. The absolute zeta potential was found to be 5.5, 45.81, and 59.7 for P-CNTs, K-



  

CNTs, and KT-CNTs, respectively. Functionalization with KMnO4 resulted in the addition of 

new oxygen functional groups in form of carbonyl groups and aliphatic carboxylic acids. These 

functional groups increased the hydrophilicity of the surface, which resulted in increasing 

surface electronegativity, which plays an important role in the adsorption mechanism [56, 57]. 

The enhancement in the surface charge also comes from the formation of electronegative active 

sites, which were generated from the new functional groups and formed by using DESs as a 

functionalization agent, which significantly increased the zeta potential. It’s worth mentioning 

that there are many factors affecting zeta potential measurements, including particle surface 

charges, pH, conductivity, ion concentration, and temperature [58]. On the other hand, the effect 

of TBAB-based DES functionalization on the BET surface area was significant at 123.54, 

158.93, and 204.525 m²/g for P-CNTs, K-CNTs, and KT-CNTs, respectively. In addition, K-

CNTs demonstrate a significant reduction in the pore volume to 0.45 cm
3
/g as compared to pore 

volume with P-CNTs at 0.62 cm
3
/g. Subsequently, the pore size diameters increased significantly 

after each functionalization step and were measured at 20.49, 114.12, and 124.8702 Å for P-

CNTs, K-CNTs, and KT-CNTs, respectively.  

The results obtained from the optimization study for both responses are listed in Table 1S. 

The highest R was measured at 96.3% under conditions of pH 5.5, contact time 55 min, and 

adsorbent dosage of 20 mg, and the highest Q was 16.44 mg/g at pH 5.5, contact time 30 min, 

and adsorbent dosage of 5 mg. The analysis of variance (ANOVA) of R and Q responses implies 

that both models are significant. Table 2S and Table 3S list the P-values, F- values, and the 

square mean for both R and Q, respectively. The chance that a "Model F-Value" this large could 

occur due to noise for both responses is only 0.01% and 1.1%, respectively. These models can be 

used to successfully navigate the design space and are represented by the following formulas for 



  

regression, Eq. 6 and Eq. 7. The correlation coefficient, R
2
, was 0.9491 and 0.9978 for both R 

and Q, respectively. 

                                                         

                                                                                            (6) 

                                                                 

                                                  (7), 

where A, B, and C represent pH, contact time, and adsorbent dosage, respectively.  

The relationship between the theoretical values and experimental values is demonstrated in 

Figure 2S (a and b) for R and Q, respectively. Since the theoretical values predicted by the 

models developed in this study were quite close to the experimental values, it can be concluded 

that both models have successfully achieved correlation between the process variables. 

Table 1 lists the restrictions developed to control the optimization solutions of the CCD 

software. The optimal removal conditions were found to be pH 6.4, an adsorbent dosage around 

6.0 mg, and a contact time of 45 min. It is well known that the dominant Hg species at pH 

between 5-8 are Hg
2+ 

and Hg(OH)2. The surface charge of the adsorbent also increased inversely 

with relation to pH, which reduces the H
+
 competition with Hg species. Herein, Figure 6 shows 

the effect of pH on R by fixing the adsorbent dosage to the optimal dose. At the optimum 

adsorbent dosage, the R increased gradually until it reached the optimal pH of around 6.4, and 

then remained constant. Meanwhile, the contact time also has a significant effect on R. 

Conversely, at a maximum adsorbent dosage of 20 mg, the effect of contact time is almost 

negligible, while the solution pH has a significant effect on the removal of Hg
2+

. This may be 

due to the increase in the number of active sites with increased amounts of adsorbent, which 

makes the adsorption faster and, in turn, the effect of pH more obvious. Figure 3S shows the 



  

effect of pH on Hg removal by fixing the adsorbent dosage to the maximum. On the other hand, 

the adsorbent dosage has no significant effect on R, as demonstrated in Figure 4S. 

Regarding the Q response, the effect of pH is also obvious, as can be seen in Figure 7. 

Meanwhile, Q increased with the increase in contact time in an attempt to reach equilibrium. 

Figure 5S demonstrates the effect of adsorbent dosage on Q, although it is well known that Q 

increases with decreasing adsorbent dosage.  

The optimal removal conditions were used to study the adsorption kinetics and isotherms. 

Based on the values of the correlation coefficients, R
2
 was obtained by fitting the experimental 

data to the pseudo-first order and pseudo-second order kinetics models. Specifically, Hg
2+

 

adsorption on the surface of KT-CNTs followed the pseudo-second order kinetics rate since the 

R
2
 was found to be 0.997. On the other hand, the fitting of the pseudo-first order was very poor. 

Table 2 lists the R
2
 and the constants coefficients for each model. These findings agree with 

previous research on CNTs-based adsorbents [59, 60]. Figure 8 plots the experimental data 

according to the linearized pseudo-second order model. 

MWCNTs and their modified allotropes have a heterogeneous surface. Therefore, the system 

probably follows multiple mechanisms of adsorption and surface reaction [61, 62].  

The functional groups with high electronegativity present on the surface of MWCNTs, such 

as oxygen-containing groups or C-Br
-
 bonds, could form complexation with Hg

2+
 ions. Ion 

exchange processes could also take place with surface-attached H
+ 

as well. That means, we are in 

front of two possible probabilities of two different surface reaction reactions, either 

complexation or proton exchange [49]. On the other hand, OH
-
 ions in the solution play positive 

role in consuming H
+
, which is why there is enhanced adsorption with the increase of pH to 

certain point (in our case pH 6.4). However, a further increase in pH leads to an excess amount 



  

of OH
-
, which forms complexations with Hg in the solution and reduces the rate of adsorption on 

the surface [61]. The mechanism that we expect is illustrated in Eq. 8, 9, and 10. 

2R–OH+Hg
2+
→R–O–Hg–O–R+2H

+
                      (8) 

R–COOH-+ Hg
2+
→R–COOH-Hg

+
                         (9) 

2Hg
2+

+3OH
-
 →Hg(OH)2+Hg(OH)

+
                      (10) 

For the isotherm study, both the Langmuir and Freundlich isotherms models were found to be 

a fair fit to the experimental data. This behavior can be observed at low concentrations, where 

there is no contradiction between the two models. It is common in adsorption studies, as stated in 

many publications listed in Table 3, to have this kind of duality. However, the behavior of the 

adsorbate-adsorbent system at high concentrations deviates from the ideal gas model. Although 

the principle assumptions for Langmuir is monolayer-based and Freundlich is multilayer-based, 

both models can fit with the same set of data at low concentrations and high adsorption capacity 

for the adsorbent. Herein, the Freundlich isotherm model exhibited more conformity regarding 

the correlation coefficient, R
2
. Table 3 lists the values of R

2
 and the isotherm constants for both 

the Langmuir and Freundlich isotherms models. The suitability of Freundlich model suggests 

that the adsorption system is heterogeneous by which the adsorption process takes place onto the 

adsorbent surface which contains different actives sites with various affinities to Hg
2+

 ions and it 

gives consideration for the roughness of the surface as well as the multilayer approach. To 

reference the n value (1˂n>10), the adsorptive behavior is dominated as a physisorption process 

and indicates the favorability of the Hg
2+

 adsorption on KT-CNTs [63]. Based on these results, 

the adsorption of Hg
2+

 occurs on a heterogeneous surface with interactions between the adsorbed 

molecules with a non-uniform distribution of heat of sorption over the surface [64]. Furthermore, 

some monolayer coverage of Hg
2+

 ions on the surface of the KT-CNTs may be formed according 



  

to the Langmuir fitting data [46]. Figure 9 and Figure 10 plot the linearized adsorption isotherm 

of KT-CNTs for both the Langmuir and Freundlich equations, respectively. 

The recyclability of an adsorbent is essential for practical applications. The simplicity of 

desorbing metal ions for many cycles of feasible reusability is one of the most important 

characteristics of a potential industrial adsorbent. The D% was only 10% at pH 5.0 after 3 hr and 

exceeds 80% at pH 3.0 after 3 hr. The D% was effective at pH ≤ 3.0 as seen in Figure 11. The 

rate of desorption increases with the decrease of pH as demonstrated in Figure 11, where the 

slope of the curve before equilibrium starts with very low value at pH 4.0 and increases 

alongside the pH increase until it reaches the highest value at pH 1.3, almost vertical, when the 

spontaneous desorption takes place. The system reaches equilibrium at different concentrations 

and at different pHs, also in different equilibrium times. The fastest and highest desorption was 

seen at pH 1.3 with an equilibrium close to zero. To confirm the viability of regeneration, the 

recovered adsorbent from the desorption process was dried and reused multiple times. KT-CNTs 

were successfully reused five times, although the adsorption capacity decreased after each use 

until it reached 96 mg/g at round five. 

4. Conclusion  

The Hg
2+

 ion was successfully removed from an aqueous solution by CNTs functionalized 

with DESs. The novel adsorbent exhibited great potential for Hg
2+

 removal, where the maximum 

adsorption capacity was found to be 177.76 mg/g, which lies in the highest range compared to 

the published data. The optimal removal conditions were found to be at pH 6.4, adsorbent dosage 

of 6.0 mg, and contact time of 45 min. A TBAB-based DESs was synthesized and was a 

sufficient functionalization agent for CNTs. The effect of TBAB-DES on the surface of CNTs 

and the enhancement was proved by investigation using Raman spectroscopy, FTIR, XED, Zeta 

potential, EDX, FESEM, and BET. The characterization showed that using a TBAB-based DES 



  

for functionalization resulted in significantly increasing the surface area of CNTs from 123.54 

m²/g to 204.525 m²/g. In addition, the presence of new functional groups was detected by FTIR. 

The functionalized carbon nanomaterials were proven to be sufficient adsorbents for various 

contaminants, especially Hg
2+

. With help of DESs, we managed to replace hazardous chemicals 

in the process of functionalization. These two findings can be a platform for future research and 

industrial implementation. 
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Table 1 Constraints for optimization process based on CCD for Hg
2+

 adsorption 
 

Name Goal Lowe limit Upper limit Importance 

A  is in range  3 8 3 

B  is in range  5 55 3 

C  is in range  5 20 3 

R  maximize  51.98 99.43 5 

Q  maximize  1.81 61.51 5 

 

Table 2 Experimental values of constants of adsorption kinetics models 

Experimental 

(q) 

Pseudo-first- order Pseudo-second-order 

qe (mg/g) 

K1 

(min
1
). R

2
 qe (mg/g) 

K2 

(g/mg.min) R
2
 

23.928 22.718 -0.00049 0.545 25.976 0.0037 0.997 

 

Table 3 isotherm models parameters and comparison of adsorption capacity of other adsorbents 

a
sodium 2-mercaptoethanol functionalized CNT, 

b
Silica combined with 2 % functionalized CNT, csulfur 

incorporated MWCNT, dpre-treated MWCNT in acidic KMnO4/H2SO4 solution, 
e
Thiol-functionalized 

multiwall carbon nanotube/magnetite nanocomposites.  

Adsorption Isotherm Model Langmuir  Freundlich Reference 

Adsorbent pH qm 

(mg/g) 

KL 

(l/mg) 

R
2
 n Kf 

(mg/g) 

R
2
 

KT-CNTs 6.5 177.76 9.77 0.949 2.695 37.92 0.976 Present work 

a
MWCNTs-SH  84.66 0.31 0.945 0.301 30.92 0.926 [61] 

b
SiO2-CNT 5-6 250 0.14 0.982 1.50 34.80 0.992 [63] 

c
CNT-S 6 151.51 0.3143 0.994 1.835 1.24 0.936 [2] 

d
COOH-MWCNT 4.3 127.6 0.19 0.990 1.17 18.04 0.968 [62] 

e
MPTS-CNTs/Fe3O4 6.5 65.52 0.039 0.992 2.269 7.62 0.984 [60] 



  

 

Figure 1 primary screening study for all adsorbents 

 

  



  

Figure 2 Raman Spectrum of P-CNTs, K-CNTs and KT-CNTs 

 

  



  

 

Figure 3 FTIR spectrum for P-CNTs, K-CNTs and KT-CNTs  

 

 

  



  

 

 

Figure 4 XRD pattern of P-CNTs, K-CNTs, and KT-CNTs  

 

 

 

  

P-CNTs 

K-CNTs 

KT-CNTs 

2 Theta  



  

 

Figure 5 FESEM images for a) P-CNTs, b) K-CNTs and c) KT-CNTs 
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Figure 6 effect of pH and contact time on the R % at the optimum adsorbent dosage 
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Figure 7 effect of pH and contact time on the adsorption capacity of KT-CNTs 
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Figure 8 pseudo-second-order adsorption kinetics model 
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Figure 9 Langmuir adsorption isotherm model 
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Figure 10 Freundlich adsorption isotherm model 

 

  



  

 

 

Figure 11 desorption study of Hg
2+

 from KT-CNTs at different pHs 

 



  

Graphical Abstract

http://ees.elsevier.com/jcis/download.aspx?id=1721764&guid=5041365e-0a3f-42d0-9a0d-81ba4f7007f8&scheme=1

