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NUMERICAL ANALYSIS OF A TIME-STEPPING METHOD FOR
THE WESTERVELT EQUATION WITH TIME-FRACTIONAL
DAMPING

KATHERINE BAKER, LEHEL BANJAI, AND MARIYA PTASHNYK

ABSTRACT. We develop a numerical method for the Westervelt equation, an
important equation in nonlinear acoustics, in the form where the attenuation
is represented by a class of non-local in time operators. A semi-discretisation
in time based on the trapezoidal rule and A-stable convolution quadrature
is stated and analysed. Existence and regularity analysis of the continuous
equations informs the stability and error analysis of the semi-discrete system.
The error analysis includes the consideration of the singularity at ¢ = 0 which
is addressed by the use of a correction in the numerical scheme. Extensive
numerical experiments confirm the theory.

1. INTRODUCTION

We consider the attenuated Westervelt equation modelling wave propagation
through lossy media in cases where the wave propagation is poorly approximated
by linear wave models. A typical application is in medical ultrasound, where the
attenuation depends on a fractional power of the frequency with the fractional
exponent determined by the type of tissue; see [32, Chapter 4]. This leads to
models of the form

Ofu — Au+ aLu = ko3 (u?),
where a, k are positive constants and the attenuation is represented by a nonlocal
differential operator L. In this paper we consider Lv(t) = — fot Bt — 8)0:Av(s)ds
with 3 chosen as either

Bal(t) := thtemrt pe0,1), r>0

or

Br(t) == —€,(t), eu(t) == E,1(—t"),
where, see [24], E,, ., is the Mittag-Leffler function

(1.1) B, (2) = ;m

Note that, for 8 = B and r = 0, L = —8} "A, where 8} " is the Caputo
fractional derivative of order 1—p. The value of i depends on the tissue [I0, Chapter
4.3] and is used to model the frequency dependence of attenuation [2 Chapter
3]. See also the recent [I8], which includes other choices of nonlocal attenuation
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operators L. The case § = Pp is of interest in modelling viscoelastic materials
[19, 28]. In [33] a similar system is investigated under trapezoidal disretisation,
where the operator L does not contain a time-derivative.

In this work we develop and analyse a numerical method for the time-discretisation
of the attenuated Westervelt equation stated above. The time-discretisation of the
non-local operator is done by convolution quadrature [20] 21] whose ability to trans-
late a positivity property of the continuous operator to the discrete case allows a
full stability and convergence analysis. It further allows for fast and memory effi-
cient implementation [4] that is not addressed further in this paper. The full time
discretisation is a variation of the discretisation used in [3] for a related linear model
and is based on the trapezoidal (Newmark with v = 1/2, 8 = 1/4 [16]) scheme.

There are several results on the well-posedness and regularity for quasilinear
wave equations and for the Westervelt equations, see e.g. [9, 17, 26]. In [19] [30],
semigroup techniques and the Galerkin method are used to prove well-posedness
results for linear integro-differential equations modelling dynamics of fractional or-
der viscoelasticity. For equations with fractional integrals the semigroup techniques
can be applied in the same way as in the case of equations of linear viscoelasticity
[I1l 12]. However similar approach cannot be used to prove existence results for
equations with nonlocal differential operators, which include fractional time deriv-
ative as a special case, considered in this work. The Galerkin method, together
with the fixed point argument, is applied in [I8] for the well-posedness analysis of
fractional Westervelt equations. Galerkin approximation, together with the energy
estimates, is also used in [28] to prove existence of weak solutions to the fractional
Zener wave equations for heterogeneous viscoelastic materials. In the proof of ex-
istence and uniqueness results for the nonlocally attenuated Westervelt equation
considered here we follow similar ideas as in [18], and hence include only the main
steps of the proof.

The literature on the numerical methods for the case of local strong damping, i.e.,
L = —A0Q; includes the semi-discretisation by continuous [27] and discontinuous [I]
Galerkin finite element methods. Let us also mention the recent approach via semi-
groups to the analysis of the spatial discretisation of a large class of quasilinear wave
equations [I5]. Analysis of a fully discrete scheme for nonlinear elastic waves with
the finite element method in space and rational approximation in time is presented
in [25].

In the linear case (k = 0), the literature also includes the numerical analysis of
full discretisations of non-local attenuations. Namely a weaker form of non-local
attenuation than we are interested in (Lv(t) = — fot B(t—s)Auv(s)ds) is investigated
in [I9] where a continuous Galerkin semi-discretisation is analysed. In the already
mentioned work [3] a fully discrete scheme is investigated with again weaker atten-
uation L = 87, v € (0,1). The fully discrete scheme in [3] consists of continuous
Galerkin method in space and leapfrog combined with convolution quadrature in
time. This was extended to the strongly damped nonlocal case (still with & = 0) in
the thesis [2 Chapter 6] with the explicit leapfrog scheme replaced by the implicit
trapezoidal time-stepping. This numerical approach we now extend to the non-
linear case to give what we believe to be the first analysis of a time-discretisation
of the nonlocally attenuated Westervelt equation. The analysis also includes re-
alistic assumptions on the regularity of the solution including the possible lack of
smoothness at ¢t = 0.
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The paper consists of six sections, the first being this introduction. In the next
section we give the formulation of the mathematical model and prove an important
property of L. Section 3 briefly gives the well-posedness of the nonlinear system
with some of the technical details of the proof relegated to the appendix. In Section
4 we state the numerical scheme and show its stability. This leads to the proof of
convergence estimates in Section 5. Finally, the results are illustrated by numerical
experiments in one and two spatial dimensions in Section 6.

2. FORMULATION OF MATHEMATICAL MODEL

We start with the formulation of the mathematical model. In the damping
term we shall consider a class of convolution kernels which includes fractional time
derivative as a special case.

Let Q ¢ R?, with d < 3, be a C'! domain, or for d = 2 a polygon with edge
opening angles w < 7 and for d = 3 a polyhedron with w < /2. We consider
(2.1) O2u — Au — aff * Adyu = kO? (u?),

where a, k > 0 are constants,

fxg(t) = /0 fit—=71)g(r)dr

denotes the one sided convolution, and 3 is chosen as either
1

(2.2) Balt) == thtemt >0, pe(0,1),

X oy
or
(23) ﬂB(t) = 7é/i(t)7 e,u(t) = Eu,l(it#)a JIAS (07 1)7
with E,, , the Mittag-Leffler function (L.1f). In both cases

1
B(t) ~ tht as t— 0T,
O m

When a result holds for both kernels, we will use 8 to denote either of the kernels.
Note that for 84 and r = 0,

Baxf=I{f and Pax0f=0""f
where I!' denotes the Riemann-Liouville fractional integral of order p € (0,1) and
9} " the Caputo derivative of order 1 — u € (0,1) [29].

We will need two properties of 8. First of all, denoting by 8 = & {B} the
Laplace transform of 5 we have that

(2.4) Ba(z)=(z+r)7",  Be(z) = Zu1+ T

The expression for Ag(z) is obtained from the fact that the Laplace transform of

see [24], and the calculation

216 = (557 1) = o

2P+ 1 h+ 1’

. . 2“7
ey 1s given by Z—,

where we used that e, (0) = 1.
Thus, a property we will require later, follows:

(2.5) ReA1 > (o +1r)*, ReAl >1 VYRez >0 > 0.

Balz) Bi(2)
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The second property we need is stated as a lemma.

Lemma 2.1. For any v € L*(0,T) we have

t

1
5 min (y(t—s)+9(s) [ [Bro(s)ds,  t€(0,T),
2 sef0,] 0

/t[ﬂ xv](s)v(s)ds >
0
where for = Sa

1 + r ¢
B A 7/ T Pe "Tdr
(1= p) (1 —p) Jo

¥(t) = 7“11_ gt

v(t) =

and for 8 = P

Proof. Note that + is chosen so that 2 = 4(2)B(z) and hence

(2.6) / " o(s)ds = / ) / " 8(r — nyo(n)dndr,

for any sufficiently smooth v.
Denoting w = § * v, we have, by differentiating (2.6)), multiplying by w and
integrating, that

/Otw(s)v(s)ds = /Otw(S)CZ /Osv(s — r)w(r)drds.

We complete the proof by noticing that - satisfies the conditions of the kernel k in
[28, Lemma 3.1] with the lemma thus implying

/O % [/OS (s — T)’UJ(T)dT:| w(s)ds > %/O [y(t = 8) +~(s)] |w(s)[2ds
1 . t
> 5 min (=) +1()] | u(o)Pas.

Finally note that since 8 € L'(0,7T), Young’s inequality for convolutions implies
that both sides of the above inequality are well-defined for v € L?(0,T) thus com-
pleting the proof. O

Remark 2.2. An application of Plancherel’s formula as in [5, Lemma 2.2], shows
that from (2.5) it follows that

/00 67205[5 «v](s)v(s)ds > C(0) /Oo 6*20's|ﬂ * v(s)‘st
0 0

for 0 > 0 and C(0) = (o+7r)* for § = B and C(0) = 1 for § = Bg. While it would
be possible to develop the theory in the next section based on this inequality, it is
easier to use Lemma 211

We rewrite equation (2.1 as
(1 — 2ku)d?u — Au — aff * 0;Au = 2k(0yu)? in (0,T) x Q,
(2.7) u=1up on (0,7) x 09,
u(0) =ug, Oru(0) =g in
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and make the following assumptions on the smoothness of the data:
up —up(0) € H*(Q) N HJ(Q), wvo € H*(Q) N Hy(Q),

28) up € H(0,T; H*(Q)) N L>(0,T; H3(2)),

where H? = D((—Ap)?/?u) with the norm ||[w| ;75 = |(—=Ap)*/?w||z2 and Ap is
the Laplace operator in L?(£2) with the zero Dirichlet boundary conditions, i.e. with
domain D(Ap) = H2(Q) N H(Q).

Definition 2.3. A weak solution of (2.7)) is function u € up + H(0,T; H3()), with
u € L*®((0,T) x Q) and d%u € L*((0,T) x ), satisfying

T T
(2.9) /O [{(1 — 2ku)07u, ¢) + (Vu + af x 0, Vu, Vo) |dt = /O (2k(yu)?, ¢)dt,

for ¢ € L(0,T; H}(Q)), and initial conditions are satisfied in the L?-sense.

For the simplification of the presentation, we shall consider up = 0, however all
results hold for non-zero Dirichlet boundary conditions by considering @ = u — up,
resulting in

(1 = 2kup) — 2k0)02t — Al — af * O Al = 2k(dp)? + f(t, )

(2.10) A o
+4kOyuOup + 2ku0; up,

where f(t,2) = 2k(0yup)? + (2kup — 1)0?up + Aup + a3 * O Aup. For up inde-
pendent of ¢, the difference between and is in the presence of function
f(t,x), which is regular for regular up and the analysis below holds for all suffi-
ciently regular up with |lup|p=(a) < 1/(2k). In case up depends on ¢t we obtain
additional linear terms, which can be treated in the same way as in the case up = 0.

3. EXISTENCE AND UNIQUENESS RESULTS

We shall apply the Banach fixed-point theorem and the Galerkin method to show
existence and uniqueness of solutions of . Similar approach was considered
in [I8], however for completeness we present here the short outline of the main ideas.
Also we have a more general convolution kernel, compared to the one considered
in [I8].

For Q € Ob! the elliptic regularity theory, see e.g. [I3, Theorem 9.15, Lemma
9.17], ensures

(3.1) lwllwzr@) < CallAwl|Lr (),

for w € H}(Q) with Aw € LP(Q) and p € (1,00), and some positive constant
Cq, depending on the domain 2. For polygons estimate holds for 1 < p <
2w/(2w—m), see e.g. [14, Theorem 4.3.2.4, Remark 4.3.2.5]. For polyhedral domains
we have estimate for p = 2 and convex domains or for p > 6/5, with p # 2
and satisfying

(3.2) 2-2/p<m/w, 2-3/p<A,

where A = min{—1/2 + /A1 +1/4,2}, with A\; the smallest positive eigenvalue
of the Laplace-Beltrami operator on the spherical caps spanning the corners; see
e.g. [8 Theorem 3.2, Corollary 3.7]. For polyhedra with w < 7/2 conditions
are satisfied for any 3 < p < oo, [8 Corollary 3.12, Corollary 3.13].
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Thus, the assumptions we made on 2 ensure that (3.1)) is satisfied for p > d. We
shall also use the Sobolev embeddings, combined with (3.1)) for p = 2,
Wl L) < Callwllm2) < CallAw||L2(q),

3.3
(3.3) IVwlls@ < Callwlue < CallAwls,

where by Cn we denote the generic constant in the embedding inequalities, and
(3.4) [Vullze < Collullwer < CollAul[e < CollAu|| g,

for d < p < 6. The first and the last inequalities in follow from the Sobolev
embeddings, whereas the second inequality is ensured by (3.1)).

By C we shall denote a generic constant that is allowed to change from line to
line. For shortness of notation we denote |- | r(q) by [|-[|zr and ||| gx (o) by |- ||
with 2 < p < oo and k = 1,2, 3, and the L%-inner product is denoted by (,-). The
semi-norm ||V - ||z2 is denoted by | - |g.

Consider

K = {u € L0, T; H2(Q2)) N Wh>(0,T; HE(Q))
u € L®(0,T; H*()), 0pu € L=(0,T; H*(Q)), d3u € L*(0,T; H (Q)),
[Au]| oo (0.7:22()) < b VAUl 0.7,12(0)) + KAl F e 0.7, 12(0)) < RQ}v

for some fixed 0 < Cb < (1 —k)/2k, with 0 < k < 1 and Cg, being the constant in
the embedding inequality of H2(2) in L*°(£2), and R? = Cr[(1+2kCqb)| Avol2. +
[V Aug||2.] for some constant Cr > 1.

Themap 7 : 4 — u =T (@), for & € K, is defined via the solution of the following
linear problem

(1 — 2k@)0fu — Au — af * 0;Au = 2kOudii  in (0,T) x Q,
(3.5) u=0 on (0,7) x 99,
w(0) =up, Ou(0) =vg in Q.

First we show the existence of a unique solution of (3.5). Then by showing that
the map T, for some T" > 0, is a contraction we obtain the existence of a unique

solution of ([2.7).

Theorem 3.1. For ug € H3(Q), vo € H*(Q) N H(Q) and @ € K there exists a
unique solution u € L>(0,T; H}(Q)) of @B.5), with u € L>(0,T; H*(Q2)), du €
L>(0,T; H?(Q)) and d2u € L*(0,T; H*(R)).

Proof. The existence of a unique solution of (3.5 can be shown using the Galerkin
approximation
¢
u(tw) = (g (@),
j=1
where {q;};jen is a basis of eigenfunctions of —A on H{ (), orthonormal in L?
and orthogonal in H!, with eigenvalues {\;}. The coefficient vector ¢! = (c?)le
satisfies the following system of ODEs
 , ¢ d , d ,
(3.6) 72 + A(t)c" 4+ aA(t)B P A(t)ﬁc =0,
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where

(8005 =% { g 000 ) (A0, = (A 0,000

Writing v = %ce we have that

(3.7) () = /0 (= s)vi(s)ds +t%c€(o) +¢4(0)

and

Lot = [ Vi(o)is + et
—c'(t) = | v'(s)ds+ —c
dt ) at V"
with the initial data c‘(0) and %CZ(O) given by the orthogonal projections onto
the basis {g;} of the initial data uy and vy respectively. Thus the original problem
(3.6]) is transformed to the Volterra integral equation

t

VE(t) + At) / (t — s)VE(s)ds + ah(t)By = vE(t) — A(t) / Vi(s)ds = g(t),

0 0

where (7 is the inverse Laplace transform of

Bi(2) == 2"153(2)

and

g(t) = —A()c’ (0) + A(t)%&(@) - (t +a /0 5(5)d5) A(t)%cf(()).

Thus the Volterra integral equation can be written as

VZ ! SVZS S =
(ﬂﬁAKw) (s)ds = g(t)

with
K(t,s) = At)(t —s+abi(t —s)) — A(t).

From the behaviour of its Laplace transform, we know that ; is analytic for t > 0
with a singularity of the type t* at t = 0, thus the kernel K (¢, s) is continuous and
so is the right-hand side g. The existence of a unique continuous solution follows
from [7, Theorem 2.1.7]. The C2[0, T]-solution c’ of the original problem is
then obtained from v¢ and .

The existence of a solution of is obtained by taking the limit as £ — oo in
the Galerkin approximation and using a priori estimates, uniformly in ¢, similar to
the ones in Lemma [3.2] O
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Lemma 3.2. For solution of (3.5) we have the following a priori estimates

||Au||L°° o,1;L2Q) T ’i”atquLoo 0,T:L2(Q)) < [”AUOHLQ(Q) + fHVUO”L? Q)]
< exp { T2 (10, ) + 196 072200
+ 1Vl ) (19l ) + 199 w0 73020) | }
(3.8) ||VAUHL°°(O T:02()) T ’QH@AUHLw(o T,02(Q) = [HVAUOHLZ(Q)
+ &l Avol72(q) ] exp {Tf [HatAUHLw(o TiL2(Q) + — [HAVUHLoo(o TiL2(Q))
+ IVl oo () (1 + A oo (0,7 22(2))] (1 + ||5tVﬁ||L°°(o,T;L2(Q)))
+ %HAVQH%OC(O,T;L%Q)) (1+ HA’QH%“(O,T;L?(Q)))} }’
together with

Caq _
18 * A0l ) < (1800l + ENT00a )] (T2 [ IVitln e

(3.9) —|—||atA€L||Loo(0,T;L2(Q))} [1 + E||Va||L°°(QT):| exp {T% E”V{L”Lw(gﬂ
HOAT 1o 0,220 | [1+ %llvallww} b+ 2)’
and
A o+ 18 % AVOullF 20,y < [IVAuollFaa) + &l AvolFa(y] x
|:TCQ (1 + - [HatAU”LW(O T;02() %[HVﬂHLw(QT)(l + |AG| Lo (0,7:12(02)))
+ [|AVE| o< (0,722 [1 + [10: V] Lo (0,7512 0)) | + %”Ang%W(O’T;L?(Q)) 1
#1800 a]] e {1080~ 0oy + 1AVl ooy
IVl Lo (@) (1 + |AGl| L (0,7 22(0)) ) ] (1 + 10Vl L (0,720 )
+ %”AVINL”QLOO(O,T;L?(Q)) (1+ ||Af‘||2L°°(0,T;L2<Q)))} } ™ é]’

where £ = 14 2kCqb, @ € K, b and k as in the definition of K, Qp = (0,T) x Q,
and the constant Cu > 0 includes constants from the embedding inequalities and
hence depends on the domain 2.

Proof. Considering 0;u as a test function in the weak formulation of (3.5) yields

’f||3tu||%oo(o,T;L2(Q)) + ||vu||2L°°(O,T;L2(Q))

2k . .
< [(1 + 2kCab)[[vol| 720 + Vol 2(0y] exp {T?H@U”LM(QT)},

where 1 — 2kt o0, ryx0)) = 1 — 2kCab > x and we used Lemma in the
simpler form fot B* 0,Vu -0, Vudr > 0.
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Considering —Ad,u as a test function for (3.5) and using estimates in Lemma[2.1]
we obtain

0V ullFo (0 7:12(0)) + 18U 0,122 () < [ElIVV0lIT2 (0 + 1Au0[172 ()] X

Ca . N
x exp {T=2[|9sill .~ ) + 10Vl 2w (07130
1, - 1 .
+ IVl oy (14 100l 2 0 2y + [V 2o ) ] |

and

Ca _
18 * Aat“”?ﬂ(m) < [§HVU0H%2(Q) + HAUOH%Q(Q)] [TT (||8tVU||L°°(0,T;L4(Q))

5 1 - 5 1 B
+ |04 ]| 0w (1) + EHVUHLW(QT) [1+ 10¢tl| os (0,724 (02)) + E”V“”W(QT)]) X
Cq _ .
X exp {T7 (IIatUHmeT) +10:V il Lo 07524 (02))

1o~ - 1 . 1
+ IVl e [+ 195l 0,10 + <Vl o] ) } + 2]

Applying A to (3.5) and taking Ad,u as a test function in the weak formulation of
the problem implies

K0 AUl|T o (0 7:12(0)) F IAVUT e (07, 12(0)) < [EIAVO]I720) + [[AVU0[|72 ()]
1Ca
K

5 1 . .
X eXp{ <||5tAU||Loo(o,T;L2(Q)) + [||Au||L°°(O,T;L4(Q)) ([10: V|| Lo (0,712 (02))

+1) + [Vl o ) IVl 0,1 25000) + 1) 100Vl e 0.7:2200) +1)]

1

=5 1830 01,200 + IV ) (1 IV 0.1, 0)] ) -
Using the Sobolev embedding inequality yields the second estimate in . From
those estimates, using the weak formulation of the problem, we also obtain the
estimate for 8 * AV in L?((0,T) x Q). The strong formulation of the equa-
tion in , see in Appendix, together with the estimates for VAwu in
L>=(0,T; L?(2)), dyu in L>®(0,T; H*(Q)), and 8 * AV in L*((0,T) x Q), im-
plies the estimate for 9?Vu in L2((0,T) x ). See appendix for more details on the
derivation of a priori estimates. ([

Remark 3.3. For simplicity of presentation we have skipped the Galerkin approxi-
mation step in the above proof. Note that in the Galerkin approximation, using the
notation from Theorem Oy Au’ satisfies the zero Dirichlet boundary condition
and hence boundary integrals vanish when integrating by parts. Notice that the
limit as £ — oo in H'-norm of the Galerkin approximation Auf yields Au = 0 on
J9 and in the estimates in Lemma the equivalence between the H'-norm of Au
and the semi-norm ||VAul|z2 is used.

Using a priori estimates proven in Lemma [3.2] and applying the Banach fixed
point theorem yield local existence of a unique solution of nonlinear problem (2.7]).

Theorem 3.4. For ug € H3(Q) and vy € H2() N H (), with
[Auo||72(q) + (1 + 2kCab) Vol 72(q) < nb°,

for any n € (0,1), there exists time interval T'= T'(R,b,n) > 0 such that u € K is
a unique solution of (2.7)).
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Proof. For R? = OR[||VAU0H%2(Q) +(1+ 2kCgb)||AUo||2L2(Q)] and T = T(R,b,n)
such that

exp{TCq(R+ R?)} <1/n and exp{TCq(R+ R>+ R®+ R*)} < Cg,

estimates in imply u =T (4) € K for o € K.

To show that 7: K — K is a contraction we consider for @; and @y in K
and, taking —AQ9;(u; —uz) as a test function for the difference of the corresponding
equations, obtain

K[V (w1 —u2)l[T o (0,75 12(0y) + 1A W1 — w2)[[7 o (0,712 (02))

< Co( 108w 0y + 10Ty | IV — 52 e 0,725

+ % {HAV"QH%?(QT) +110:Vaa 1720 7,11 ) + 1AU2 31 0,7 22(02))

+ 1168 % Aduall o ot o) (L + V2l 00) | 181 = B3 02,2200 ) %

X exp {% (||3tAﬂ1HL1(o,T;L2(Q)) + % [IIde\I%m(QT)||8tVuQH%2(QT)

+ 118 % Adyuzl| 10,711 () (1 + [[Viia| Lo (o)) + T (1 + ||V1~L1||2LW(QT)

+ ”aQH%Vl*OO(QT) + ||8tu2H%OC(QT)) + ”valHL“(QT)”atVﬂlHLl(o,T;L2(Q))]

+ %HVﬂl”QL%o,T;Lx(Q))) } < Cq|TR? + T3 (R + R?)|x

x exp {Cq[T(1+ R+ R* + RY) + T%(R® + RY) exp{CoT(R + R?)}] } x

X (KlIVO: (1 — G2) |7 0. 7:12(02)) + 1A (G2 — G2) |7 (0. 7:12(02))) -

Then for T such that Co[TR?+T% (R+R?)] exp {Co[T(1+R+R2+R*)+ T3 (R +
RY) exp{CoT(R + R*)}]} < 1 we have that 7 : K — K is a contraction. Thus

applying the Banach fixed point theorem, and iterating over time, yields existence
of a unique solution of the nonlinear problem ([2.7). O

4. TRAPEZOIDAL DISCRETIZATION

In this section we present analysis for the numerical scheme for problem (2.7]).
The time semi-discretization considered here is based on trapezoidal time-stepping
with uniform time-step At >0 and n=1,2..., N, with T'= NAt,

(4.1) (1 — 2k{u},)D*u,, — A{u}, — aB ¥a; DA, = 2k(Du,)?,
where u,, € Hi(Q) N H?(Q) and
1 ) 1
Dun = E(unJrl - unfl); D Up = ﬁ(urﬂrl - 2un + unfl)y

1 ~ 1
{u}n - i(un-i-l + 2un + un—l): Dun = E(un-&-l - un)7

with Dug := wg, and [ *a¢ g], (with the square brackets in most places left-
out) a convolution quadrature approximation of fot " Bty — 7)g(T)dT. We will use
convolution quadrature based on the second order backward difference formula
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(BDF2) [20, 1), 22] which results in the discrete convolution

ﬁ*AtU § Wn—5Vj,

with convolution weights w; given by the generating function

(5D) =Swe,  a0=0-0+50-0%

7=0

For v that is sufficiently smooth and with sufficiently many zero derivatives at ¢t = 0,
we have that [B*a;v], = B*v(t,)+O(At?), whereas for v(t) = t* and real a > —1

(4.2) ‘[ﬁ T R T

Ct=TAt* ™ for —1<a <1,
Cthta=2At?  for a > 1,

forn=1,...; see [23, Theorem 2.2].
Alternatively, we can use the corrected CQ formula
(43) [5;‘Atv]n = [B kAL v]n + wn,0v0,

where w,, ¢ is chosen so that the formula is exact for constant function, i.e.,

wno—/ B(r)dr — [Bar 1] /B dr—Zw]

Note the trivial but useful fact that S¥atv = 8 *ar v if vg = 0. From (4.2) and the
definition of wy, ¢ it follows that we have the stability bound

(4.4) |wn.o| < Cth™ At

for n > 1. The first correction weight is wg o = —wp, where wy = B(8(0)/At) =
I3 (ﬁ) ~ (2/3)* At as At — 0. In the estimates below, we will only require the
fact that wy are bounded by a constant independent of At for all n > 0. The
semi-discretisation with the corrected CQ formula reads

(4.5) (1 — 2k{u},)D?u, — A{u}, — af*ar; DA, = 2k(Du,)>.

When using the corrected scheme, we will further assume that vy € H3(Q).
A crucial property of (the non—corrected) convolution quadrature, see |5, Lemma 2.1]
and [6l, Theorem 2.25], is that ([2.5) implies

(4.6) ZQQJ vj, [B*arv]j) > CBZQ dCEN vl; IZ2,

j=0 j=0
for o = e~ 72t with ¢ > 0, and
Cg:=(+nr)* (if 3=pa), Cp:=1 (if 8= Ps),

where & = Comin(1,0). Thus, if 8 = Sa with r > 0 or 8 = g, we can set 0 = 0
(i.e., o=1and & = 0) and still obtain positivity of the left hand side in (4.6).
For the corrected version, all we can say is that

(4.7) ZQ (vj, [B*atv];) >Cﬁzg2jllﬂ*mv HL2+ZQ wj,0 (v, vo) -

j=0 j=0 j=0
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To initiate the iterations in (4.1]) we set
1
(4.8) uy = ug + Atvg + §At28t2u(0),
where we can determine 97u(0) from the equation (2.7)

(4.9) 02u(0) = (Aug + 2k(vo)?) .

L
1-— 2]€UO

Lemma 4.1. Under the assumptions on the initial data (2.8)), along with ug € H*(Q)
and

2

HA““““ + (14 2kCab) Hv “O‘ <2,
L2(Q)

where 0 < Cob < (1 — k)/2k, with 0 < x < 1, and the constant Cq, is the constant

in (3.1) and (3.3]), we have the following stability estimates for the scheme (4.1])

[

K sup HDVU%H%Q(Q) +osup [|A(u)n|[Faq) <07
(4.10) 1<n<N-1 1<n<N-1
koosup [ DAu|Faq) +  sup  [[VA(u)a]Zaq) < R?
1<n<N-1 1<n<N-1
where (u),, = (Unt1 + un)/2 and R2 = Cr[||AV (u)o||22 + (1 + 2kCqb)|[ DAuo 2. ]
with Cr > 1.

Proof. In order to analyse the system we need that 1 — 2k{u},, > k£ > 0 for some
(fixed) x € (0,1). Thus similarly to the continuous case, we consider the fixed-point
iteration

(4.11) (1 — 2kd,,)D*u,, — A{u}, — aB *as DAu, = 2kv, Du,,,

where d,, = {@},, and v, = D, for @, € H*(Q) N HL(Q) satisfying (with
u, replaced by ).

To derive the stability estimates we first test with 02" Du,,, o = e 2/T,
and estimate each term separately. For the first term we have

N-1
At Y *"((1 = 2kdy,) D*up, Du,)

n=1

1 _ _ 2 1 _ 2
25/@2(N71)(1_2de_1) <UNA7:1\71) dl‘—g/(l—%dl) (U1Atuo) di
Q
2
+k/ Z QQ(n+1 i1 — dn)(UnHAt ’Lbn) da
L I UN —uN-1 71/ _ Uy — g2
fQ/QQ (1 2k:dN_1)( A )dx 3 Q(1 del)( A7 )dx

n nt1 — (@Wn-1 =2
+kAt/ Z o2 <2At> (Duy,) da.

The last term in the estimate above can be bounded by

N-2
KLY G D(@)a| o [ D[

n=1
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Using 1—2kd,, > k > 0, together with the estimates for the convolution quadrature,
yields

N-1
En-1 < By — CpAt Z 0" |B *a Dunﬁql
n=1
N-2 ) , N-1 ,
+ kALY D@ | o[ Dun [ + 2648 Y 7 0 || D] o | D] [
n=1 n=1
N-1 , ) N-1 ) ,
< By — CpAt Z QQ"’B *A¢ Dun|H1 +C  sup HDﬂnHLwAt Z Q2"||Dun||L2,
1 0<n<N-1 =
where for n > 1
1 o, |Unt1 +un 2 1 n ~ 2
E, = 592 % » +§/QQQ (1 = 2kd,,)| Duy | da
and
2
By = L|Wtuol 1/(1 — kdy)| Duo|*dr.
2 m o 2Ja

Then the discrete Gronwall inequality ensures

o
1— 2kd,

3

When considering the corrected convolution quadrature, we will have the adi-
tional term

N-1
En_1 < Ey exp {Coésgg_l HD’&”HLOOAt r;) QQn

Lo

N-1
At Z Q2"|wn’0<VDun, VDu0>|

n=1
(4.12) =,
<CAtY o b(HV(U)nHHQLz + IV (w)nl72) + Csllvoll 3
n=1
< §sup ||V(u)nl|2: + C,

for any fixed 6 > 0. Then the first term can be subtracted from the corresponding
term on the left-hand side.

Taking —0*"ADu,, as a test function in and integrating by parts in the
first term on the left-hand side and in the right-hand side yield

N-1
ALY 0 [{(1 = 2kdy) D*Vaun, DVu,) + (Afubn, ADuy)
n=1

(4.13) +<aﬁ kAL DAun,DAunﬂ
N-1

= 2kAt Y 0*"(DuypVvy + DVuyv, + Vdy D*up, DV, ).

n=1
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Using equation (4.11)) we rewrite the last term on the right-hand side as

(VdyDup, DV, = <ﬁw (Afu}n +aB <ar DA, ), DV, )

+2k<%Vanunvm DVun>.

Similar as above for the first term in (4.13)) we have

N-—1
NI [<(1 — 2kd,)) D*Vu,,, DVu,,)

=1
> 192<N*1>/ (1 - 2kdy—1)|VDun-1|*da — 1/ (1 = 2kdy) |V Duo| d=
2 0 2 Ja
N-2
+ kAt Z o2+ D) /D |VDun| dx.
n=1

For the second and third terms in (4.13]) we have

N-1

ALY " [(A{u}n ADu,) + (aB #a0 DAuy, DA, )]

2

n=1
> 1 2<N71>HM’ ? EHM’
=3¢ 2 L2 2 L2
N-1 )
+ CpAt Z QQ"Hﬂ *AL DAunHLZ.
n=1

The terms on the right-hand side are estimated as

At Z 0*" [< de A{u}n,DVun>
Vdn Duy vy, DVunH

+ <1ng «n; DA, DVun> + 2k<m

N-1
||VdnHLoo X
oo

<AL Y ™8 xar DAy |72 + CA Z 92"

n=1

< [lagudallz + IDVualfs (1+ ol e + CH ||, IVdallz= ) .

where we assume ¢ < Cg/2, and
N-1
2KAL Y 0*" [(Dun Vo, DVun) + (DVtyva, DV, )|
n=1
N-1
< CALY 0™ ([[vallze + Vol pa) [ DVun| |72

n=1
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Applying the discrete Gronwall inequality we obtain

/ *N V(1 = 2kdy_1)|DVun_1[*dz + * VY| A(u) n 1|22
Q

N—-1
+CsAES 0 (|8 as DA 22 < [V Duol3e + || A(u)o|7] ¢

n=1

N-1
X exp {CAt Z H% . [||an||L4 + |lvnlloo
(4.14) n=1
[Ven]

" 1 - 2kd,]|, . (H 1- ;kdn HL

N PRER S TR )
~ CQ N-1
< [VIVDuo |22 + Ao+ ur) /2] | exp { =2t > (120112
1 1
+ S IVAd 32 + = (IVAdallz2 + [V Adal22 + [Venl2:)] },

where v = 1+ k(||tg||p~ + 2||@1||pe + ||G2]|L~)/2. Here we used (3.4) and that
Ad,, = 0 on 9f). Thus for

koosup  |JAv,|2. 4+  sup  |[VAd,|%. < R?
1<n<N-1 1<n<N-1

and initial conditions
AW)o||32 + (1 + 2kCab) ||V + (1/2)AtVIFu(0)||32 < nb?,
and appropriate T' > 0, such that
min,, p2(n—1)
exp {CoT(R/k + (R+2R?*)/k* + R?*/r%)} < —
we obtain

koosup [IDVu 3+ sup A3 <0,
1<n<N-1 1<n<N-1

where 0 < K < 1 —2kCqb and Cg is the constant in (3.1]) and (3.3]). This ensures

1
Huballz < 5Ca(ll(Wallaz + [(@)n-ll42)
1
< §CQ(||A(U)7L||L2 + | A(u)p-1]lr2) < Cab for 1 <n<N-—1.

In the case of the corrected convolution quadrature the additional term is esti-
mated in the same way as in , with ADu,, and Avg instead of VDu,, and
V'U().

Applying the Laplace operator to yields

(1 = 2kd,) D?*Au, — 2kAd, D*u, — 4kVd,, D*Vu,, — A*{u},

(4.15) 5
—af xar DAy, = Qk(DunAvn + DAunvn) + 4kV Du, Vv,
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Considering ¢0*" DAu,, as a test function in (4.15)), see Remark we obtain
N-1
ALY 0 [((1 = 2kdy) D2 Aun, DAU,) + (AV{u}y, AVDuy)
n=1

+a(B a0 DAV, AVDu, )|
(4.16) N-1
= 2kAL Y 0> (Ad,D*uy + 2Vd, D*Vu,,, DAuy,)
n=1
N-1
+2kAL Y 0" (Duy Avy + DAupvy + 2V Dup Vo, DAuy,).

n=1

For the first term in the same way as above we obtain

N—-1 N-2
ALY 0*((1 — 2kdy,)D*Auy,, DAuy, ) > kAt/ > P D(a) | DA, *d
n=1 Q —1

1 s 1 N
+5 /Q NV (1~ 2kdy_1) | DAuN_1|*dz — 5/9 (1 — 2kdy )| DAug|*dz.

The second and third terms in (4.16]) are estimates in the same way as above and
we have

N-1
ALY g [<AV{u}n, AV Duy,) + (8 s DAV Dus,, AVDun>]
n=1
> 1 v AV(uy +un-1) | ? EHM‘ ?
=3¢ 2 2 2 2 L2
N-1 )
+ CgAt Z 92"”,8 XAt DAVunHLZ.
n=1
For the last term on the right-hand side of (4.16)) we obtain
N-1
At Z 0*"|(Du, Av,, + DA, v, + 2V Du, Vo, DAu,)
n=1
N-1
< CaAt Y 0™ (|Avallze + [vnllze + [ Vonllzs) [ADun[3 .
n=1

Here we used estimates (3.1)) and (3.3]). To estimate the first term on the right-hand
side of (4.16) we first use the equation (4.11]) to write

1
D, = =5 (Afubn+ 6 a0 DAw, +2kDuyo, )
and
1
DV = =i (AV{u}n + B +a1 DAV, + 2k(Duy Vo, + DVuyv,))

+2kVd, Afubn + B *as DAy, + 21<:Dunvn).

Al
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Then, using the Sobolev embedding theorem, yields
N—1
At Y 0*"2k(Ad, D*uy, DAuy, )

n=1

- [AdnllL
E 2n_ [Z20nllLd 8 8 4 2
< CAt o Hl _ denHLoo [HUn”L [ Dunl|ps + |A{u}tnllL }HDAun”L

n=1
N-1
1

DG Py

n=

2

LA F DA 22 +<]18 %ar DA, ]

N-1
1 2
2n 2 2 2
<oat 3 | g [ (181 + ol )P
N-1 N-1
+CALY VA {ulnllF2 + AL Y ™18 *ar DV AU, |7
n=1 n=1
and
N-1 N-1
a1Vl
ALY 0*"[(VdnD*Vuy, DAu,)| < CAL Y~ o? % [||AV{u}n||Lz
el n=1 H - "HLOC

+ [ Dun o< [Von| L2 + | DVun||zs[vnll s + 118 *at DAVunHL?}

Vvd,|?
Vb TyAQuballe + 18 a0 DAU 1o + 1Dt enlze] 1 DA 12
11 = 2kdn
<ot Y @t (| | IVl + 9l + [V
s Co 0 1 — 2kd,, L \II1T = 2kd,, Il L= nllL6 n| L6 n || o0

N—-1
+ IV0allie ) IDAw e + At Y o (IVA{uhallis + )18 a0 DVAuL|3:).

n=1

Here we used (3.1)), (3.4)), and

[Aw| e < CollAw||g < Cq||VAwW|| L2, for 1 <p <6,
where Aw = 0 on 0f2. Choosing ¢ > 0 sufficiently small yields
PN V|| DAuN 1|72 + VTV AV ()N

N—-1
+ At S "B %ar DAV, 22 < ]| DAugl2s + AV (w)ol 2
n=1
N—-1 1 2
2n 2 2 2
+ ot 3 o (IAV{ublite + | gz |, [180alEe + 17 A3

n=1
1
+ (1+H1—2kdn
Considering T such that

) Iadalt]IDAu ).

R? + R* R4}}

ID A2 + AV (w)oll3: | exp { CaT max {1, =+ =

< min @2V R2,
n
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and using the discrete Gronwall inequality, we obtain
0> k|| DAy |22 + 0*"|AV (u), |22 < 0*"R*  forall n=1,...,N —1,
and then also
N-1
ALY ™8 xar DAVu,||7. < C.
n=1
In the case of the corrected convolution quadrature the additional term is esti-
mated in the same way as in (4.12]), with VA Duw,, and VAuvy instead of VDu,, and
V’Uo.
As next we have to show the contraction property for the map @,, — u,. Consid-
ering the equation for w,, = ul —u2, where u/, satisfies (4.11]) for @/, with j = 1,2,

taking —o®" ADw,, as a test function and summing over n, yields
N—1
ALY [((1 — 2kd,) D*Vw,, DVw,) + (A{w},, ADw,)
n=1

+ <aﬂ xar DAw,, DAwnﬂ

(4'17) sy 2 1 1 112
SN {g " Dw, Vvl + DVw,vl + Vdl D*w,, DVw, )

n=1

+0""((d,, — d3)D*Vuy, +V(d,, — d;,) D*u;;, DVwy)
+ 0*((vh, — v2)DVu2 + V(v — v2) Du, DVw,) |,

where d = {@/}, and v} = D@, for j = 1,2. Performing estimates similar as
above we obtain

PN R|D(uy — )+ AN VA ) 1

N-1
+ (205 — C)At Z anHﬁ *At DA (’u,; — ui) ||%2
n=1
N-1
< Cotrt Y- @ [IDAG e + 1 D2Vulllsa] [IAd) = d2)I3e + [V (v — v2) 2]
n=1
N-1 1
+Cnit ) o (1A Q! =), 22 + |1+ 1 Avh 2 + <V}l [V} o
1 ~
+ SV 7 (14 1D2V e 12) + 1DVl 2 IV D, — u2)2)
N-2 B
+ At Y DD (@) o VD), = 2) -
n=1

Applying the discrete Gronwall inequality we obtain the contraction property for an
appropriate 7 = NAt. Iterating over the time interval we obtain that there exists
a fixed point of the map given by equation and the corresponding stability
conditions. O

5. ERROR ESTIMATE

As next we derive the error estimates for the time-discretization scheme (4.11)).
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5.1. Expected smoothness at ¢t = 0. Consider first the linear equation
1
(5.1) gafu — Au—af * Adwu = f,

with smooth f. The choice of 3 (either S5 or fg) implies that for k£ € Ny
t t
1 I'k+1
/ Bt —1)rhdr ~ - / (t — ) trkdr = _DE+1) thtn ast — 0T,
0 L(u) Jo D(k+1+p)

Considering similar arguments as in [3 Remark 2.10], we thus expect that the
behaviour at t = 0 of the solution to the linear problem to be given by

OFu(t) = <f + Aug + t* Avy + o(t“)) .

1
T(1+u)

In the nonlinear case, as long as no singularity develops and 2ku < 1 continues
to hold, we expect the singularity at ¢t = 0 to be of the same type

Ofu(t) ~ wo + zot* + o(tH),

where p € (0,1). This motivates the following assumption on the smoothness of
the solution that will allow us to develop realistic error estimates.

Assumption 5.1. Assume that
w e C2([0,T); HA()) N C((0,T]; H2(2) N CH(0,T]; L2(2)
and that there exist constants ¢, > 0, for k = 1,...,4, such that
10Ful| 20y < C(1 + cpt> %) for t€ (0,7] and k=1,2,3,
10ful| p2(0) < C(1+ est"™?) for t € (0,T).

In what follows, for u € C[0,T] we shall use the following notation

Du(tn) _ u(tn+1)2;:(tn*1), Du(tn) _ u(tn+1)At_ ’U,(tn)7
D*u(t,) = Wltnrn) = 22(:;‘) * u(t”‘l), for t, € [At,T — At],

1
{u}t,) = 1 (w(tns1) + 2u(ty) + u(tn-1)), for t, € [At,T — At].
We will require the following lemma proved in [3] for 8 = o and r = 0.

Lemma 5.2. For u € C3(0,T] and any t,, € [At,T]
(a)
|8 % Opu(ty) — B xar Dult,)] < C{tglatu(At)At

+ A2 <8t2u(At)tﬁl n / "t — 7')”1|6f’u(7)|d7'> } .

At

(b)

tn
|8 * Opu(ty) — BxarDu(t,)| < CA#? <8fu(At)t’,fb1 +/ (tn — T)“lafu(7)|d7> .
At
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Proof. The result for 3 = Ba and r = 0, ie., 8 = ﬁt“il, is shown in [3]
Lemma 4.4] and [3, Lemma 4.5] respectively. Looking closely at the proof as well
as [3 Lemma 4.2] and |23, Theorem 2.1], it can be seen that the only property of
the kernel used is [8(z)| < C|z|™#, z ¢ C\ (—o0,0], which holds for both 84 and

Bp; see (24). O

Theorem 5.3. Let u be the solution of satisfying Assumption [5.1] and with
initial data satisfying the conditions of Lemma [{:1] Let u, be the solution of the
semi-discrete scheme. If the uncorrected CQ is used, the error w, = u, — u(t,)
satisfies the estimate

(5.2) sup ||Dwn||L2(Q) +  sup  [V(w)nllz20) = O(AR).
1<n<N-— 1<n<N-1
If the corrected CQ is used the error bound becomes
(5.3) sup  [|[Dwnz2) +  sup  [[V(w)allrz@) = O(ALTH).
1<n<N-— 1<n<N-1

Proof. Consider the difference between the solution and approximation denoted by

Wy, = Uy, — u(t,) to obtain
(5.4) (1 — 2k{u}n)D2wn — AMwy }n — B *at ADw,, = 2kDw), (Dun + Du(tn))
) +2k{w}, D*u(ty) + €n + On + 6n + K + O,

where
=(1- 2ku(tn))(D2u(tn) — c’fu(tn))

on = 2k({u}(tn) — u(ty)) D*u(ty),

On = B *ar ADu(ty,) — B x Adwu(ty),

fin = A({u}(tn) — ultn)),

0,, = 2k[(Du(t,))? — (Osu(t,))?).
Considering Dw,, as a test function in a weak formulation of and summing
overn=1,...,N — 1, yield

N-1

AL (1= 2k{ubn) D2w,, Dwn) + (V{wy}u, VDw,) |
n=1
N— N—
(5.5) + At Z (B *at VDw,, VDw, )= Z Dw,, [Duy, + Du(t,)], Dw,)
T _" -
+ 2kAt Z ({w}nD?u(ty), Dw,) + Atz En + On + 6n + Fn + 0y, Dwy, ).

n=1 n=1

Using the boundedness of Du,, and Du(t,) we obtain
(Dwy, (Duy, + Du(ty)), Dwy, ) < C(|Dun | e + [|0sul| o ) || Dwy||7 2.

Similarly using that D?u(t,) € L*(f2), together with the Sobolev embedding in-
equality, we have

({w}nD?u(ty), Dwn) < C||[D*u(ty)| s ([{whnllZs + [ DwnZe)
< Cllofullps (IV(w)allZe + 1V (w)n-1ll72 + | Dwnll72) -
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The last term in (5.5) we can write as

N-1 N-1

N-1
ALY ‘(en + 0y + Oy + bin + O, Dwy )| < C[(AtZHEnHL2>2 4 (Atzuon”m)?
n=1 n=1

n=1

N-1 5 N-1 9 N-1 5
(A0l )+ (DY Ikallz) + (At N6allzz) |+ sup [ Dwal3.
n=1 n=1 n=1 1<n<N-1

Assumption allows us to bound the perturbation terms as in [3] by
N—1 N—1

At Z llenllzz = At Z H(l — 2ku(ty,)) [Dzu(tn) - (9t2u(tn)] HL2
n=1 n=1

2At T
< cm/ Hc’)fu||det+CAt2/ 190l podt < CALR( + (5 + ca) A,
0 t

A
N-1 N-1 N=1 A2
ALY llonllze = A7 || [{uhta) = ulta)] D2ulta)| 2 = At Y S 1Dt
n=1 n=1 n=1

< CAL||OFu T2 0,1;00(0y) < CAL,

where we used that 07w € L*(0,T; H'()). Using the assumption that || A&7 ul| 11 (0,r;22(0))
is bounded yields

N-1 N-1
At Y lralls = At Y I A{u}(tn) = ultn)) 22

< CAP|| A ul| 10,712 (0)) < CAF.

Notice that estimate for HA&EUH[@((O’T)XQ) can be shown for initial data uy €
H*(Q), vo € H*(Q) in the similar way as the estimate for [|[VO7ullr2(0,1)x0) in
Lemma 3.2
To bound the CQ approximation error we use Lemma and [3, Lemma 4.1] to

conclude

N-1 N—1
(5.6) At [I0nllze = At Y |A(B #ar Dulty) — B dulty))|| . < CAL.

n=1 n=1

Instead if we are using the correction, then

N-1 N-1
(5.7) ALY |0nllze = At > ||A(BFaDu(ty) — B % du(tn))| . < CAL.
n=1 n=1

The last error term is estimated as
N-1 N-1

ALY 16a]lze = 2kAL Y ([(Dultn))? — (Bpulta))?|l 2
N-1
(5-8) < OAt Y ||Dultn) = dpu(tn)ll ez (10su(tn) 2 + | Dultn)l| =)

N-1

T
< CAt Z At? (1 + 03/ t“ldt> < CAE.
0

n=1
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Hence combining all estimates and applying Gronwall inequality yields

K sup ||Dwn||%2+ sup HV(w)nHizg(HV(w)oHiQ
1<n<N-1 1<n<N-1

(5.9) + (1 + 2kCob) || Dwo||22 + CAL* [1 + (3 + ca) ALPHD] + clAtQ) X

x exp {C([|Opull o + 0Fullzs +  sup [ Dunlp)},
<n<

<n<N-1

where 0 < k <1 — 2k||lul| 1, the constant C' may depend on the final time T, and
C7 = 0 when using the corrected CQ scheme.

As wy = 0, it remains to estimate ||Vaw; || and || Dwg|z> = At~ |Juy — u(ty)]| g2
The choice of u; in , Taylor expansion and Assumption ensure that the
two terms are of size O(At*™) and O(At' ™) respectively. O

Remark 5.4. Notice that Dwy = 0, thus we do not have any additional contribution
for corrected CQ.

Remark 5.5. In Theorem 5.3 we obtained the estimate in the natural discrete energy
norm. If instead of testing by Dw,,, we test with At Z;V:_nl(w)J we can obtain an
estimate on

N—1 2

At Z V(w)y

n=1

lwn Iz +

L2

In doing this, lower regularity assumption in space of the solution could be made
in Assumption namely H!(f2) instead of H?(12).

6. NUMERICAL EXPERIMENTS

Coupling the time discretization with the piecewise linear Galerkin finite
element space discretization we obtain a fully discrete scheme. Denoting by V" C
HZ () the space of piecewise linear finite element functions we have that the fully
discrete solution u* € V" satisfies

(6.1) <(1 - Qk{uh}n)DQUfL, v> + <V{uh}n, Vv> + a<ﬂ N DVUZ, Vv>
' = 2((Du")? v),

for all v € V?, n=1,.... The initial data is set to
1
ul = Pyug, ul' = ull + AtPyug + iAtQPhﬁfu(O),

where Py,: L*(Q) — V}, is the L? orthogonal projection and P,d?u(0) is obtained
from (4.9). Throughout the numerical experiments we set 5 = .

6.1. 1D Experiments. We first report on a series of experiments in 1D. To solve
(6.1) at each time step for u,i+; we use a Newton iteration as described in [2]
Chapter 7.1.2]. In space we use a uniform mesh with spatial meshwidth ~ > 0.
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=025
._g_.ﬁ =0.75 4
o(At)

Error

1024

10»3 L L
1078 1072
At

Ficure 1. Convergence of the maximum energy error for the numerical
scheme without the correction term for p = 0.25 and p = 0.75. Predicted
convergence order of O(At) is also shown.

6.1.1. Test 1: Convergence. In this numerical experiment we solve (2.1)) on =
(—1,1) with initial data given by

ug = sin(rz) and vy = sin(wz),

choose the parameters k = 0.09, » = 0 and a = 30 and set the final time to T = 1/2.
As error measure we use the maximum over time of the discrete energy error:

ex ex h h

error = max Yn “Un=1  Un T Unoi
1<n<N At At 12
(6.2) ex + ex h + h
un /u‘nfl un unfl
+ max ||V -V .
1<n<N 2 2 L2

As the exact solution is not available, for u®* we use a numerical solution on a fine
mesh with spatial mesh-width A = 1.7 x 1072 and At** = 3.1 x 10~%. The same
spatial-mesh is used for u” with a range of time-steps At. Theorem predicts
O(At) convergence of the error if no correction is used and O(At' t#) for the scheme
with the correction.

The numerical results for the version without the correction is shown in Figure[l}
We see that similar rate of convergence is seen for both values of 11 shown and that
it is close to the predicted linear convergence. In Figure [2] where the convergence

of the corrected scheme is shown, we see better convergence for larger p closely
following the predicted order O(At' ).

6.1.2. Test 2: Changing k. For the remaining 1D experiments we solve (2.1)) on
Q = (0,20) and, unless otherwise stated, consider the example with initial data
given by a Gaussian

_ (z—10)?

(6.3) ug =5e” 2 and vy =0.
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10° ‘

1078 1072
At

Ficure 2. Convergence of the maximum energy error for the numerical
scheme with the correction term included for p = 0.25 and p = 0.75. Pre-
dicted convergence order of O(At!1#) is also shown.

Note that while strictly speaking ug ¢ Ha (), ug is zero close to machine precision
on the boundary of Q.

In Figurewe show the solution of without the fractional derivative (a = 0)
at time T" = 4 for various choices of k. This figure shows that as k gets larger and
(1 — 2ku) — 0 the nonlinearity has a stronger effect on the wave form, resulting in
the formation of a sawtooth shape.

—+—k = 0.09

——Fk = 0.06
k=0.03

— — — Linear

FIGURE 3. Solution of (2.1) at ' = 4 approximated with the scheme (6.1)
with a = 0 for various values of k.

When we reincorporate the fractional derivative, choosing a = 1, r = 0 and
1 = 0.5, we still see the damping from the nonlinearity but no longer observe the
sawtooth formation. Instead the strong fractional damping term controls the form
of the solution, causing more parabolic-like behaviour, i.e, the solution is trying to
disperse rather than form a travelling wave; see Figure [4]
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T
—+—k =0.09
—x—Fk = 0.06
k=0.03]
— — —Linear

T s

——

FIGURE 4. Solution of (2.1) at T = 4 approximated using the scheme (6.1)
with a =1, 8 = Ba, u = 0.5, and r = 0, for various values of k.

6.1.3. Test 3: Changing a. This test investigates how changing the size of the

coefficient scaling the fractional derivative, with p = 0.5 and r = 0, affects the form
of the solution over time. We let k = 0.09, since the previous experiment has shown

that this will give a strong effect from the nonlinearity without causing shocks to
form, at least up to time T = 4.

In these experiments we consider Q0 = (0,40) and the initial data

_ (2—20)2
ug = He 2 and wvg =0.

Figure [5| shows the progression of the wave up to time 7" = 4 over regular
intervals for different values of a. For a = 10 a travelling wave does not form,
rather the solution attempts to disperse, and after the initial damping from ¢,, = 0
to t, = 0.8 the solution is minimally damped. For a = 0.1 the nonlinearity has

more control, since it appears almost identical to the solution with no involvement
of the fractional derivative (¢ = 0). Lastly, the case a = 1 shows a balance of
effects from the strong damping and nonlinear terms. Finally, for a = 0, letting the

experiment run until 7' = 8, a shock seems to begin to form; see Figure [6]

25
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FIGURE 5. Solution of (2.1)) at various time points up to 7' = 4 approximated

with the scheme (6.1) with k£ = 0.09, x = 0.5, and r = 0, for various values of
constant a.

25

FIGURE 6. Solution of (2.1) at 7' = 8 approximated with the scheme (6.1
with £ = 0.09 and fixing a = 0 to remove the fractional derivative.

6.1.4. Test 4: Changing p. These experiments demonstrate the effect the order of
the fractional operator has on the solution over time. In Figure [7] we show the
solution at 7' = 4 with different values of u, with and without the nonlinearity.
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(A) Nonlinear k£ = 0.09 (B) Linear k=0

FIGURE 7. Solution of (2.1) at the end time T = 4 approximated with the
scheme (6.1) with a =1, » = 0 and varying values of u € (0, 1).

6.1.5. Test 5: Changing r. In this experiment we vary the value of r, recalling that
we choose 8 = fa and that Sa(2) = (z 4 1) ~H.

Considering the previously stated initial conditions and fixing a =1, p =
0.5, we compute the approximate solution up to final time T" = 4. The solutions for
various values of r at the final time T for the nonlinear (k = 0.09) and linear (k = 0)
cases are presented in Figure 8| where we see that as r gets larger the fractional
operator displays weaker dispersive behaviour and the solution looks more like a

travelling wave solution.

—r=0 -
FAAY

..... r=10]] s

(A) Nonlinear k = 0.09 (B) Linear k=0

FIGURE 8. Solution of (2.1)) at the end time T' = 4 approximated with the
scheme (6.1)) with a = 1, = 0.5 and varying values of r.

6.2. 2D Experiments. In this section we present results of numerical simulations
for (2.1) in 2D, where = (—1,1)? is a square. We let the exact solution be

(6.4) u(z,t) = (sin(24t) + cos(12t)) sin(mx) sin(ry),

and choose a corresponding source term f so as to obtain the fully discrete system
<(1 - Qk{uh}n)DguZ, v> + <V{uh}n, Vv>—|—a<ﬂ XAt DVUZ, VU>

(6.5) = 2/<:<(Du2)2,v> + <fh,v>,
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where standard CQ without the correction term is used. We again use § = 5 and
the various parameters are set to

a=1, k=009, p=05 r=0.

The experiments were performed using the finite element library Netgen/NGSolve
package [31]. In Figure @ we show the projection of the initial data ug onto the
finite element space, as well as the underlying automatically constructed triangular
mesh.

-1,585e+08 =7.521e-81 3.262e-84 7.528e-81 1.5@5e+88

/f x !“-i

L\ W
0
U

4

N

"' ‘\ \u

AV
IAVAWMV

i
\\\
\\\VN

iz

FIGURE 9. Projection of the initial data on the space of piecewise linear finite
elements. The triangulation constructed by Netgen/NGSolve [31] is also seen.

To examine the convergence rate we compute the maximum L2?-error, given by

(6.6)  max un —u(tn)] 22

on increasingly finer meshes. In Figure [L0| we see, as expected, O(At) convergence.

—— Max error
O(At)

100<

Error

10714

10—2<

102 101
At

FIGURE 10. Maximum L2-error of the approximated solution to (2.1)) gener-
ated using the scheme (6.5]).
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APPENDIX: ESTIMATION DETAILS FOR THE WELL-POSSEDNESS PROOF

To derive the first estimate in Lemma we consider Jyu as a test function in

in the weak formulation of (3.5) to obtain

/ [at((1 — 2k@)|0yul?) + 0¢|Vul* + 2a8 * 9, Vud, Vu|dzdt
Q-

< / 2|0y | Oy 2dad,

-

for 7 € (0,T], where ., = (0,7) x Q. Using the nonnegativity of the third term on
the left-hand side and the regularity of @, and applying the Gronwall inequality we
obtain the first estimate in the proof of the lemma.

Considering —AQd;u as a test function for (3.5) and integrating by parts in the

first term and in the term on the right-hand side we obtain

/ [at(a — 2k)| 0, Vul?) + 0| Aul? + 20 * atAuatAu} dwdt
Q

™

_ / 16V 00,V + 20,810,V ul? + 4K0,VaDud, Vu dudt, for 7 € (0,T).
Q,

Using that

1
(6.7) 92 = (Au + af * 8y Au + 2k8tﬂ8tu>,

1—2ku

we can estimate the terms on the right-hand side as

1
/\V&@fu@tvmmdtg%/ Vi (|82 + 05 uf? + 4k|0,]|0yul |0, Vul ) dedt
Q, Q,

11 <12 2 sa? 2
5 |Va|*|0, Vu|*dxdt + — |8 * Oy Aul*dxdt
2K S Q. 2 Q.

1 [ 1
< || o 22 || 1,00 U 22 22
< 2K/O 1Vl (Al + 24—Vl + 4kCal|Vayil 3. 10, Vul 3 ) dt

2
+2 18 % 0, Aul?dudt
2 Jo.
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and

T
/ [%atmatvuﬁ + 4k8tVﬂ8tu8tVu} dwdt < Qk/ [||ata||Loo 18: V|2
Q 0

-

+2C0 ||Vl 14| VOul3 - | dt.

Then using estimate in Lemma and applying the Gronwall inequalities yields
the second estimate in the proof of Lemma [3.2]

Applying A to and taking Adyu as a test function in the weak formulation
of the problem imply

/ (at (1 — 2ki0)|0, Aul?) + 8| AVu|? + 2a 3 * atAVuatAVu) dwdt
Q.
(6.8) = / [4maa§uatm + 8kVad} Vud; Au + 2kd,i|d, Au)?

Q.

+ 4k, Nidyud, Au + Skatvaatvuatm} dedt = I, + I + Is.

Using (6.7) together with

82V :1_17%& (Aw +af % O, AVu + 2k, Vadyu + 2k8tﬂ8tVu>
(6.9) 2V
e (Au+aB + 9 Au + 2kdyidyu),
the terms on the right-hand side in can be estimated as

2k
L < ?/ (21|00, e + 441 At 10, A ) v
Q,
2k /() / AT 0, Au] 20 dt + 260 / 16 % A2 udt
0 0
2k [T
<7

<= [ (18] (Cal AVulE: + |19:Aullfz) + 2k (4Cal|Adll 4]0Vl
0

1 ~ T
+ oAl [ondul ] dt + 26aCa [ 8 0Tl
0
and
4k
L] < Z/ Vil [|Avu|2 + 4k (|V 0yt | Dyu| + |0yl | VO] + |6‘tAu|)|6tAu\]dzdt
Q-

s

K26
16k2

+ PR

Q,

a/ |Va|?| 8 * 0r Aul|0; Au|dzdt < 8ga2/ 18 * 0:AVu|2 2 dt
Q. 0

+ /HVﬂH%wH@Auﬂizdt+§a2/ |8+ 0, AV dudt
0 Q,

(|Vﬁ|2|Au||8tAu| + 2k|Vﬁ\2|8tﬁ||8tu||8tAu|)dxdt

16k>
+

4k [T _ . - -
+ ?/ ||VU||L00 |:(]. + QkCQHVUHlA)”AVUH%z + (1 + SkHV@uHLz
0

2%k - N _ 2k%
+ CIVlli= + 2kCo||Villa (1 + 8k[10: Vil 2) + K—gnvu”;) HatAun?Lz}dt.
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The last three terms on the right-hand side in are estimated as
13| < Qk/ {HatﬂHLmHatAMFB + 2(|0 Al 2 |0yl L (|0 Au[ 2
0
+ 4||(9tV1]||L4||8tVuHL4H(9tAu||L2}dt < 2k CQ/ HatAﬂHLGatAuHQLgdt.
0

Collecting the estimates from above and applying the Gronwall inequality yields
the third estimate in the proof of Lemma [3.2

To show that 7: K — K is a contraction in the proof of Theorem [3.4] we consider
for 47 and 4 in K and, taking —Ad;(u; — uz) as a test function for the
difference of the corresponding equations, obtain

/Q [at [(1 = 2kiiy )|V, (uy — us)[?] + Ol A(uy — )2
+ 2a8 % Ady(uy — us) Ady (uy — UQ)} dzdt
=k | [V(al — 1) PusV Oy (ug — uz) + (1 — 12) A2 VsV (w1 — us)
+ Vﬁlaf(ul — ug) VO (ug — uz)} dxdt
+ 2]{/Q [8t111|V8t(u1 — up) |2 + 20,V 0; (u1 — u2) VO (ug — us)
.
20, (@1 — @i2) VAua VA, (ur — uz) + 20,V (1 — 1in)yuaV I, (uy — uz)} ddt,

where Qr = (0,7) x Q. Using (6.7) and (6.9), the terms on the righ-hand side of
the last equality are estimated as

o oo
|11 §/ |V (a, — uz)ﬁquV&g(ul — ug)|dxdt < ;/ IV (@1 — t2)]| L2 <|\Au2||L4
Qr 0

+ a8+ 9 Auzl| s + 2610z o 1002 | 10 ) V01 — wz) |2,

o IR
|| < / |(ity — 1i2) 07 Vua Vs (uy — ug)|dedt < E/ |t1,2| Lo (a||6 * AV Opus|| 2
Qr 0
+ ||AVUQ||L2 + 2k||v7.~L2||Loo aHﬂ * A@tu2||Lz + 2k||8tuz||L4 \|8tﬂ2||L4 + ||Au2HLZ
+ 2k[|0; Vi || La]|Opuzl L4 + 2K([0:Vusl| 14 ||5t712||L4> VO (u1 — uz)l| r2dt,
where 1y 2 1= U1 — U2,
T3] < / | Vit 07 (ur — u2) VO (uy — ug)|dxdt
Qr

N o
< - [ 19l ([2H10al 1 V01 = )2+ a8 e = )

1A G = w2z |V (w1 = wa)llzz + 26010 |24V, (w1 — w2) 32 ),
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and
T
<2k [ (1ol + 21991 ) Vo - w)l:
0

+2([IVOuzl|zs + |9rall = ) [V, (i = )|l VO (s — uz)| 2] dt.

Then using that @; € K, for j = 1,2, and estimates for u; in Lemmawe obtain
the contraction inequality in Theorem [3:4] which, by applying the Banach fixed
point theorem, ensures the existence of a unique fixed point of the map 7 and
hence the existence of a unique solution of the nonlinear problem .
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