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Abstract

We consider the spectral behavior and noncommutative geometry of commutators [P, f ], where
P is an operator of order 0 with geometric origin and f a multiplication operator by a function.
When f is Hölder continuous, the spectral asymptotics is governed by singularities. We study
precise spectral asymptotics through the computation of Dixmier traces; such computations have
only been considered in less singular settings. Even though a Weyl law fails for these operators,
and no pseudodifferential calculus is available, variations of Connes’ residue trace theorem and
related integral formulas continue to hold. On the circle, a large class of nonmeasurable Hankel
operators is obtained from Hölder continuous functions f , displaying a wide range of nonclassical
spectral asymptotics beyond the Weyl law. The results extend from Riemannian manifolds to contact
manifolds and noncommutative tori.

2010 Mathematics Subject Classification: 35P20, 58B34 (primary); 32V20, 47L20 (secondary)

1. Introduction

Let M be a closed Riemannian manifold and P a classical pseudodifferential
operator of order 0. If f ∈ C∞(M), the singular values µk of the commutator

c© The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.
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H. Gimperlein and M. Goffeng 2

[P, f ] satisfy a Weyl law, as determined by the Poisson bracket (1/ i){σ(P), f }
with the principal symbol σ(P):

µk([P, f ]) =
(

1
n(2π)n

∫
S∗M
|{σ(P), f }|n dx dξ

)1/n

· k−1/n
+ o(k−1/n),

as k →∞, (1.1)

where n = dim M . Connes’ residue trace theorem allows to interpret [P, f ] as a
noncommutative differential form [14, 15]. Dixmier traces relate to an averaged
form of the Weyl law (1.1). By computing them for operators related to [P, f ],
we obtain geometric consequences of non-Weyl behavior.

In this article we find a rich spectral behavior and noncommutative geometry of
operators of the form [P, f ], when f is merely Hölder continuous. In this case the
spectral asymptotics is governed by the singularities of f . For f from a generic
set, suitable powers or products of operators of the form [P, f ] turn out to produce
natural examples of nonmeasurable operators. We explore new phenomena due to
the singularities, and extensions of results for smooth functions to the Hölder
classes. Already for the circle M = S1 and P the Szegö projection (the projection
onto the closed linear span of the positive Fourier modes), we obtain an analogue
of the residue trace theorem and explicit geometric integral formulas, in spite of
the highly nonclassical behavior of the singular values. Hochschild and cyclic
cocycles defined from the derivation f 7→ [P, f ] and (singular) traces prove
relevant to study the algebras of Hölder functions.

These basic results extend from M = S1 to Riemannian and contact manifolds
M , as well as to noncommutative tori. The singularities studied in this article are
in keeping with the structures which appear for a singular manifold; they are quite
similar to a manifold with Hölder charts.

1.1. Commutators and Dixmier traces in noncommutative geometry. In
recent years, Dixmier traces, and more generally singular traces, have been
studied extensively both in the theory of operator ideals and as a notion of integral
in noncommutative geometry. The book by Lord et al. [32] provides a reference
for this Progress; see also [31, 36, 37, 44, 45]. It is our aim to show how the
ideas from these works apply to highly singular geometric settings, to nonsmooth
commutators.

The view of commutators as noncommutative differential forms goes far back.
It is based on the algebraic principle that a derivation generalizes differentiation.
The approach we take is based on Connes’ noncommutative geometry
[15, Ch. III]. Together with (singular) traces on operators ideals, commutators
and their products provide a natural framework for constructing cyclic and
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Nonclassical spectral asymptotics and Dixmier traces 3

Hochschild cocycles—noncommutative analogues of de Rham cycles and
currents, respectively. Examples of their use with relations to this work include
[16, 29] where pairings with relative and algebraic K -theory were considered.
Their application to classical geometry, for example, leads to explicit analytic
formulas for the mapping degree of nonsmooth mappings [26]. In the latter
work, only nonsharp spectral properties of commutators are required; they can be
deduced from a general theorem of Russo [43] for Schatten class properties of
integral operators.

Beyond Riemannian geometry, Dixmier traces have also been studied in sub-
Riemannian settings, for example relating Dixmier traces with certain integrals in
complex analysis [19–21]. For general sub-Riemannian H -manifolds, Ponge [38]
has extended Connes’ residue trace theorem to the Beals–Greiner calculus of
pseudodifferential operators. Some of these results are extended to the nonsmooth
setting in this paper.

Here we combine the above two directions. We use singular traces as a
tool for new constructions in cyclic cohomology rather than their classical
use as integrals. We find that Dixmier traces of nonsmooth commutators and
the associated cyclic cocycles are geometrically relevant and computable. In
noncommutative geometry we define exotic, nontrivial cyclic cocycles on the
algebras Cα of Hölder functions, spanning an infinite-dimensional subspace of the
cyclic cohomology without a classical counterpart (see more in Proposition 3.15).
In special cases, the cohomology pairings can be computed from geometric
formulas that regularize integral formulas in complex analysis, and the cocycles
detect the Hölder exponent of Cα. Our techniques extend beyond classical
geometry to noncommutative θ -deformations, with the noncommutative torus as
a key example.

Two spaces of functions are central to this paper. We recall their definitions.

DEFINITION 1.1 (Lipschitz and Hölder algebras). Let (X, d) be a compact metric
space. We define the Lipschitz algebra of (X, d) by

Lip(X, d) := { f ∈ C(X) : ∃C > 0, s.t. | f (x)− f (y)| 6 Cd(x, y) ∀x, y ∈ X}.

We define | f |Lip as the optimal constant C in this definition and equip Lip(X)
with the Banach algebra norm ‖ f ‖Lip := ‖ f ‖C(X) + | f |Lip. For α ∈ (0, 1), we
define the Hölder algebra with exponent α by

Cα(X, d) := Lip(X, dα).

If the metric d is understood from context, we simply write Lip(X) := Lip(X, d)
and Cα(X) := Cα(X, d). If X is a Riemannian manifold, it is tacitly assumed that
d is the geodesic distance.
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H. Gimperlein and M. Goffeng 4

DEFINITION 1.2 (Weak Schatten ideals). Let H denote an infinite-dimensional
separable Hilbert space and K(H) the C∗-algebra of compact operators. For
p ∈ [1,∞), we define the weak Schatten ideal of exponent p by

Lp,∞(H) := {T ∈ K(H) : ∃C > 0, s.t. µk(T ) 6 C(1+ k)−1/p
∀k > 0}.

Here (µk(T ))k∈N denotes a decreasing enumeration of the singular values of T .
The optimal constant C defines a quasi-Banach norm on Lp,∞(H) (for p > 1 there
is an equivalent norm, see Proposition 2.6). For a singular state ω ∈ (`∞/c0)

∗, see
Definition 2.7 on page 11, we let

trω : L1,∞(H)→ C,

denote the associated Dixmier trace (for details see Definition 2.9 on page 11).

REMARK 1.3. The computation of Dixmier traces is highly nontrivial in the
absence of a Weyl law. An element G ∈ L1,∞(H) is called measurable if trω(G)
is independent of ω. In particular, an operator G ∈ L1,∞(H) satisfying a Weyl law
λk(G) = ck−1

+ o(k−1) is measurable and trω(G) = c.

1.2. Main results. The computation of Dixmier traces hinges on a precise
understanding of the mapping properties in a suitable Sobolev scale. A crucial
technical ingredient of this article therefore says that, if Q is an operator of order
0 and a ∈ Cα, [Q, a] shares some properties with an operator of order −α:

THEOREM 1.4. Let α ∈ (0, 1) and s ∈ (−α, 0). If M is an n-dimensional closed
Riemannian manifold and Q ∈ Ψ 0(M), there is a constant C = C(Q, α, s) > 0
such that whenever a ∈ Cα(M) then

(a) [Q, a] : W s(M)→ W s+α(M) satisfies ‖[Q, a]‖W s (M)→W s+α(M) 6 C‖a‖Cα(M),

(b) ‖[Q, a]‖Ln/α,∞(L2(M)) 6 C‖a‖Cα(M).

Here W s(M), s ∈ R, denotes the Sobolev scale on the Riemannian manifold M .
Theorem 2.1 (on page 8) proves part (a), and Corollary 2.2 (on page 10) proves
that part (b) follows from part (a) and the Weyl law for elliptic operators. Related
results in the literature and their proofs are not sharp; for example, from [2, 33]
one gains less than α derivatives. We remark that part (b) follows from the stronger
results in [42], even for a in the Besov space Bα

n/α,∞(M) ⊇ Cα(M).

REMARK 1.5. A consequence of Theorem 1.4 is that whenever α1+· · ·+αk > n,
Q1, . . . , Qk ∈ Ψ

0(M, E) (for some vector bundle E) and ω ∈ (`∞/c0)
∗ is a
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Nonclassical spectral asymptotics and Dixmier traces 5

singular state, the linear mapping

fω : B(L2(M, E)) ⊗̂ Cα1(M) ⊗̂ · · · ⊗̂ Cαk (M)→ C
(T, a1, . . . , ak) 7→ trω(T [Q1, a1] · · · [Qk, ak]),

is continuous. Here ⊗̂ denotes the projective tensor product. Since trω is singular,
fω(T, a1, . . . , ak) = 0 if α1 + · · · + αk > n. Explicit formulas for fω and their
geometric interpretations form the main motivation for the paper.

The sharp estimate in Theorem 1.4, part (a), together with a refinement of the
results in [32, Ch. 11.2], allows the computation of Dixmier traces as expectation
values in certain orthonormal bases. The resulting formula relates the spectrally
defined Dixmier trace to a basis dependent expression, analogously to the Lidskii
trace formula; we call it the ordered Lidskii formula. It generalizes the results
of [32, Ch. 11.2], although the proofs are based on the same technical lemma
(see Lemma 2.17 below). The formula can be found in Theorem 2.18 (on page
13). The ordered Lidskii formula is the basis toward explicit computations of
Dixmier traces of products of commutators. In particular, if M = S1 we obtain
a bilinear expression of the logarithmic divergence in Brezis’ formula for the
winding number [30] on C1/2(S1).

THEOREM 1.6. Let P be the Szegö projection on S1. For a, b ∈ C1/2(S1),

trω(P[a, P][P, b]) = lim
N→ω

1
log(N )

N∑
k=0

k · akb−k

= lim
N→ω

lim
r↗1

∫
S1×S1

a+(ζ̄ )b−(z)kN (r z, ζ ) dζ dz,

where a+ = Pa = a − a− and

kN (z, ζ ) =
1

log(N )
·

1− (zζ )N+1

(1− zζ )2
.

If a ∈ C1/2(S1,C×) and b = a−1, trω((2P − 1)[P, a][P, a−1
]) = 0 by

Remark 3.6. This vanishing result expresses the fact that the logarithmic
divergence in Brezis’ formula for the winding number of a C1/2-function
vanishes; there is no obstruction in extending the winding number from C∞

to C1/2 (it even extends by continuity to all continuous functions). We refer to
Theorem 3.5 and Proposition 3.8 for the formula involving Fourier modes and
the integral formula, respectively.
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H. Gimperlein and M. Goffeng 6

A precise study of Dixmier traces for the case of generalized Weierstrass
functions illustrates the rich spectral behavior of nonsmooth commutators. The
generalized Weierstrass function associated with the parameters α ∈ (0, 1),
1 < γ ∈ N and c ∈ `∞(N) is given by the Fourier series

Wα,γ,c(eiθ ) := 2
∞∑

n=0

γ −αncn cos(γ nθ) ∈ Cα(S1).

We consider a set of sequences that defines Hankel measurable operators,

hmsk,γ := {c ∈ `
∞(N) : [P,W1/2k,γ,c]

2k
∈ L1,∞(L2(S1)) is measurable}.

Corollary 3.16 gives many natural examples of nonmeasurable operators on S1:

COROLLARY 1.7. The set hms1,γ equals

hms1,γ =

{
c = (cn)n∈N ∈ `

∞(N) : lim
N→∞

1
N

N∑
n=0

c2
n exists

}
.

In particular, the inclusion hms1,γ ⊆ `
∞(N) is strict and does not depend on γ .

The Dixmier traces of products of commutators of the Szegö projection P with
generalized Weierstrass functions Wα,γ,c can be computed. The results indicate
a wide range of asymptotic spectral behavior beyond Weyl’s law. See more in
Remark 3.18 and the discussion preceding it.

In higher dimensions, when M is an n-dimensional Riemannian manifold,
refining arguments of [32] we obtain a variant of Connes’ residue trace formula:
for suitable G ∈ L1,∞(L2(M))

trω(G) = lim
N→ω

(2π)−n

log(N )

∫
M

∫
T ∗x M,|ξ |<N 1/n

pG(x, ξ) dx dξ

= lim
N→ω

N
log(N )

∫
Diagε

kG(x, y)φ∗ρN (x, y) dx dy.

For details and notation, see Theorem 2.23. When kG admits a polyhomogeneous
expansion in x−y, the limit exists, and therefore G is measurable; for a product of
commutators [P, a] this can be verified from properties of the function a. Using
deep results of Rochberg and Semmes [42], the residue trace formula generalizes,
in Theorem 2.29, the usual expression for commutators with C∞ functions to
Lipschitz functions.

In the remaining sections, our results are extended to noncommutative tori
and (sub-Riemannian) contact manifolds. The analogue of Theorem 1.4 for
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Nonclassical spectral asymptotics and Dixmier traces 7

noncommutative tori is proven in Theorem 4.12. For sub-Riemannian manifolds,
the analogue of Theorem 1.4 was proven in [25, Section 4] for Lipschitz functions
in the Carnot–Carathéodory metric. We note that, as a consequence, most of
the computational tools are available even if they prove difficult to wield to the
perfection that produces explicit formulas. Adapting the results of Rochberg–
Semmes to the sub-Riemannian setting, we also extend geometric formulas of
Englis and Zhang [20] from C∞ to Lipschitz functions.

1.3. Spectral asymptotics of nonsmooth operators. Spectral properties of
commutators have also been studied from different perspectives, for example, in
the areas of harmonic analysis and partial differential equations. When M = S1,
the spectral properties of Hankel operators Pa(1 − P) = P[P, a] have been
extensively explored. The book [35] by Peller contains detailed information about
Schatten and weak Schatten properties. More generally, Lp,q-properties were
studied in [35, Ch. 6.4]. As an example of current work, we refer to [40].

In dimension greater than one, we mention the recent interest in the spectral
behavior of nonsmooth pseudodifferential and Green operators, for example, [27],
from the view of partial differential equations. They extend classical formulas
from the smooth setting to a finite number of derivatives, building on a long
history around the spectral asymptotics of integral operators, combining works
by Birman and Solomyak [5, 6] with precise pseudodifferential techniques.

Unlike in these works, we are interested in the new phenomena under minimal
regularity assumptions below Lipschitz, when the spectral behavior is governed
by singularities rather than semiclassical notions like the Poisson bracket.
The computations of Dixmier traces give meaning to ‘averaged’ asymptotic
properties—finer information than a growth bound on eigenvalues. The study of
such growth bounds in [42] exhausts the latter problem in the Riemannian setting.

From a different point of view, harmonic analysts have long studied the
boundedness of nonsmooth commutators, rather than their spectral behavior,
going back to Calderon [9] and Coifman and Meyer [13]. See [48, Ch. 3.6] for a
recent overview of results. As noted in [25], the stronger, sharp Theorem 1.4, part
(a) is needed for the investigation of Dixmier traces. Moreover, the approach using
operator norm bounds to study spectral behavior in [25] automatically gives rise
to spectral properties similar to Theorem 1.4, part (b), though not to computations
of Dixmier traces.

Contents of the paper. This paper is organized as follows. In Section 2, we
introduce Dixmier traces and the ingredients to compute them for commutators,
especially on Riemannian manifolds. The Sobolev mapping properties of
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H. Gimperlein and M. Goffeng 8

commutators and weak Schatten estimates in Theorem 1.4 are established.
They lead to a V -ordered Lidskii formula for these operators in Theorem 2.18
and Proposition 2.26. Also the residue trace formula is derived. For M = S1,
Section 3.1 uses these tools to prove the Fourier and geometric integral formulas
of Theorem 1.6, while Section 3.2 analyzes the Dixmier traces of commutators
with Weierstrass functions in detail, including explicit formulas, exotic geometric
cocycles and the characterization of measurable operators from Corollary 1.7.
Section 4 extends the computational tools to higher dimensional tori and
θ -deformations. The final Section 5 generalizes the analysis to sub-Riemannian
H -manifolds, with contact manifolds as a key example. The main results are a
Connes-type formula on the Hardy space in Theorem 5.4 and the extension of
Dixmier trace formulas from smooth to Lipschitz functions in Theorem 5.17.

2. Dixmier traces of nonsmooth operators on Riemannian manifolds

In this section we address commutators of operators appearing on the
Riemannian manifolds. The aim is to study the spectral theory of nonsmooth
pseudodifferential operators by means of computing Dixmier traces: we focus
on products of commutators as motivated, in particular, by Theorem 1.6 and
Remark 1.5 on page 5.

In this special case, several results can be obtained by combining and refining
theorems from the literature; in Section 2.1, we combine results of Taylor [48–50].
The technical framework for computing Dixmier traces is presented in
Section 2.2; it is an adapted variant of the results by Lord et al. [32] and
the preceding work by Kalton et al. [31].

2.1. Sobolev mapping properties. A crucial technical tool are, as in the later
sections of the paper, sharp mapping properties in the Sobolev scale W s(M),
s ∈ R, of a closed Riemannian manifold M .

THEOREM 2.1. Let α ∈ (0, 1) and s ∈ (−α, 0). If M is a Riemannian manifold
and Q ∈ Ψ 0(M), there is a constant C = C(Q, α, s) > 0 such that whenever
a ∈ Cα(M) then

[Q, a] : W s(M)→W s+α(M) is continuous with
‖[Q, a]‖W s (M)→W s+α(M) 6 C‖a‖Cα(M).

From related results in the literature and their proofs, for example, [2, 33],
one gains less than α derivatives. We prove the theorem using Littlewood–Paley
theory. For details regarding Littlewood and Paley theory, see [49]. Let us recall
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Nonclassical spectral asymptotics and Dixmier traces 9

the basic idea. Locally, the n-dimensional manifold M is modeled on Rn . Choose
a positive function ϕ ∈ C∞(Rn) with supp(ϕ) contained in the ball B(0, 2) of
radius 2 and centered at 0, such that ϕ = 1 on B(0, 1). We define the functions

ϕ j(x) := ϕ(2− j x), j ∈ N.

We also define φ0 := ϕ = ϕ0 and φ j := ϕ j − ϕ j−1 for j > 1. Since ϕ j → 1
uniformly on compacts, (φ j) j∈N is a locally finite partition of unity for Rn . We
call such a partition of unity a Littlewood–Paley partition of unity. We consider
the smoothing operators

Φ j := φ j(D) := Op(φ j).

For a Schwartz function f ∈ S(Rn), these operators are defined from the Fourier
transform f̂ by

Φ j f (x) =
∫
Rn
φ j(ξ) f̂ (ξ)ei xξ dξ = f ∗ φ̌ j(x),

where ǧ(x) := ĝ(−ξ); they may be considered as functions of the differential
operator D = (−i(∂/∂x1), . . . ,−i(∂/∂xn)).

We call (Φ j) j∈N a Littlewood–Paley decomposition associated to (φ j) j∈N.
Littlewood–Paley theory characterizes the scale of Besov spaces completely, see
for instance [1], and therefore provides a natural tool to study Hölder and Sobolev
spaces.

Proof of Theorem 2.1. The statement of the theorem is of a local nature. Indeed,
we can, after an argument involving a partition of unity, assume that we
are dealing with Q and a compactly supported in a neighborhood U ⊆ M
diffeomorphic to an open subset of Rn . Since Sobolev spaces on closed manifolds
are independent of choice of Laplacian, we can even assume that Q and a are
compactly supported in Rn . We let (φk)

∞

k=0 denote a Littlewood–Paley partition
of unity of Rn for the remainder of the proof. Associated with this Littlewood–
Paley decomposition there are operators T f :=

∑
∞

k=0 fkψk(D), where fk :=∑k−2
j=0 ψ j(D)( f ), and R f =

∑
| j−k|62 ψ j(D)( f )ψk(D) for a function f . It follows

from [49, Proposition 7.3, Ch. I] that [Q, Ta] : W s(M)→ W s+α(M) is continuous
for a ∈ Cα(M), and norm continuously depending on a, for any s ∈ R. The
operator

%(a) : W s(M)→ W s+α(M), %(a)u := Rau + Tua

is continuous for s ∈ (−α, 0) by [48, Proposition 3.2.A]. In summary, because Q
acts continuously on all Sobolev spaces, we have that the operator

[Q, a] = [Q, Ta] + Q%(a)− %(a)Q : W s(M)→ W s+α(M)

is continuous for s ∈ (−α, 0).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.33
Downloaded from https:/www.cambridge.org/core. Heriot-Watt University, on 23 Jan 2017 at 15:04:19, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.33
https:/www.cambridge.org/core


H. Gimperlein and M. Goffeng 10

COROLLARY 2.2. For an n-dimensional Riemannian manifold M, Q ∈ Ψ 0(M)
and a ∈ Cα(M) we can estimate

‖[Q, a]‖Ln/α,∞(L2(M)) 6 C‖a‖Cα(M).

Proof. Take a Laplacian ∆ on M . We can write

[Q, a] = (1+∆)−(s+α)/2(1+∆)(s+α)/2[Q, a](1+∆)−s/2(1+∆)s/2.

The operator (1+∆)(s+α)/2[Q, a](1+∆)−s/2 has a bounded extension to L2(M)
by Theorem 2.1. Therefore, the Weyl law implies that

‖[Q, a]‖Ln/α,∞(L2(M)) 6 C‖(1+∆)(s+α)/2[Q, a](1+∆)−s/2
‖B(L2(M))·

× ‖(1+∆)−(s+α)/2‖Ln/(s+α),∞(L2(M))‖(1+∆)s/2‖Ln/|s|,∞(L2(M))

6 C‖a‖Cα(M).

REMARK 2.3. Estimates of the type in Corollary 2.2 were studied for Heisenberg
operators on contact manifolds in [25]. In practice, the estimates in Corollary 2.2
are used to estimate singular values:

µk([Q, a]) 6 C‖a‖Cα(M)k−(α/n),

where n = dim(M).

REMARK 2.4. In the limit cases s = −α or s = 0, the statement of Theorem 2.1
does not hold. It is however known to hold also in the limit cases for Lipschitz
functions, that is, for any Q ∈ Ψ 0(M), there is a C(Q) > 0 such that
‖[Q, a]‖W s (M)→W s+1(M) 6 C(Q)‖a‖Lip(M) for any s ∈ [−1, 0]. This is the content
of [48, Proposition 3.6.B].

REMARK 2.5. The proof of Theorem 2.1 is a to a large extent inspired by the
content of the unpublished manuscript [50].

2.2. Dixmier traces of products. In this subsection, we will study how some
Sobolev regularity gives a formula for Dixmier traces that we call the ordered
Lidskii formula. This formula was first obtained in [31] and studied further in the
book [32]. Combining the ordered Lidskii formula with Theorem 2.1 will provide
us with explicit formulas for the Dixmier traces of products of commutators.

First we recall some well-known notions that can be found in for instance [32].
The weak Schatten class Lp,∞(H) was defined in Definition 1.2 (see page 4).
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Nonclassical spectral asymptotics and Dixmier traces 11

The following result follows from [46, Ch. 1.7 and Theorem 2.5].

PROPOSITION 2.6. The function T 7→ supk∈N k1/pµk(T ) defines a quasinorm
making Lp,∞(H) into complete metric space. For p > 1, there is an equivalent
norm making Lp,∞(H) into a Banach space.

DEFINITION 2.7. A functional φ on `∞(N) is called singular if it factors through
`∞(N)/c0(N), that is, φ ∈ `∞(N)∗ and φ|c0(N) = 0. An extended limit is a singular
state ω on `∞(N).

REMARK 2.8. If ω is an extended limit, that is, ω > 0, ω|c0(N) = 0, and ω(1) = 1,
then ω(c) = limn→∞ cn whenever c is a convergent sequence. This fact motivates
the terminology ‘extended limit’ as any singular state is an extension of the limit
functional defined on the closed subspace of convergent sequences. The space of
singular functionals (`∞(N)/c0(N))∗ is a Banach space and existence of extended
limits follows from the Hahn–Banach theorem (the nonseparable case). For a
sequence c = (cn)n∈N ∈ `

∞(N) we use the suggestive notation:

lim
n→ω

cn := ω(c).

DEFINITION 2.9. The Dixmier trace trω : L1,∞(H) → C associated with a
singular state ω is constructed as the linear extension of

trω(G) := lim
N→ω

∑N
k=0 µk(G)
log(N )

, defined for G > 0. (2.1)

REMARK 2.10. The reader should beware of the following technical pitfall:
the expression (2.1) is defined for G in the Lorentz ideal M1,∞ := {G :∑N

k=0 µk(G) = O(log(N ))}. However, for the expression (2.1) to be linear
on M1,∞ it is necessary that ω is dilation Invariant; for details regarding this
distinction, see [32, Lemma 9.7.4].

REMARK 2.11. A proper subset of the Dixmier traces is given by the Connes–
Dixmier traces (cf. [15, 36, 45]). A Connes–Dixmier trace is defined from an
extended limit of the form ω = M∗φ, where φ is a singular state and

M : `∞(N)→ `∞(N), (Mx)k :=
∑k

l=0 (1/(l + 1))xl

log(k + 2)
.

For computational purposes, one introduces the notion of V -modulated
operators. This notion was used in [31] for the computation of Dixmier traces;

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.33
Downloaded from https:/www.cambridge.org/core. Heriot-Watt University, on 23 Jan 2017 at 15:04:19, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.33
https:/www.cambridge.org/core


H. Gimperlein and M. Goffeng 12

it can also be found in [32, Definition 11.2.1]. We will make use of a minor
generalization that we call ‘weakly V -modulated operators’. We say that a
bounded operator V ∈ B(H) is strictly positive if V is positive and VH ⊆ H is
dense.

DEFINITION 2.12. Assume that V is a positive operator on a Hilbert space H and
let G ∈ B(H) be a bounded operator.

• We say that G ∈ B(H) is V -modulated if supt>0 t1/2
‖G(1+ tV )−1

‖L2(H) <∞,
where L2(H) denotes the Hilbert–Schmidt ideal of operators.

• Assume also that V is strictly positive and belongs to Lp,∞(H) for some
p ∈ [1,∞). If the densely defined operator GV−1 extends to a bounded
operator in Lp/(p−1),∞(H), we say that G is weakly V -modulated.

The condition to be a V -modulated operator is as the name suggests stronger
than that of being a weakly V -modulated operator. This fact follows from the
following result. We refer its proof to [32].

PROPOSITION 2.13 [32, Lemma 11.2.9]. If V ∈ Lp,∞(H), for p > 2, is strictly
positive and G is V p-modulated then GV−1

∈ Lp/(p−1),∞(H). In particular, under
said assumptions, G is weakly V -modulated if it is V p-modulated.

DEFINITION 2.14. Let V ∈ L1,∞(H) be strictly positive and let (el)l∈N denote
the ON-basis associated with V ordered according to decreasing size of the
eigenvalues. For Q ∈ B(H) we define the sequence Res(Q) = (Res(Q)N )N∈N
by

Res(Q)N :=

∑N
l=0〈Gel, el〉

log(N + 2)
.

The residue sequence Res(G) can be used to compute Dixmier traces assuming
G is modulated. The proof of the following theorem is found in [32].

THEOREM 2.15 [32, Corollary 11.2.4]. If V ∈ L1,∞(H) and G is V -modulated
then Res(G) ∈ `∞(N) and the Dixmier trace can be computed by means of the
V -ordered Lidskii formula

trω(G) = ω(Res(G)) ≡ lim
N→ω

∑N
l=0〈Gel, el〉

log(N + 2)
. (2.2)

REMARK 2.16. The terminology ‘V -ordered Lidskii formula’ comes from the
fact that for a positive trace class operator G, the Lidskii theorem relates the
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Nonclassical spectral asymptotics and Dixmier traces 13

expectation values
∑
∞

l=0〈Gel, el〉 with the spectral expression
∑
∞

l=0 µk(G).
It should not be confused with the Lidskii formula for Dixmier traces
[44, Theorem 1].

We will need to use the full power in the proofs of the results in [32, Ch. 11]
to obtain an ordered Lidskii formula as in (2.2) for the larger class of operators
that we are interested in—the weakly modulated operators. We use the full
strength in [32, Lemma 11.2.10]. For the convenience of the reader, we recall
this result here. Following the notation of [32], for a compact operator G, we let
(λk(G))k∈N ⊆ C denote an enumeration of the nonzero eigenvalues of G ordered
so that (|λk(G)|)k∈N is a decreasing sequence.

LEMMA 2.17 [32, Lemma 11.2.10]. Let V ∈ Lp,∞(H) be a strictly positive
operator for some p ∈ [1,∞) with associated O N-basis (el)l∈N. If G is weakly
V -modulated, then

n∑
k=0

λk(ReG) =
n∑

l=0

Re〈Gel, el〉 + O(1) as n→∞.

We refer the proof of Lemma 2.17 to [32]. From it, we deduce the following
theorem.

THEOREM 2.18 (The V -ordered Lidskii formula). Let V ∈ Lp,∞(H) be strictly
positive for some p ∈ [1,∞). If G ∈ L1,∞(H) is weakly V -modulated (see
Definition 2.12), then the V -ordered Lidskii formula (2.2) holds.

Proof. For any self-adjoint G ∈ L1,∞(H), the following Lidskii type formula for
Dixmier traces follows from the definition of Dixmier traces:

trω(G) = lim
N→ω

∑N
k=0 λk(G)
log(N )

. (2.3)

Using that G = Re(G)− iRe(iG), the theorem follows once noting that

trω(G) = trω(Re(G))− i trω(Re(iG))

= lim
N→ω

∑N
k=0 λk(ReG)− iλk(ReiG)

log(N )

= lim
N→ω

∑N
l=0 Re〈Gel, el〉 − iRe〈iGel, el〉

log(N )
= lim

N→ω

∑N
l=0〈Gel, el〉

log(N )
.

We used Lemma 2.17 in the second equality.
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H. Gimperlein and M. Goffeng 14

REMARK 2.19. The Lidskii type formula for Dixmier traces (2.3) was proven
in [32, Theorem 7.3.1] (cf. [44, Theorem 1]) for any operator in the larger Lorentz
ideal.

We now reformulate Theorem 2.18 in a context fitting better with products
on a closed Riemannian manifold M . We will formulate the result in a slightly
more general setting. We need some terminology first. Let D be an unbounded
self-adjoint operator on H with resolvent in Lp,∞(H) for some p. Define
W s

D := Dom(|D|s) for s > 0. For s < 0 we define W s
D by duality.

DEFINITION 2.20. Let ε ∈ (0, p) and s ∈ (−ε, 0). We say that G ∈ L1,∞(H) is
(ε, s)-factorizable with respect to D if we can write G = G ′G ′′ where

(1) G ′′ extends to a continuous operator W s
D → W s+ε

D ;

(2) G ′ ∈ Lp/(p−ε),∞(H).

LEMMA 2.21. If G ∈ L1,∞(H) is (ε, s)-factorizable with respect to D, G is
weakly V -modulated for V := |i + D|s .

The structure of the proof is similar to that of [25, Lemma 5.11].

Proof. Since G ′ ∈ Lp/(p−ε),∞(H), it follows that G ′|i+D|−(s+ε) ∈ Lp/(p+s),∞(H).
It follows from this observation that

G D−s
= G ′|i + D|−(s+ε) |i + D|s+εG ′′|i + D|−s︸ ︷︷ ︸

∈B(H)

∈ Lp/(p+s),∞(H).

Since V ∈ Lp/|s|,∞(H), it follows that G is weakly modulated.

The next theorem contains a Connes-type residue formula in the context of
weakly Laplacian modulated operators. Its proof is heavily based on the methods
of [32, Ch. 11.6]. We also re-express the Dixmier trace by means of the operator’s
L2-kernel. First we need some notations and terminology.

DEFINITION 2.22. An operator G ∈ B(L2(M)) is said to be localizable if
χGχ ′ ∈ L1(L2(M)) whenever χ, χ ′ ∈ C∞(M) have disjoint support.

We use the notation kG ∈ L2(M × M) for the L2-kernel associated with a
Hilbert–Schmidt operator G ∈ L2(L2(M)). For an ε > 0, we let

Diagε := {(x, y) ∈ M × M : d(x, y) < ε},
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Nonclassical spectral asymptotics and Dixmier traces 15

where d denotes the geodesic distance. We choose a cutoff function χ ∈

C∞c (Diagε), which is 1 near the diagonal Diag ⊆ M × M , and a diffeomorphism
φ : Diagε

∼

−→ T M . It exists for small enough ε, since T M is isomorphic to
the normal bundle of the inclusion M ∼= Diag ⊆ M × M . The L2-symbol
pG ∈ C∞(T ∗M) of G is defined as the Fourier transform of φ∗(χ ·kG) ∈ L2

c(T M),
that is

pG(x, ξ) :=
∫

Tx M
(χkG)(φ(x, v))e−iξ(v) dv.

We define the smooth density ρ ∈ C∞(T M, π∗Ω) by

ρ(x, v) :=
∫
|ξ |61

eiξ(v) dξ. (2.4)

We also set ρN (x, v) := ρ(x, N 1/nv)χ(φ−1(x, v)).

THEOREM 2.23 (Connes’ residue trace formula). Let M be a Riemannian n-
dimensional manifold and∆ a Laplace type operator on M. If G ∈ L1,∞(L2(M))
is localizable, weakly modulated with respect to a negative power of 1 + ∆ and
satisfies the condition that

sup
k∈N

∫
M

∫
T ∗x M,2k<|ξ |<2k+1

|pG(x, ξ)| dx dξ <∞, (2.5)

then

trω(G) = lim
N→ω

(2π)−n

log(N )

∫
M

∫
T ∗x M,|ξ |<N 1/n

pG(x, ξ) dx dξ (2.6)

= lim
N→ω

N
log(N )

∫
Diagε

kG(x, y)φ∗ρN (x, y) dx dy. (2.7)

REMARK 2.24. It follows from the proof of [32, Proposition 11.3.18] that
condition (2.5) is automatically satisfied if G is (1 + ∆)−n/2-modulated.
Moreover, the conclusion (2.6) for (1+∆)−n/2-modulated is stated and proved as
[32, Theorem 11.6.14]. We emphasize that the operators of interest in this paper
(as in Remark 1.5 on page 4) are generally not Laplacian modulated but we have
not been able to prove that they satisfy the condition (2.5).

Proof of Theorem 2.23. The proof of Formula (2.6) under the assumptions
of Theorem 2.23 is proven in [32, Ch. 11.6] once replacing the usage of
[32, Proposition 11.3.18] by the assumption (2.5). Note that the smooth density
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H. Gimperlein and M. Goffeng 16

ρ from equation (2.4) satisfies that Nρ(N 1/nz) =
∫
|ξ |6N 1/n ei z·ξ dξ . Hence, after

going to local coordinates, Plancherel’s theorem implies that

trω(G) = lim
N→ω

1
log(N )

∫
M

∫
T ∗x M,|ξ |<N 1/n

pG(x, ξ) dx dξ

= lim
N→ω

N
log(N )

∫
Diagε

kG(x, y)χ(x, y)ρ(N 1/nφ(x, y)) dx dy

= lim
N→ω

N
log(N )

∫
Diagε

kG(x, y)ρN (φ(x, y)) dx dy.

DEFINITION 2.25. We say that an operator T ∈ B(L2(M)) is finitely localizable
if for any χ, χ ′ ∈ C∞(M) with disjoint support, χTχ ′ · L1,∞(L2(M)) ⊆
L1(L2(M)).

For instance, any operator in the algebra generated by C(M) and Ψ 0(M) is
finitely localizable.

PROPOSITION 2.26. Assume that

(1) β1, β2, . . . , βk ∈ (0, 1] are numbers such that

β1 + β2 + · · · + βk = n;

(2) T1, . . . , Tk ∈ Ψ
0(M);

(3) f j ∈ Cβ j (M), for j = 1, 2, . . . , k;

(4) T0 ∈ B(L2(M)).

Then the operator G := T0[T1, f1] · · · [Tk, fk] ∈ L1,∞(L2(M)) is (ε, s)-
factorizable, for ε = βk and s ∈ (−βk, 0). Furthermore, if n > 1 or β1, β2, . . . , βk

∈ (0, 1), then G is localizable if T0 is finitely localizable.

Proof. It is clear that G satisfies the conditions of Lemma (ε, s)-modulated
factorizable after applying Theorem 2.1 to G ′ := T0[T1, f1][T2, f2] · · ·

[Tk−1, fk−1] and G ′′ = [Tk, fk]. To prove that G is localizable under the
assumptions above, we note that for χ ∈ C∞(M), the Leibniz rule implies
that G̃ := [T1, f1] · · · [Tk, fk] ∈ L1,∞(L2(M)) satisfies

[G̃, χ] =
k∑

j=1

[T1, f1] · · · [[T j , χ], f j ] · · · [Tk, fk].
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Nonclassical spectral asymptotics and Dixmier traces 17

Since T j ∈ Ψ
0(M), [T j , χ] ∈ Ψ

−1(M) and Russo’s theorem [43] implies that
[[T j , χ], f j ] ∈ Lp(L2(M)) for any j and p > max(n, 2). If β j < 1, then β j/n <
1/n so

∑
k 6= j βk/n + 1/n > 1. It follows that the property [T j , χ] ∈ Ψ

−1(M) ⊆
Ln,∞(L2(M)), independently of n, implies that

[T1, f1] · · · [[T j , χ], f j ] · · · [Tk, fk] ∈ Ln/β1,∞ · Ln/β2,∞ · · ·Ln,∞
· · ·Ln/βk ,∞

⊆ L1(L2(M)).

Hence for n > 1 or β1, β2, . . . , βk ∈ (0, 1), G̃ commutes with C∞(M) up to
L1(L2(M)). Under these assumptions, we conclude that G is localizable if T0 is
finitely localizable.

REMARK 2.27. It is a straightforward consequence of Theorem 2.1 that in
the setup of Proposition 2.26, any Dixmier trace of T0[T1, f1] · · · [Tk, fk] only
depends on:

(1) the classes of f j in the Banach space Cβ j (M)/∪ε>0Cβ j+ε(M), for
j = 1, 2, . . . , k;

(2) the principal symbols σ0(T1), σ0(T2), . . . , σ0(Tk) ∈ C∞(S∗M);

(3) the class of T0 in B(H)/ ∪p>0 Lp(L2(M)).

REMARK 2.28. Despite having Theorem 2.23 at hand for the operators appearing
in Proposition 2.26, we do not know of any explicit asymptotics of the right
hand side of (2.6) in terms of the given geometric data unless we assume that
f1, . . . , fk ∈ C1(M). For C1-functions, k = n produces the only nontrivial
Dixmier traces. By continuity, Proposition 2.26 shows that for n > 1, Dixmier
traces for C1-functions f1, . . . , fk can be computed by a formula resembling the
Wodzicki residue.

We can say more about Dixmier traces in the particular case of an operator
G = T0[T1, a1] · · · [Tn, an], where T j are pseudodifferential operators and
a j ∈ Lip(M) on an n-dimensional manifold M .

THEOREM 2.29. Let ω be an extended limit and M an n-dimensional closed
Riemannian manifold. Assume that T0, T1, . . . , Tn ∈ Ψ 0(M) are classical
pseudodifferential operators. Consider the two n-linear mappings

C∞(M)⊗n
3 a1 ⊗ · · · ⊗ an 7→ n(2π)ntrω(T0[T1, a1] · · · [Tn, an]), (2.8)

C∞(M)⊗n
3 a1 ⊗ · · · ⊗ an 7→

∫
S∗M

σ(T0){σ(T1), a1} · · · {σ(Tn), an}, (2.9)
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H. Gimperlein and M. Goffeng 18

where {·, ·} denotes the Poisson bracket. The two n-linear functionals in (2.8)
and (2.9) coincide and are both continuous in the W 1,n-topology. Moreover, for
a1, . . . , an ∈ W 1,n(M)

trω(T0[T1, a1] · · · [Tn, an]) =
1

n(2π)n

∫
S∗M

σ(T0){σ(T1), a1} · · · {σ(Tn), an}.

In particular, T0[T1, a1] · · · [Tn, an] is measurable for a1, . . . , an ∈ Lip(M).

Proof. It is immediate from the construction that the functional in (2.9) is
continuous in the W 1,n-topology. The functional in (2.8) is continuous in the
W 1,n-topology because of the following reasons. For Q ∈ Ψ 0(M), a 7→ [Q, a]
∈ Ln,∞(L2(M)) is continuous in the Oscn,∞-topology (see [42, Corollary 2.8])
and Oscn,∞

= W 1,n by [18, Appendix]. Since C∞(M) is dense in W 1,n(M),
we can extend both functionals (2.8) and (2.9) to W 1,n(M) by continuity. The
two functionals (2.8) and (2.9) coincide on C∞(M) using Connes residue trace
formula (see Theorem 2.23).

REMARK 2.30. What Theorem 2.29 shows is that classicality at the level of
Dixmier traces still holds for T0[T1, a1] · · · [Tn, an] with a1, . . . , an ∈ Lip(M). We
shall see below in Section 3.2 that this need not hold in Cβ for β < 1.

3. Hankel operators and commutators on S1

In this section, we restrict our attention to M = S1 and T = P—the Szegö
projection. To simplify notation we normalize the volume of S1 to 1. Recall that
the Szegö projection P ∈ Ψ 0(S1) is the orthogonal projection onto the Hardy
space—the closed subspace H 2(S1) ⊆ L2(S1) consisting of functions with a
holomorphic extension to the interior of S1

⊆ C. In terms of the Fourier basis
el(z) := zl , l ∈ Z, the Szegö projection P is determined by Pel = el for l ∈ N
and Pel = 0 for l ∈ Z \ N.

3.1. Computations for C1/2. We will in this subsection compute Dixmier
traces for operators of the form

G = P[P, a][P, b] for a, b ∈ C1/2(S1).

PROPOSITION 3.1. Any a ∈ C(S1) satisfies

[P, a] = Pa(1− P)− (1− P)a P = Pa+(1− P)− (1− P)a−P,

where a+ = P(a) and a− = a − a+ = (1− P)(a).
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Nonclassical spectral asymptotics and Dixmier traces 19

The proof of Proposition 3.1 is based on simple algebra and is left to the reader.
We will refer to both Pa(1− P) and (1− P)a P as Hankel operators with symbol
a. Hankel operators have been extensively studied in the literature. We mention
the standard reference [35] as a source for further details.

LEMMA 3.2. Let a, b ∈ C(S1) have Fourier expansions a =
∑

k∈Z akek and
b =

∑
k∈Z bkek (in L2-sense). It holds that

〈P[P, a][P, b]el, el〉L2(S1) =

{
−
∑

k>l akb−k, l > 0
0, l < 0

and (3.1)

〈[P, a][P, b]el, el〉L2(S1) =

{
−
∑

k>l akb−k, l > 0
−
∑

k6l akb−k, l < 0.
(3.2)

Proof. We only prove the identity (3.1). The identity (3.2) is computed in a similar
manner. It follows from Proposition 3.1 that

P[P, a][P, b] = −Pa+(1− P)b−P.

Hence 〈P[P, a][P, b]el, el〉L2(S1) = 0 for l < 0. We also note that a+ = (a)−+a0,
where the bar denotes complex conjugation. For simplicity we assume a0 = 0
which does not alter the operator P[P, a][P, b] nor the right hand side of equation
(3.1). For l > 0,

〈P[P, a][P, b]el, el〉L2(S1) = −〈(1− P)b−el, (a)−el〉L2(S1)

= −

〈
(1− P)

∞∑
k=1

b−kel−k,

∞∑
k=1

akel−k

〉
L2(S1)

= −

∑
k>l

akb−k .

Due to the structures appearing in Lemma 3.2 we often restrict our attention
to computing Dixmier traces of the product of Hankel operators P[P, a][P, b] =
−Pa(1− P)bP = −Pa+(1− P)b−P . The next Proposition shows that it suffices
for describing the general picture.

PROPOSITION 3.3. For a1, . . . , a2k
∈ C1/2k(S1),

trω([P, a1
] · · · [P, a2k

]) =(−1)k trω(Pa1
+
(1− P) · · · (1− P)a2k

−
P)

+ (−1)k trω((1− P)a1
−

Pa2
+
(1− P) · · · Pa2k

+
(1− P)),
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H. Gimperlein and M. Goffeng 20

so in particular, for a, b ∈ C1/2(S1),

trω(P[P, a][P, b]) = trω((1− P)[P, b][P, a]), and

trω([P, a]2) = 2trω(P[P, a]2) = −2trω(Pa+(1− P)a−P).

For a1, . . . , a2k+1
∈ C1/(2k+1)(S1),

trω
(
[P, a1

] · · · [P, a2k+1
]
)
= trω

(
P[P, a1

] · · · [P, a2k+1
]
)
= 0.

Proof. The first statement follows from the tracial property of trω and that for any
a1, . . . , a2k

∈ C(S1)

[P, a1
] · · · [P, a2k

] = (−1)k Pa1(1− P)a2 P · · · (1− P)a2k P
+ (−1)k(1− P)a1 Pa2(1− P) · · · Pa2k(1− P)
= (−1)k Pa1

+
(1− P)a2

−
P · · · (1− P)a2k

−
P

+ (−1)k(1− P)a1
−

Pa2
+
(1− P) · · · Pa2k

+
(1− P).

The second statement follows from the tracial property of trω and that for any
a1, . . . , a2k+1

∈ C(S1)

[P, a1
] · · · [P, a2k+1

] = (−1)k Pa1(1− P)a2 P · · · (1− P)a2k Pa2k+1(1− P)
− (−1)k(1− P)a1 Pa2(1− P) · · · Pa2k(1− P)a2k+1 P
= (−1)k Pa1

+
(1− P)a2 P · · · (1− P)a2k

−
Pa2k+1
+

(1− P)
− (−1)k(1− P)a1

−
Pa2
+
(1− P) · · · Pa2k(1− P)a2k+1

−
P.

REMARK 3.4. The identities of Proposition 3.3 are standard when studying
Connes–Chern characters from finitely summable K -homology to cyclic
cohomology; see more in [15, Ch. III].

THEOREM 3.5. For a, b ∈ C1/2(S1) the following computations hold:

trω(Pa(1− P)bP) = lim
N→ω

1
log(N )

N∑
k=0

k · akb−k (3.3)

trω([P, a][P, b]) = − lim
N→ω

1
log(N )

N∑
k=−N

|k| · akb−k . (3.4)

To prove this theorem, we make use of the Littlewood–Paley description of the
Hölder continuous functions. We follow the approach to Besov-type spaces on
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Nonclassical spectral asymptotics and Dixmier traces 21

S1 in [35]. We introduce a natural number γ > 1 in the definition to simplify
some computations below in Section 3.2. Consider the discrete Littlewood–Paley
decomposition (wn,γ )n∈Z defined as follows. We set w0,γ (z) = z−1

+ 1 + z. For
n > 0, the Fourier coefficients (ŵn,γ (k))k∈Z of wn,γ are defined by ŵn,γ (γ

n) = 1,
ŵn,γ (k)= 0 for k not in (γ n−1, γ n+1) and defined as the piecewise linear extension
of these properties. For n < 0, we set wn,γ := w−n,γ . The norm ‖·‖Cα,∗(S1) is given
by

‖ f ‖Cα,∗(S1) := sup
n∈Z

γ |n|α‖wn,γ ∗ f ‖L∞(S1).

By standard arguments, the norm ‖ · ‖Cα,∗(S1) is equivalent to the usual norm on
Cα(S1) for α ∈ (0, 1) (cf. [1, Theorem 6.1]).

Proof of Theorem 3.5. By Proposition 3.3, the identity (3.4) follows from the
identity (3.3). It follows from Theorem 2.18 and Proposition 2.26, using the
computation of Lemma 3.2, that

trω(Pa(1− P)b) = lim
N→ω

∑N
l=0

∑
k>l akb−k

log(N )
= lim

N→ω

∑
∞

k=1

∑min(k−1,N )
l=0 akb−k

log(N )

= lim
N→ω

∑N
k=1 kakb−k + (N + 1)

∑
∞

k=N+1 akb−k

log(N )
.

The theorem follows once proving that
∑
∞

k=N+1 akb−k = O(N−1) as N → ∞.
Cauchy–Schwarz inequality implies that∣∣∣∣∣

∞∑
k=N+1

akb−k

∣∣∣∣∣
2

6

(
∞∑

k=N+1

|ak |
2

)
·

(
∞∑

k=N+1

|b−k |
2

)
;

hence we can assume that a = b̄ and b−k = āk . We can also restrict to showing∑
∞

k=2 j |ak |
2
= O(2− j) as j →∞.

Note that
∑

n ŵn,2(k) = 1 for any k, so

|ak |
2 6 2

∑
n

|ŵn,2(k)ak |
2.

We conclude from this estimate and Parseval’s identity that

∞∑
k=2 j

|ak |
2 6 2

∞∑
n= j

2n+1
−1∑

k=2n−1+1

|ŵn,2(k)ak |
2
= 2

∞∑
n= j

‖wn,2 ∗ a‖2
L2(S1)

6 2
∞∑

n= j

‖wn,2 ∗ a‖2
L∞(S1) 6 2

∞∑
n= j

2−n
‖a‖2

C1/2,∗(S1)

= 2− j+2
‖a‖2

C1/2,∗(S1) = O(2− j).
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H. Gimperlein and M. Goffeng 22

REMARK 3.6. If a, b ∈ H 1/2(S1), the operator [P, a][P, b] is trace class and the
Lidskii formula for operator traces implies that

tr([Pa P, PbP]) = tr((2P − 1)[P, a][P, b]) = −
∞∑

k=−∞

k · akb−k = (Da, τ ∗b),

where D = i d/dθ is the Dirac operator on S1, (·, ·) denotes the bilinear
pairing H−1/2(S1) × H 1/2(S1) → C and τ(z) = z̄. An interesting fact is that if
a = b−1

∈ H 1/2(S1, S1) then tr((2P−1)[P, a][P, a−1
]) = −degH1/2(a) ∈ Z—the

H 1/2-mapping degree. Hence, the computations of Theorem 3.5 can be considered
as a Dixmier regularization of the H 1/2-mapping degree. In [7], motivated by
VMO-mapping degrees, it was proven that if f ∈ VMO(S1, S1) then P f ∈ H s(S1)

for an s ∈ (0, 1) implies that f ∈ H s(S1). For an interesting overview of similar
problems, see [30]. We note that if a ∈ C1/2(S1,C×), an argument using the
periodicity operator in cyclic cohomology shows that

trω((2P − 1)[P, a][P, a−1
]) = 0. (3.5)

One might ask if the vanishing of ‘Dixmier regularized mapping degrees’ (3.5)
has any consequences on questions similar to those in [30] for Hölder spaces.

PROPOSITION 3.7. Let ω be a singular state on `∞(N). We define

cω(a, b) := trω((2P − 1)[P, a][P, b]), a, b ∈ C1/2(S1).

The functional cω defines a continuous cyclic 1-cocycle on C1/2(S1).

The proof of Proposition 3.7 is a short algebraic manipulation which we
leave to the reader. We will in Proposition 3.15 see that the cohomology class
[cω] ∈ HC1(C1/2(S1)) is in general nonvanishing and highly dependent on the
choice of extended limit ω. We end this subsection with an integral formula for
the Dixmier trace of the product of two commutators or Hankel operators; it can
be seen as a variation of Theorem 2.23.

PROPOSITION 3.8. For a, b ∈ C1/2(S1),

trω(P[P, a][P, b]) = − lim
N→ω

lim
r↗1

∫
S1×S1

a+(ζ̄ )b−(z)kN (r z, ζ ) dζ dz, and

trω([P, a][P, b])

= − lim
N→ω

lim
r↗1

∫
S1×S1

{
a+(ζ̄ )b−(z)+ b+(ζ̄ )a−(z)

}
kN (r z, ζ ) dζ dz,
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Nonclassical spectral asymptotics and Dixmier traces 23

where

kN (z, ζ ) =
1

log(N )
·

1− (zζ )N+1

(1− zζ )2
.

Proof. Assume for simplicity that a = a+ and b = b−, we can also assume
a+(0) = 0. For l > 0, we let Pl denote the ON-projection onto the closed linear
span of (ek)k>l . We have that∫

S1
Pl(a)(z)b(z)

dz
i z
=

∑
k>l

akb−k .

The function Pl(a) admits a holomorphic extension to |z| < 1 where

Pl(a)(z) =
1
i

∫
S1

zl+1ζ−l−1a(ζ ) dζ
ζ − z

= i z
∫

S1

zlζ la(ζ̄ ) dζ
1− zζ

.

Hence, for |z| < 1,

N∑
l=0

Pl(a)(z) = i z
∫

S1

(1− (zζ )N+1)a(ζ̄ ) dζ
(1− zζ )2

.

In particular, for |z| = 1, Pl(a)(z) = limr↗1 Pl(a)(r z). We conclude that

N∑
l=0

∑
k>l

akb−k = lim
r↗1

∫
S1

∫
S1

(1− (r zζ )N+1)a(ζ̄ )b(z) dζ dz
(1− r zζ )2

.

The second formula follows from the first using Proposition 3.3.

REMARK 3.9. In fact, the proof of Proposition 3.8 only depends on Lemma 3.2
and the results of Section 2. The integral formula of Proposition 3.8, together with
a simple Fourier series calculation, implies Theorem 3.5, avoiding any usage of
Littlewood–Paley decompositions.

REMARK 3.10. In [19], Dixmier traces of Hankel operators on the Bergman
space were considered. The spectral behavior of Hankel operators on the Bergman
space differs from that of Hankel operators on the Hardy space. For instance, a
smooth function produces a Hankel operator on the Bergman space that need not
be more than of weak trace class. A Hankel operator with smooth symbol on the
Hardy space has rapid decay in its singular values, so it is of trace class and all its
Dixmier traces vanish.
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REMARK 3.11. Following [29], a numerical invariant Dω : K alg
2 (C1/2(S1))→ C

on the second algebraic K -group of C1/2(S1) can be constructed from the Dixmier
determinant in K -theory, detω : K alg

1 (L1,∞(H 2(S1)),B(H 2(S1))) → C, and the
short exact sequence of Banach algebras:

0→ L1,∞(H 2(S1))→ T1/2(S1)→ C1/2(S1)→ 0, (3.6)

where T1/2(S1) := PC1/2(S1)P + L1,∞(H 2(S1)) ⊆ B(H 2(S1)). This relates to
our computations through the identity

Dω{a, b} = trω[Pa P, PbP] = cω(a, b),

where {a, b} ∈ K alg
2 (C1/2(S1)) is the Steinberg symbol associated with

a, b ∈ C1/2(S1) and cω is the cyclic 1-cocycle from Proposition 3.7.

3.2. Generalized Weierstrass functions and nonclassicality. Our focus in
this subsection will be on certain generalized Weierstrass functions and the
Dixmier traces of the associated Hankel operators. The main goal is to provide
a large set of examples for which the Dixmier traces display a rich behavior. For
α ∈ (0, 1), γ ∈ N>1 and a bounded sequence c = (cn)n∈N ∈ `

∞(N), we define the
generalized Weierstrass function

Wα,γ,c(z) :=
∞∑

n=0

γ −αncn(zγ
n
+ z−γ

n
) = 2

∞∑
n=0

γ −αncn cos(γ nθ) for z = eiθ .

(3.7)
Since Wα,γ,c is defined from an absolutely convergent Fourier series, Wα,γ,c is
continuous. The (nongeneralized) Weierstrass function Wα,γ is obtained by

Wα,γ := Wα,γ,(1,1,1,1...).

The function Wα,2 was studied, for instance, in [54, Ch. II].

PROPOSITION 3.12. For any p ∈ [1,∞], the construction of generalized
Weierstrass functions Wα,γ,c gives rise to a continuous linear injective mapping

wα,γ : `
∞(N)→ Cα(S1) ∩ Bα

p,∞(S
1) ∩ Fα

p,∞(S
1), c 7→ Wα,γ,c.

Moreover, if c is an invertible element of `∞(N), the inclusion Wα,γ,c ∈ Bα
p,q(S

1),
as well as Wα,γ,c ∈ Fα

p,q(S
1), holds if and only if q = ∞ for any p ∈ [1,∞].

The proof that Wα,γ,c ∈ Cα(S1) is an adaptation of the proof of [54, Theorem
4.9, Ch. II], where the Weierstrass function Wα,2 was considered. Recall the
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Nonclassical spectral asymptotics and Dixmier traces 25

definition of the Besov space Bα
p,q(S

1) and the Triebel–Lizorkin space Fα
p,q(S

1)

from [35]. We use the notation of the paragraph succeeding Theorem 3.5. The
norm on the Besov space is defined for p ∈ [1,∞], q ∈ [1,∞] by

‖ f ‖Bt
p,q (S1) :=

∥∥(γ |n|t‖wn,γ ∗ f ‖L p(S1)

)
n∈Z

∥∥
`q (Z) .

The norm on the Triebel–Lizorkin space is defined for p ∈ [1,∞), q ∈ [1,∞] by

‖ f ‖F t
p,q (S1) :=

∥∥∥∥∥(γ |n|twn,γ ∗ f (·)
)

n∈Z

∥∥
`q (Z)

∥∥∥
L p(S1)

.

For p = ∞ and q ∈ [1,∞] the norm on the Triebel–Lizorkin space is given by

‖ f ‖F t
∞,q (S1) := sup

B⊆S1,|B|=2−k

(
1
|B|

∑
n>k

∫
B
γ tnq
|wn,γ ∗ f (eiθ )|q dθ

)1/q

,

where the supremum is over all k and all intervals B in S1 of length |B| = 2−k .

Proof. Let h > 0 be small and take N = N (h) such that γ N h 6 1 and γ N+1h > 1.
With z = eiθ , it holds that

Wα,γ,c(zeih)−Wα,γ,c(z) =− 2
N∑

n=1

γ −nαcn sin(γ n(θ + h/2)) sin(γ nh/2)︸ ︷︷ ︸
I

− 2
∞∑

n=N+1

γ −nαcn sin(γ n(θ + h/2)) sin(γ nh/2)︸ ︷︷ ︸
II

We estimate

|I | .
N∑

n=1

γ −nαγ nh = h
N∑

n=1

γ n(1−α)
= h

γ 1−α
− γ N (1−α)

1− γ 1−α
= h · O(hα−1) = O(hα).

|II| .
∞∑

n=N+1

γ −nα
=
γ −(N+1)α

1− γ −α
= O(hα).

From these estimates, it follows that Wα,γ,c ∈ Cα(S1).
It holds that wn,γ ∗Wα,γ,c(z) = γ −α|n|cnzsign(n)γ |n| . Hence

‖Wα,γ,c‖Bt
p,q
= ‖(|cn|γ

|n|(t−α))n∈Z‖`q (Z).
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H. Gimperlein and M. Goffeng 26

It follows that for p ∈ [1,∞], Wα,γ,c ∈ B t
p,q(S

1) if t < α and q ∈ [1,∞) or t = α
and q = ∞. If c is invertible in `∞(N), there is a δ > 0 such that |cn| > δ for all
n so the converse holds: Wα,γ,c ∈ B t

p,q(S
1) implies that t < α and q ∈ [1,∞) or

t = α and q = ∞. In the same manner, for p ∈ [1,∞),

‖Wα,γ,c‖F t
p,q
=

∥∥∥∥∥∥
(∑

n

|cn|γ
q|n|(t−s)

)1/q
∥∥∥∥∥∥

L p(S1)

∼ ‖(|cn|γ
|n|(t−s))n∈Z‖`q (Z).

It follows that for p ∈ [1,∞), Wα,γ,c ∈ F t
p,q(S

1) if t < α and q ∈ [1,∞) or t = α
and q =∞. If c is invertible, Wα,γ,c ∈ F t

p,q(S
1) implies that t < α and q ∈ [1,∞)

or t = α and q = ∞. For p = ∞ and q ∈ [1,∞]

‖Wα,γ,c‖F t
∞,q
= sup

k

(∑
j>k

cnγ
q|n|(t−s)

)1/q

= ‖cnγ
|n|(t−s)

‖`q (Z),

which is finite if t < α and q ∈ [1,∞) or t = α and q = ∞, and for c invertible
the converse holds.

Let us turn to a computation of the Dixmier trace of the product of two Hankel
operators whose symbol is a generalized Weierstrass function. We use the notation
C : `∞(N)→ `∞(N) for the Cesaro mean defined on x = (xn)n∈N by

C(x)N :=
1

N + 1

N∑
n=0

xn.

The following proposition follows directly from Theorem 3.5. For γ ∈ N>1, we
define ωγ (c) := limγ N→ω cN . It is clear from the construction that ω 7→ ωγ defines
an injective mapping on (`∞(N)/c0(N))∗.

PROPOSITION 3.13. For γ ∈ N>1 and c, d ∈ `∞(N) it holds that

trω(P[P,W1/2,γ,c][P,W1/2,γ,d]) = −
ωγ ◦ C(c · d)

log(γ )
= − lim

N→ωγ

1
N + 1

N∑
n=0

cndn

log(γ )
.

In particular,

trω(P[P,W1/2,γ,c]
2) = trω((1− P)[P,W1/2,γ,c]

2) = −
ωγ ◦ C(c2)

log(γ )
.

REMARK 3.14. We note that Proposition 3.13 implies that Dixmier traces of
products of two Hankel operators with symbol being a generalized Weierstrass
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Nonclassical spectral asymptotics and Dixmier traces 27

function can be as wild as the extended limit ω applied to the image of the
Cesaro mean im(C : `∞(N) → `∞(N)). Similarly, Connes–Dixmier traces
(cf. discussion in the beginning of Section 2.2) can be as wild as any singular
state on im(M ◦ C : `∞(N) → `∞(N)). This observation follows from the fact
that the product `∞(N)× `∞(N) 3 (c, d) 7→ c · d ∈ `∞(N) is surjective.

For a Banach algebra A we let HC∗(A) and HC∗(A) denote its cyclic
cohomology and cyclic homology, respectively. For details on cyclic theories,
see [15, Ch. III].

PROPOSITION 3.15. For any nonzero ω ∈ (`∞(N)/c0(N))∗, the class [cω] ∈
HC1(C1/2(S1)) (see Proposition 3.7) is nonvanishing. Moreover,

{[cω] : ω ∈ (`∞(N)/c0(N))∗} ⊆ HC1(C1/2(S1)), (3.8)

is an infinite-dimensional subspace.

Proof. Take c, d ∈ `∞(N) and define the cyclic homology class xc,d :=

[W+

γ,c ⊗W−

γ,d] ∈ HC1(C1/2(S1)). Proposition 3.13 shows that

[cω].xc,d = −
ωγ ◦ C(c · d)

log(γ )
. (3.9)

Hence, if ω 6= 0, then ωγ 6= 0 and [cω] · xc,d 6= 0 for instance when c = d = 1.
Injectivity of ω 7→ ωγ and equation (3.9) shows that if {ωl}l=1,...,m is a collection of
singular functionals on `∞(N) such that {ωl ◦ C}l=1,...,m are linearly independent,
then the set {[cωl ]}l=1,...,m will also be linearly independent in HC1(C1/2(S1)).
Therefore, the space in (3.8) is infinite-dimensional.

It is of interest to consider the class of bounded sequences that do not produce
a measurable operator. Recall that G ∈ L1,∞(H) is called measurable if trω(G) is
independent of ω. For γ ∈ N>1, k ∈ N>0 we set

hmsk,γ := {c ∈ `
∞(N) : [P,W1/2k,γ,c]

2k
∈ L1,∞(L2(S1)) is measurable}.

Here hms stands for hankel measurable. Proposition 3.3 implies that [P,
W1/2k,γ,c]

2k is measurable if and only if P[P,W1/2k,γ,c]
2k is measurable. We only

consider even powers 2k because Proposition 3.3 implies that [P,W1/(2k+1),γ,c]
2k+1

is measurable for any γ and c. The following corollary describing hms1,γ follows
from Proposition 3.13.
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COROLLARY 3.16. The set hms1,γ does not depend on γ and equals

hms1,γ =

{
c = (cn)n∈N ∈ `

∞(N) : ∃d ∈ C such that

N∑
n=0

c2
n = d · N + o(N ) as N →∞

}
.

In particular, the inclusion hms1,γ ⊆ `
∞(N) is strict.

REMARK 3.17. Corollary 3.16 implies that although Pa(1 − P)a P is a
nonsmooth pseudodifferential operator, there need not be any classicality in
its spectrum.

In the case that
∑N

n=0 c2
n = d ·N+o(N ) for some d ∈ C, trω(P[P,W1/2,γ,c]

2) =

−d/ log(γ ) by Proposition 3.13. To be a bit more specific about Corollary 3.16,
the following sequences are examples making P[P,W1/2,γ,c]

2 nonmeasurable:(√
1+ cos(log(n))

)
n∈N

and
(
χN\∪k∈N[γ 2k ,γ 2k+1)(n)

)
n∈N ,

where χN\∪k∈N[γ 2k ,γ 2k+1) denotes the characteristic function of N \ ∪k∈N[γ
2k, γ 2k+1).

The first example above is similar to that in [32, Corollary 11.5.3].

REMARK 3.18. There are sequences c that produce Hankel operators HW1/2,γ,c

for which the Connes–Dixmier traces of |HW1/2,γ,c |
2 depend on the choice

of extended limit ω = M∗φ (cf. Remark 2.11). By [15, Proposition 6,
Ch. IV.2.β], this assertion is equivalent to the failure of convergence of
Mc(λ) := 1/ log(λ)

∫ λ
1 σbtc(|HW1/2,γ,c |

2)(dt/t) as λ→∞, where

σN (|HW1/2,γ,c |
2) =

1
log(N + 1)

N∑
k=1

µk(|HW1/2,γ,c |
2) =

1
log N

blogγ (N )c∑
k=1

|ck |
2
+ o(1).

We are using the ideas appearing in the proof of Theorem 3.5 in the last step.
In particular, if the sequence c satisfies that Mc(λ) converges, then C2(|c|2)R =

Mc(γ
R)+ o(1) converges as R→∞.

There are many sequences c such that C2(|c|2) does not converge. We now
show that ck :=

√
1+ cos(log(k)) is one such sequence. We define Ccont :

L∞(R>1) → L∞(R>1) by Ccont f (x) = 1/x
∫ x

1 f (t)dt . Let L∞0 (R>1) denote
the Ccont-invariant closed subspace of functions converging to 0 at infinity. Take
f (x) := 2 cos(log(x)) − 1 and f0(x) := 2 cos(log(bxc)) − 1. Since f0(x) =
2|cbxc|2 − 2, we have that C2

cont f0(x) = 2C2(|c|2)bxc − 2 + o(1). The facts that
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Nonclassical spectral asymptotics and Dixmier traces 29

f ′ ∈ L∞0 (R>1) and f0(x) = f (bxc) imply that f − f0 ∈ L∞0 (R>1). Therefore,
C2(|c|2) does not converge at infinity if C2

cont f does not converge at infinity.
Differentiation shows that if g is a function satisfying Ccontg(x) = sin(log(x)),
then g(x) = sin(log(x)) + cos(log(x)). In the same way, we have that Ccont f =
sin(log(x))+cos(log(x))−1 and C2

cont f (x)= sin(log(x))−1+x−1. In conclusion,
C2

cont f does not converge at infinity because sin(log(x)) does not.

A constructive consequence of Proposition 3.13 is as follows.

COROLLARY 3.19. It holds that

trω(P[P,W1/2,γ ]
2) = −

1
log(γ )

.

4. Computations on higher dimensional tori and θ -deformations

The computations in the previous section are based on the structure of
the circle; it is a one-dimensional compact Lie group. In this section, we
will generalize these computations to higher dimensional manifolds, still
in the presence of symmetries, and noncommutative θ -deformations. The
noncommutative geometry of noncommutative tori has been well studied; see for
instance [8, 15, 17, 53]. In recent years, also more analytic aspects have been
studied. In [11, 52] several tools from classical harmonic analysis are extended
to noncommutative tori. It is an interesting open problem to find an approach to
harmonic analysis that would work in more general noncommutative geometries,
already for general θ -deformations.

Most of the computational tools are present in the general context of higher
dimensional manifolds and noncommutative tori, but produce notably more
complicated objects. We start by extending some results from Section 2 to
θ -deformations in Section 4.1. We compute Dixmier traces in Section 4.2.

4.1. Sobolev regularity and θ -deformations. θ -Deformation is a standard
procedure to deform the algebra of functions on a manifold with a torus action.
It preserves the spectrum of equivariant operators, and thereby ensures that the
underlying noncommutative geometry, whenever equivariant, deforms well.

4.1.1. The noncommutative torus. We fix an antisymmetric matrix θ ∈ Mn(R)
and identify θ with a 2-form on Rn . The matrix θ = (θ jk)

n
j,k=1 is identified with

the 2-cocycle on Zn given by

Zn
× Zn

3 (k1,k2) 7→ eiθ(k1,k2) ∈ U (1).
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The θ -deformation of Tn is denoted by C(Tn
θ ) and can be defined as the twisted

group C∗-algebra C∗(Zn, θ). Alternatively, C(Tn
θ ) can be defined as the universal

C∗-algebra generated by n unitaries U1, . . . ,Un satisfying the commutation
relations

U jUk = eiθ jk UkU j , j, k = 1, . . . , n.

For k = (k1, . . . , kn) ∈ Zn , we write U k
:= U k1

1 · · ·U
kn
n ∈ C(Tn

θ ). Clearly, the
linear span of {U k

: k ∈ Zn
} is dense in C(Tn

θ ).

REMARK 4.1. The notation C(Tn
θ ) suggests that Tn

θ is an object in its own right—
a ‘noncommutative manifold’. This point of view is supported by the geometry
that survives in a θ -deformation; see [17, 53].

Since Tn is an abelian Lie group, there is a strongly continuous action of Tn on
C(Tn

θ ), defined on the generators by

z.U j := z jU j , z = (z1, . . . , zn) ∈ Tn
⊆ Cn.

Moreover, a tracial state τ0 ∈ C(Tn
θ ) is defined by

τ0(U k) := δ0,k, k ∈ Zn.

We denote the GNS-representation of τ0 by L2(Tn
θ ). The set {U k

: k ∈ Zn
} is an

orthonormal basis for L2(Tn
θ ).

4.1.2. General θ -deformations. Using the noncommutative torus Tn
θ , we can

deform more general C∗-algebras.

DEFINITION 4.2. Let A be a Tn
− C∗-algebra, H a Tn-equivariant Hilbert space

and D a Tn-equivariant unbounded closed operator which is densely defined on
H.

• We define the θ -deformation Aθ as the Tn-invariant C∗-subalgebra (A ⊗
C(Tn

θ ))
Tn
⊆ A ⊗ C(Tn

θ ). Here A ⊗ C(Tn
θ ) is equipped with the diagonal

Tn-action. The inclusion defines a ∗-monomorphism

i : Aθ ↪→ A ⊗ C(Tn
θ ),

and we equip Aθ with the Tn-action defined from A under i .

• We define the θ -deformationHθ as the Tn-invariant subspace (H⊗L2(Tn
θ ))

Tn
⊆

H⊗L2(Tn
θ ). Here, the latter space carries the diagonal Tn-action. The inclusion

defines an isometry
V : Hθ ↪→ H⊗ L2(Tn

θ ).
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Nonclassical spectral asymptotics and Dixmier traces 31

We equip Hθ with the Tn-action defined from H under the isometry V . If
π : A→ B(H) is a Tn-equivariant representation, we define its θ -deformation
as the Tn-equivariant representation

πθ : Aθ → B(Hθ ), a 7→ V ∗((π ⊗ idC(Tn
θ )
)(i(a)))V .

• Let D̃ denote the Tn-equivariant unbounded closed operator D ⊗ idL2(Tn
θ )

. The
θ -deformation of D is defined as the Tn-equivariant unbounded closed operator
V ∗ D̃V .

The definition above of a θ -deformation differs slightly from the standard
definition found in the literature. We refer the reader to [53, Proposition 6] for
the isomorphism with the standard construction.

The Hilbert spaces we consider are often defined from GNS-representations.
Any Tn-invariant trace τ ∈ A∗ gives rise to a deformed trace τθ := (τ⊗τ0)◦i ∈ A∗θ .
From the definition of τ0, we have the identity

τθ (a) =
∫
[0,1]n

(τ ⊗ αt)(a) dt, a ∈ Aθ ,

where αt(a) := e2π i t
·a for t ∈ Rn . The following proposition follows from a short

computation:

PROPOSITION 4.3. Let τ ∈ A∗ be a Tn-invariant tracial state and let L2(Aθ , τθ )
denote the GNS-representation of the tracial state τθ . Then the equivariant
mapping i : Aθ → A ⊗ C(Tn

θ ) induces a unitary isomorphism L2(Aθ , τθ ) →
L2(A, τ )θ compatible with the Aθ -action, that is, for ξ1, ξ2 ∈ Aθ we have the
equality

〈ξ1, ξ2〉L2(Aθ ,τθ ) = 〈i(ξ1), i(ξ2)〉L2(A,τ )⊗L2(Tn
θ )
.

The spaces L p(Aθ , τθ ) are the noncommutative L p-spaces defined from the
tracial state τθ and satisfy the usual interpolation properties of L p-spaces. We
note that L∞(Aθ , τθ ) coincides with A′′θ ⊆ B(L2(Aθ , τθ )). Recall the following
well-known fact about θ -deformations:

PROPOSITION 4.4. Let H be a Tn-equivariant Hilbert space and D a
Tn-equivariant unbounded closed operator which is densely defined on H.
Define the unitary Uθ : H → Hθ by Uθξ := ξ ⊗ U−k for any ξ which is
homogeneous of degree k ∈ Zn . Then

Dθ = Uθ DU ∗θ .
In particular, θ -deformations of Tn-equivariant unbounded closed operators are
‘isospectral’: they preserve the spectra σ(D) = σ(Dθ ) (including multiplicities).
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H. Gimperlein and M. Goffeng 32

4.1.3. Geometric constructions. The θ -deformation of the relevant operators
allows us to study the Lipschitz functions on a θ -deformed manifold. Let M be
a closed Riemannian manifold, and fix a Dirac operator D acting on a Clifford
bundle S→ M . We consider D as a self-adjoint operator with domain W 1(M, S).
A short computation shows that

Lip(M) = {a ∈ C(M) : aDom(D) ⊆ Dom(D) and
[D, a] is bounded in L2-operator norm}.

On the left hand side of this equation, we use Definition 1.1 (see page 3).
Henceforth, we assume that M admits a smooth isometric Tn-action that lifts
to S. We also assume that D is Tn-equivariant. Since the Tn-action is isometric,
any Dirac operator on S is a zeroth-order perturbation of an equivariant Dirac
operator.

PROPOSITION 4.5. We define the subspace Lip(Mθ ) ⊆ C(Mθ ) := C(M)θ as

Lip(Mθ ) := {a ∈ C(Mθ ) : i(a) ∈ Lip(M,C(Mθ ))}.

It holds that

Lip(Mθ ) = {a ∈ C(Mθ ) : aDom(Dθ ) ⊆ Dom(Dθ ) and [Dθ , a] is bounded}.

Proof. It is easily verified that a ∈ Lip(Mθ ) if and only if i(a) preserves the
domain of D̃ and [D̃, i(a)] extends to a bounded operator on L2(M, S)⊗ L2(Tn

θ ).
It follows that {a ∈ C(Mθ ) : aDom(Dθ ) ⊆ Dom(Dθ ) and [Dθ , a] is bounded} ⊆
Lip(Mθ ). The converse follows from the fact that, locally, the operator Dθ is
implemented by

∑
c(X i)X i up to lower order terms, where X i are generators

of a local Rn-action on L2(M, S)θ .

REMARK 4.6. We remark that if a ∈ A is smooth for the Tn-action, then we can
write a =

∑
k∈Zn ak, where ak ∈ A is of degree k and defined by

ak :=

∫
[0,1]n

αt(a)e−2π ik·t dt.

When a is smooth, the norms (‖ak‖A)k∈Zn form a Schwartz sequence. In this case
the element L(a) :=

∑
k∈Zn ak ⊗ U−k

∈ Aθ is well defined, and the following
identity holds on a core for Dθ :

L([D, a]) = [Dθ , L(a)].

We remark that this identity is analytically unwieldy when relating the
boundedness of the commutators [D, a] and [Dθ , L(a)]; L does not extend
to a bounded operator from bounded operators in H to bounded operators in Hθ .
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REMARK 4.7. The convergence of the ‘Fourier series’ a =
∑

k∈Zn ak was studied
in detail in [51]. For M = Tn , it was shown that the Fourier series converges
in Cesaro mean, if a ∈ C(Tn

θ ) [51, Theorem 22]. It converges in norm, if
a ∈ Lip(Tn

θ ) [51, Theorem 23]. More refined convergence results were obtained
in [11].

4.1.4. Littlewood–Paley theory on the noncommutative torus. The Littlewood–
Paley theory on the noncommutative tori uses Fourier theory similarly to the
approach on page 21 (found in [35]). The details can be found in [52]. We
pick a Littlewood–Paley partition of unity (φ j) j∈N ⊆ cc(Zn) as on page 21, that
is, supp(φ j) ⊆ {k ∈ Zn

: 2 j−1 6 |k| 6 2 j+1
} for j > 0. We call such a partition

of unity a discrete Littlewood–Paley partition of unity.

DEFINITION 4.8. The Littlewood–Paley decomposition (Φθ
j ) j∈N ⊆ B(L2(Tn

θ )) is
defined by

Φθ
j U

k
:= φ j(k)U k.

For s ∈ R and p, q ∈ [1,∞], we consider partially defined norms ‖ · ‖Bs
p,q (Tn

θ )
on

f ∈ C∞(Tn
θ )
∗,

‖ f ‖Bs
p,q (Tn

θ )
:= ‖(2s j

‖Φθ
j f ‖L p(Tn

θ )
) j∈N‖`q (N).

We define the Banach space Bs
p,q(Tn

θ ) := { f ∈ C∞(Tn
θ )
∗
: ‖ f ‖Bs

p,q (Tn
θ )
<∞}.

In addition, there is a natural Sobolev space scale on Tn
θ . Let (δ j)

n
j=1 denote the

generators of the Tn-action. The Laplacian on Tn
θ is defined by

∆θ := −

n∑
j=1

δ2
j .

For s > 0 and p ∈ [1,∞), we define W s,p(Tn
θ ) as the domain of |∆θ |

s/2 on L p(Tn
θ ).

Alternatively, for k ∈ N

W 2k,p(Tn
θ ) := { f ∈ L p(Tn

θ ) : ∆
k
θ f ∈ L p(Tn

θ )},

and one recovers W s,p(Tn
θ ) by complex interpolation. The space W s,p(Tn

θ ) for
s < 0 is defined by duality in the τ0-pairing. We set W s(Tn

θ ) := W s,2(Tn
θ ).

PROPOSITION 4.9. The Besov spaces satisfy the following properties

(1) For s ∈ R, Bs
2,2(Tn

θ ) = W s(Tn
θ ).

(2) For any s ∈ (0, 1),

Bs
∞,∞(T

n
θ ) = [C(T

n
θ ),Lip(Tn

θ )]s,∞ = C s(Tn,C(Tn
θ ))

Tn
.
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Proof. Since ∆θU k
= |k|2U k, the identity Bs

2,2(Tn
θ ) = W s(Tn

θ ) follows in the
classical way from the case s = 0.

To prove the second identity, we note that [C(Tn
θ ),Lip(Tn

θ )]s,∞ equals the
invariant subspace of [C(Tn,C(Tn

θ )),Lip(Tn,C(Tn
θ ))]s,∞. Standard methods of

interpolation show

[C(Tn,C(Tn
θ )),Lip(Tn,C(Tn

θ ))]s,∞

= { f ∈ C(Tn,C(Tn
θ )) : ‖(2

s j
‖(Φθ=0

j ⊗ idC(Tn
θ )
) f ‖C(Tn ,C(Tn

θ ))
) j∈N‖`∞(N) <∞}.

From this identity, the second assertion follows.

DEFINITION 4.10. For α ∈ (0, 1), we define

Cα(Tn
θ ) := Cα(Tn,C(Tn

θ ))
Tn
= [C(Tn

θ ),Lip(Tn
θ )]α,∞ = Bα

∞,∞(T
n
θ ).

REMARK 4.11. It seems possible to extend the Littlewood–Paley theory from Tn
θ

to θ -deformations of smooth free Tn-actions on manifolds. This is a consequence
of the fact that smooth free Tn-actions on manifolds correspond to smooth
principal Tn-bundles; therefore, we can localize to a product situation. A
challenging problem would be to develop Littlewood–Paley theory for arbitrary
smooth Tn-actions on manifolds.

4.1.5. Sobolev regularity on the noncommutative torus. We are now ready
to prove that certain commutators on the noncommutative torus have Sobolev
mapping properties similar to those in Theorem 2.1. The commutators that we are
interested in are those between the phase of the Dirac operator and elements of
Cα(Tn

θ ).
On Tn there is an obvious choice of spin structure coming from the trivialization

of the tangent bundle T Tn , as defined by the Lie algebra Rn . Concretely, the
spinor bundle is given by a trivial bundle S = Tn

× Sn → Tn , and the Dirac
operator takes the form D =

∑n
i=1 γi∂ti . Here γi = c(∂ti ) and c : Rn

→ End(Sn)

denotes Clifford multiplication. Now note that Sn = C2bn/2c as a vector space;
the Clifford structure is determined by the Clifford multiplication c. We identify
the sections of the spinor bundle with C∞(Tn) ⊗ Sn . In the Fourier basis
ek(t) := e2π ik·t , we have

D(ek ⊗ v) = ek ⊗ c(k)v, v ∈ Sn.

Define F := D|D|−1. We use the convention that |D|−1 acts as 0 on ker(D).
The operators D and F are Tn-equivariant and induce θ -deformed operators
Dθ , respectively Fθ = Dθ |Dθ |

−1, on L2(Tn
θ , S). The Sobolev spaces satisfy

W s(Tn
θ , S) = Dom(|Dθ |

s) for s > 0, because |Dθ |
2
= ∆θ ⊗ idSn .
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THEOREM 4.12. Let Fθ denote the phase of the θ -deformed Dirac operator Dθ .
For any a ∈ Cα(Tn

θ ) the operator [Fθ , a] extends to a bounded operator

[Fθ , a] : W s(Tn
θ , S)→ W s+α(Tn

θ , S) for any s ∈ (−α, 0).

REMARK 4.13. Theorem 4.12 holds for arbitrary smooth free Tn-actions on
manifolds. This can again be shown by localizing to a product situation.

REMARK 4.14. Results relating to Theorem 4.12 are the subject of a forthcoming
article by E. McDonald, F. Sukochev and D. Zanin.

The proof of Theorem 4.12 is divided into several lemmas. For an element
a ∈ C(Tn

θ ), we write

ak
:=

k−2∑
j=0

Φθ
j (a). (4.1)

Associated with the Littlewood–Paley decomposition and a ∈ Cα(Tn
θ ), there are

operators Ta :=
∑
∞

k=0 akΦθ
k and Ra =

∑
| j−k|62Φ

θ
j (a)Φ

θ
k . For u ∈ L2(Tn

θ , S), we
decompose

au = Tau + Tua + Rau.

We set %(a)u := Rau + Tua. From these computations, we see that

[Fθ , a] = [Fθ , Ta] + Fθ%(a)− %(a)Fθ .

The three terms will be studied separately. The last two terms have the desired
mapping property by the next lemma.

LEMMA 4.15. For a ∈ Cα(Tn
θ ) and s ∈ (−α, 0), %(a) extends to a continuous

operator
%(a) : W s(Tn

θ , S)→ W s+α(Tn
θ , S).

Proof. We write u =
∑
∞

l=0 ul , where

ul := Φ
θ
l u. (4.2)

By Proposition 4.9(1) it suffices to prove that %(a) is continuous as a map
Bs

2,2(Tn
θ , S)→ Bs+α

2,2 (Tn
θ , S). When s + α > 0, we have

∑l+3
k=0 22(s+α)k

∼ 22(s+α)l .
Note that whenever | j − l| 6 2, an argument using the support of the sequence of
Fourier coefficients implies

Φθ
k (Φ

θ
j (a)Φ

θ
l (u)) = 0, k > l + 3.
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H. Gimperlein and M. Goffeng 36

For s + α > 0, we can estimate

‖Rau‖2
Bs+α

2,2
=

∞∑
k=0

22(s+α)k

∥∥∥∥∥∥
∑
| j−l|62

Φθ
k

(
Φθ

j (a) · ul
)∥∥∥∥∥∥

2

L2

6
∑
| j−l|62

l+3∑
k=0

22(s+α)k2−2 jα
‖a‖2

Bα∞,∞
‖ul‖

2
L2

.
∑
| j−l|62

22s j
‖a‖2

Bα∞,∞
‖ul‖

2
L2 . ‖a‖2

Bα∞,∞
‖u‖2

Bs
2,2
.

It follows that Ra has the desired mapping properties for s+α > 0. Following the
argument of [28, Theorem 5.1], one observes that Bs

2,2× Bα
∞,∞ 3 (u, a) 7→ Tua ∈

Bs+α
2,2 is a continuous bilinear mapping for s < 0.

It therefore suffices to prove the Sobolev mapping properties for [Fθ , Ta].
Recall the notation ak from equation (4.1) and ul from equation (4.2).

LEMMA 4.16. Theorem 4.12 is true provided there is a constant C > 0 such that
for any α ∈ (0, 1), a ∈ Cα(Tn

θ ) and k ∈ N

2αk
‖[Fθ , ak

]Φθ
k ‖B(L2(Tn

θ ,S)) 6 C‖a‖Cα(Tn
θ )
.

Proof. Assume that the constant C > 0 in the statement of the lemma exists. We
may then estimate

‖[Fθ , Ta]u‖2
Bs+α

2,2 (T
n
θ ,S)
=

∞∑
l=0

22(s+α)k

∥∥∥∥∥Φθ
l

∞∑
k=0

[Fθ , ak
]uk

∥∥∥∥∥
2

L2(Tn
θ ,S)

.
∑
|l−k|62

22(s+α)k
‖Φθ

l [Fθ , ak
]uk‖

2
L2(Tn

θ ,S)

.
∑
|l−k|62

22(s+α)k
‖[Fθ , ak

]Φθ
k ‖

2
B(L2(Tn

θ ,S))
‖uk‖

2
L2(Tn

θ ,S)

6 C2
‖a‖2

Cα(Tn
θ )
‖u‖2

Bs
2,2(T

n
θ ,S)
.

In the last estimate we use the assumption of the lemma.

LEMMA 4.17. Theorem 4.12 is true if there is a constant C > 0 such that for any
a ∈ C∞(Tn

θ ) and k ∈ N

2k
‖[Fθ , a]Φθ

k ‖B(L2(Tn
θ ,S)) 6 C‖a‖Lip(Tn

θ )
.
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Proof. By Lemma 4.16, it suffices to prove that the mapping

Cα(Tn
θ ) 3 a 7→ (2αk

[Fθ , ak
]Φθ

k )k∈N ∈ `
∞(N,B(L2(Tn

θ , S)))

is well defined and bounded. By interpolation, it suffices to prove that this
mapping is continuous for α = 0 and α = 1. At α = 0 the continuity is clear.
At α = 1, the assumption of the lemma guarantees that

2k
‖[Fθ , ak

]Φθ
k ‖B(L2(Tn

θ ,S)) 6 C‖ak
‖Lip(Tn

θ )
6 C‖a‖Lip(Tn

θ )
.

PROPOSITION 4.18. Let M be a closed manifold with a smooth Tn-action. If Q
is a first-order classical Tn-equivariant pseudodifferential operator acting on a
Tn-equivariant vector bundle E, then there is a constant C > 0 such that any
a ∈ Lip(Mθ ) preserves Dom(Qθ ) and

‖[Qθ , a]‖B(L2(M,E)θ ) 6 C‖a‖Lip(Mθ ).

The proposition follows immediately from the next theorem and
Proposition 4.4.

THEOREM 4.19. Let A be a C∗-algebra represented by π : A → B(H), M a
closed manifold and Q a first-order classical pseudodifferential operator on M.
There exists a C > 0 such that for any a ∈ Lip(M, A),

‖[Q ⊗ idH, (idC(M) ⊗ π)(a)]‖B(L2(M,H)) 6 C‖a‖Lip(M,A).

The theorem is proven by standard techniques in harmonic analysis, for
instance using a T (1)-theorem. The proof is omitted. We are now ready to prove
Theorem 4.12.

Proof of Theorem 4.12. By Lemma 4.17, it suffices to show that there exists C >

0 such that for any a ∈ C∞(Tn
θ ) and k ∈ N the estimate 2k

‖[Fθ , a]Φθ
k ‖B(L2(Tn

θ ,S)) 6
C‖a‖Lip(Tn

θ )
holds. For a ∈ C∞(Tn

θ ), we write

[Fθ , a] = ([Dθ , a] + Fθ [|Dθ |, a])|Dθ |
−1.

By Proposition 4.18 we can estimate ‖[|Dθ |, a]‖B(L2(Tn
θ ,S)) . ‖a‖Lip(Tn

θ )
. We can

therefore estimate

‖[Fθ , a]Φθ
k ‖B(L2(Tn

θ ,S)) 6 (‖[Dθ , a]|Dθ |
−1Φθ

k ‖B(L2(Tn
θ ,S))

+ ‖[|Dθ |, a]|Dθ |
−1Φθ

k ‖B(L2(Tn
θ ,S)))

6 (‖[Dθ , a]‖B(L2(Tn
θ ,S)) + ‖[|Dθ |, a]‖B(L2(Tn

θ ,S)))‖|Dθ |
−1Φθ

k ‖B(L2(Tn
θ ,S))

. ‖a‖Lip(Tn
θ )

2−k .

This completes the proof of the theorem.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.33
Downloaded from https:/www.cambridge.org/core. Heriot-Watt University, on 23 Jan 2017 at 15:04:19, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.33
https:/www.cambridge.org/core
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4.2. Computations on higher dimensional tori. The ideas in Section 2 and
Theorem 4.12 allow us to compute Dixmier traces on the noncommutative
torus. The case θ = 0 will provide us with higher dimensional analogues of
the computations in Section 3. We begin with a corollary of Theorem 2.18,
Lemma 2.21 and Theorem 4.12.

COROLLARY 4.20. Let Fθ denote the phase of the deformed Dirac operator,
a1, . . . , ak a collection of elements a j ∈ Cα j (Tn

θ ), for α j ∈ (0, 1) satisfying
that

∑k
j=1 α j = n, and T ∈ B(L2(Tn

θ , S)). The operator T [Fθ , a1] · · · [Fθ , ak] ∈

L1,∞(L2(Tn
θ , S)) is (αk, s)-modulated with respect to Dθ for any s ∈ (−αk, 0).

In particular, if (vl)
2bn/2c
l=1 is an ON-basis for Sn and ω ∈ (`∞(N)/c0(N))∗ is an

extended limit then

trω(T [Fθ , a1] · · · [Fθ , ak])

= lim
N→ω

∑2bn/2c

l=1

∑
|k|6N 1/n 〈T [Fθ , a1] · · · [Fθ , ak](ek ⊗ vl), ek ⊗ vl〉

log(2+ N )
.

With this corollary, we now turn to compute Dixmier traces. Fix Fθ and
a1, . . . , ak as in Corollary 4.20, as well as a Tn-equivariant operator T ∈ B(L2(Tn

θ ,

S)). We let (a j,k)k∈Zn and (T (k))k∈Zn denote the Fourier coefficients of a j and T ,
respectively. The former are defined as in Remark 4.6 and the latter as the matrixes
T (k) ∈ End(Sn) defined by

〈T (k)v,w〉Sn = 〈T (ek ⊗ v), ek ⊗ w〉, v, w ∈ Sn.

Any sequence in `∞(Zn,End(Sn)) arises as the Fourier coefficients of a
Tn-equivariant operator on L2(Tn

θ , S). We write K = (k1, . . . ,kk) ∈ (Zn)k

for a k-tuple of Fourier indices in Zn . For a k-tuple K of Fourier indices and
kk+1 ∈ Zn , we define the matrix

CK,kk+1 :=

k∏
j=1

(
c(
∑k+1

l= j kl)

|
∑k+1

l= j kl |
−

c(
∑k+1

l= j+1 kl)

|
∑k+1

l= j+1 kl |

)
∈ End(Sn).

Define I ⊆ (Zn)k as the set of K for which
∑k

j=1 k j = 0 ∈ Zn .

THEOREM 4.21. Under the assumptions in the preceding paragraph,

trω(T [Fθ , a1] · · · [Fθ , ak])

= lim
N→ω

∑
|kk+1|6N 1/n

∑
K∈I

(∏k
j=1 a j,k j

)
trSn

(
T (kk+1)CK,kk+1

)
log(2+ N )

.
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Nonclassical spectral asymptotics and Dixmier traces 39

We note the slightly surprising fact that trω(T [Fθ , a1] · · · [Fθ , ak]) is
independent of θ and only depends on the Fourier coefficients of T and the
elements a1, . . . , ak .

Proof. We compute that for v ∈ Sn and kk+1 ∈ Zn ,

T [Fθ , a1] · · · [Fθ , ak](ekk+1 ⊗ v)

=

∑
K

(
k∏

j=1

a j,k j

)
U k1 · · ·U kk ekk+1 ⊗ T

(
k∑

j=0

k j

)
CK,kk+1v

=

∑
K

(
k∏

j=1

a j,k j exp

(
iθ

(
k j ,

k+1∑
l= j+1

kl

)))
e∑k+1

j=1 k j
⊗ T

(
k+1∑
j=1

k j

)
CK,kk+1v.

From this computation and Corollary 4.20, we arrive at the expression

trω(T [Fθ , a1] · · · [Fθ , ak])

= lim
N→ω

∑
|kk+1|6N 1/n

∑
K∈I

(∏k
j=1 a j,k j e

iθ(k j ,
∑k+1

l= j+1 kl )
)

trSn

(
T (kk+1)CK,kk+1

)
log(2+ N )

.

It remains to prove that for K ∈ I ,
∑k

j=1

∑k+1
l= j+1 θ(k j ,kl) = 0. This identity

follows from the following computations:

k∑
j=1

k+1∑
l= j+1

θ(k j ,kl) =

k∑
j=1

k+1∑
l= j

θ(k j ,kl) =

k∑
j=1

k∑
l= j

θ(k j ,kl)

= −

k∑
j=1

k∑
l= j

θ(kl,k j) = −

k∑
j=1

k∑
l= j

θ(k j ,kl).

In the first identity, we use θ(k j ,k j) = 0, in the second identity
∑k

j=1 θ(k j ,

kk+1) = 0 because K ∈ I , in the third identity the antisymmetry of θ and in the
last identity we change the order of summation. We conclude

∑k
j=1

∑k+1
l= j+1 θ(k j ,

kl) = 0 from the fact that
∑k

j=1

∑k
l= j θ(k j ,kl) = −

∑k
j=1

∑k
l= j θ(k j ,kl).

REMARK 4.22. The cases of interest in Theorem 4.21 would be those related to
cyclic cocycles as in Proposition 3.7. In this case, T = Fθ for n odd and k even
and T = γ Fθ for n even and k odd (here γ denotes the grading on Sn). For n and
k simultaneously odd or even there is no obvious candidate for a cyclic cocycle.

Computations along the lines of Theorem 4.21 easily grow to unmanageable
expressions. Traces of products of Clifford matrixes can in principle be
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H. Gimperlein and M. Goffeng 40

evaluated, but the dependence on (K,kk+1) might be intricate. We illustrate
some computations in the case that n = 2, k = 3 and T = γ Fθ , where γ
denotes the grading on S2. The spinor space satisfies S2

∼= C2. We identify
Z2
= Z+ iZ ⊆ C. Under the isomorphism S2

∼= C2,

Fθ (k) =

 0
k
|k|

k̄
|k|

0

 and γ =

(
1 0
0 −1

)
.

We apply the convention that |0|−1
= 0. Note that forw, z, u ∈ T, the following

elementary identity holds:

w(w̄ − z̄)(z − u)(ū − w̄) = 2i(Im(uw̄)+ Im(wz̄)). (4.3)

We compute that for a 3-tuple K ∈ I ⊆ (Z2)3 and k4 ∈ Z2

trSn

(
γCK,k4

)
= 2iIm

(
k4

|k4|

(
k4

|k4|
−

k2 + k3 + k4

|k2 + k3 + k4|

)(
k2 + k3 + k4

|k2 + k3 + k4|
−

k3 + k4

|k3 + k4|

)

×

(
k3 + k4

|k3 + k4|
−

k4

|k4|

))

= −4

(
Im

(
k3 + k4

|k3 + k4|

k4

|k4|

)
+ Im

(
k4

|k4|

k2 + k3 + k4

|k2 + k3 + k4|

))

= −4
(

k3 × k4

|k3 + k4||k4|
+

k1 × k4

|k4 − k1||k4|

)
.

Here × denotes the crossed product defined on k = (k1, k2),k′ = (k ′1, k ′2) ∈ Z2

by k× k′ = k2k ′1 − k1k ′2.
We consider functions a1, a2, a3 ∈ C2/3(T2

θ ). Theorem 4.21 implies that for any
extended limit ω,

trω(γ Fθ [Fθ , a1][Fθ , a2][Fθ , a3])

= lim
N→ω

−4
log(2+ N )

∑
|k4|6N 1/2

∑
K∈I

a1,k1a2,k2a3,k3

|k4|

(
k3 × k4

|k3 + k4|
+

k1 × k4

|k1 − k4|

)

= lim
N→ω

−4
log(2+ N )

∑
|k4|6N 1/2

∑
k1=k2+k3

a1,−k1a2,k2a3,k3

|k4|

(
k3 × k4

|k3 + k4|
−

k1 × k4

|k1 + k4|

)
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Nonclassical spectral asymptotics and Dixmier traces 41

= lim
N→ω

4
log(2+ N )

∑
|k4|6N 1/2

∑
k1=k2+k3

k1 × k4

|k4||k4 + k1|

× (a1,−k1a2,k2a3,k3 − a1,−k3a2,k2a3,k1).

5. Dixmier trace computations on contact manifolds

In this section we consider Dixmier traces on higher dimensional contact
manifolds. We recall the geometric setup of contact manifolds in Section 5.1.
In Section 5.2, we find an integral formula for Dixmier traces, in the style of
a Connes-type residue trace formula. Section 5.3 computes Dixmier traces for
operators of the form T0[T1, a1] · · · [Tn+1, an+1]when ai is Lipschitz in the Carnot–
Carathéodory metric: in this case a Connes-type residue trace formula holds
and the spectral behavior of T0[T1, a1] · · · [Tn+1, an+1] is classical. We first recall
relevant facts about the underlying sub-Riemannian geometry.

5.1. Preliminaries on contact manifolds. In this subsection we will introduce
notation and provide context for the geometry of contact manifolds. For a more
detailed presentation, see for instance [4, 10] or [39, Ch. 2].

5.1.1. Heisenberg groups. Consider a nondegenerate antisymmetric form
L = (L jk)

d
j,k=1 on Rd . A group structure on Rd+1, with coordinates x = (t, z) ∈

R× Rd
= Rd+1, is obtained from the Lie algebra structure

[(t, z), (t ′, z′)] = (L(z, z′), 0).

The corresponding 2-step nilpotent Lie group Hd+1 with product

(t, z) · (t ′, z′) =
(
t + t ′ + 1

2 L(z, z′), z + z′
)
,

is called a Heisenberg group. It admits a Lie group action by R+,

λ · (t, z) = (λ2t, λz), (5.1)

which turns Hd+1 into a homogeneous Lie group.
In the coordinates of Rd+1, we obtain a d-dimensional subbundle H of THd+1

given by the horizontal vector fields

X j :=
∂

∂z j
+

1
2

d∑
k=1

L jk zk
∂

∂t
, j = 1, 2, . . . , d. (5.2)
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H. Gimperlein and M. Goffeng 42

The horizontal vector fields are left invariant and homogeneous of degree 1 with
respect to the R+-action. We let X0 := ∂/∂t denote the vertical vector field. The
vector fields are constructed to satisfy the commutation relation

[X j , Xk] = L jk X0.

Together with the vertical vector field, the horizontal vector fields span THd+1.

Notation. We keep using the notation n = d + 1 for the total dimension of a
Heisenberg group or a contact manifold. We use d to denote the dimension of the
horizontal subbundle H of the tangent bundle.

The Koranyi gauge

|x |H :=
4

√√√√√x2
0 +

(
d∑

j=1

x2
j

)2

for x = (x0, x1, . . . , , xd),

defines a natural length function. It satisfies |λ.x |H = λ|x |H . For x ∈ Hd+1 and
r > 0 we define the balls BH (x, r) := {y ∈ Hd+1 : |x−1 y|H < r}.

5.1.2. Sub-Riemannian H- and contact manifolds. A Heisenberg structure on a
manifold M is a hyperplane bundle H ⊆ T M . We say that M is a sub-Riemannian
H-manifold provided that H is bracket generating, in the sense that C∞(M, H)
locally generates C∞(M, T M) as a Lie algebra. The Lie bracket on H defines a
vector bundle morphism L : H ∧ H → T M/H , called the Levi form. We often
assume that we have chosen a trivialization of the line bundle T M/H . In this case
the Levi form becomes a 2-form on H . L endows the tangent space above every
point with the structure of G := Rd−2m

×H2m+1, if dim M = d + 1.
Contact manifolds provide a rich class of examples: here M is of dimension

2n − 1, and H = ker η, the kernel of a one-form η ∈ C∞(M, T ∗M) with
η ∧ (dη)n−1 nondegenerate. Note that dη is nondegenerate on H = ker η ⊆ T M ,
and recall Cartan’s formula,

dη(X, Y ) = X (η(Y ))− Y (η(X))− η([X, Y ])

for any vector fields X, Y . As dη is nondegenerate, for any X ∈ H there is a
Y ∈ H with η([X, Y ]) 6= 0. Hence, the Heisenberg structure associated with a
contact structure is bracket generating. Locally, at a point x , the Heisenberg group
structure on the tangent bundle is defined from the Levi form (dη)x restricted
to Hx .
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Nonclassical spectral asymptotics and Dixmier traces 43

In complex analysis, contact manifolds arise as the boundary M = ∂Ω of a
strictly pseudoconvex domain Ω in a complex manifold of complex dimension n.
The 1-form η = dcρ is obtained from a boundary defining function ρ.

If M is a sub-Riemannian H -manifold, a theorem by Chow assures that for any
x, y ∈ M there is a piecewise smooth path γ : [0, 1] → M such that γ (0) = x ,
γ (1) = y and γ̇ (t) ∈ Hγ (t) for almost all t ∈ [0, 1]. After a choice of Riemannian
metric on H , we define the Carnot–Carathéodory metric as follows:

dCC(x, y)

:= inf

{(∫ 1

0
‖γ̇ (t)‖2

H dt
)1/2

: γ (0) = x, γ (1) = y and γ̇ (t) ∈ Hγ (t) a.e.

}
.

(5.3)

In a coordinate chart adapted to a local frame X0, X1, . . . , Xd , where X1, . . . ,

Xd span H , the Carnot–Carathéodory metric is equivalent to the Koranyi gauge
[25, Lemma 2.6]. We define

LipCC(M) := Lip(M, dCC).

Associated with the sub-Riemannian geometry and a choice of metric on H ,
we obtain geometrically relevant differential operators. We define a sub-Laplacian
∆H by the differential expression

∆H := d∗H dH ,

where dH : C∞(M) → C∞(M, H ∗) denotes the exterior differential composed
with the fiberwise restriction C∞(M, T ∗M) → C∞(M, H ∗). In a local
orthonormal frame X1, . . . , Xd for H , ∆H = −

∑d
j=1 X 2

j plus lower order
terms in X1, . . . , Xd . If M is closed, the closure of the densely defined operator
∆H is a self-adjoint nonnegative operator with compact resolvent.

The horizontal Sobolev spaces on a sub-Riemannian manifold are defined from
the sub-Laplacian ∆H . For s > 0 and p ∈ [1,∞), we define W s,p

H (M) :=
(1 + ∆H )

−s/2 L p(M). For s < 0 and p ∈ (1,∞), the Sobolev scale is defined
using duality in the pairing between L p and L p′ , (1/p) + (1/p′) = 1. It is a
well-known fact that the Sobolev spaces can be localized, that is, defined from
sub-Laplacians in local charts. Moreover,

W 1,p
H (M) = { f ∈ L p(M) : X f ∈ L p(M) ∀X ∈ C∞(M, H)}. (5.4)

5.1.3. Heisenberg pseudodifferential operators. We briefly review a
pseudodifferential calculus adapted to a Heisenberg structure, referring to [3, 39]
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H. Gimperlein and M. Goffeng 44

for a more detailed account. Let M be a d+1-dimensional closed sub-Riemannian
H -manifold and U a local coordinate chart adapted to a local frame X0, . . . , Xd

for H . Pseudodifferential operators arise as quantizations of symbols from the
following class; see [39, Definitions 3.1.4 and 3.1.5].

DEFINITION 5.1. Let m ∈ C. The symbol space Sm(U × Rd+1) is defined as
the space of all p ∈ C∞(U × Rd+1) that admit a polyhomogeneous asymptotic
expansion of order m: for all k ∈ N there exists pk ∈ C∞(U × Rd+1

\ {0}), with
pk(x, λ · ξ) = λm−k pk(x, ξ) when λ > 0, such that for all N ∈ N and compact
K ⊆ U we have for some Cα,β,K ,N > 0:∣∣∣∣∣∂αx ∂βξ

(
p −

N∑
k=0

pk

)
(x, ξ)

∣∣∣∣∣ 6 Cα,β,K ,N |ξ |
<(m)−〈β〉−N
H ,

∀α, β ∈ Nd+1, x ∈ K , |ξ |H > 1.

Here 〈β〉 := 2β0 +
∑d

i=1 βi for β = (β0, β1, . . . , βd) ∈ Nd+1.

We denote the classical symbols of the differential operators X0, X1, . . . , Xd

by σ j(x, ξ) := σ(X j), and let σ = (σ0, σ1, . . . , σd). Using the formula

P f (x) := (2π)−d−1
∫

ei x ·ξ p(x, σ (x, ξ)) f̂ (ξ) dξ,

a symbol p ∈ Sm(U × Rd+1) induces an operator P := p(x,−i X) : C∞c (U )→
C∞(U ). We say that P ∈ Ψ m

H (U ), or P is a ΨH DO, provided P = p(x,−i X)+R
for p ∈ Sm(U × Rd+1) and R an integral operator with smooth integral kernel.

By [39, Proposition 3.1.18], Ψ m
H (U ) is invariant under changes of Heisenberg

charts. This allows to define the space Ψ m
H (M) of Heisenberg pseudodifferential

operators of order m on M . A fundamental theorem is:

THEOREM 5.2. If P ∈ Ψ 0
H (M), then P extends to a bounded operator on L2(M).

REMARK 5.3. There is a kernel characterization of operators P ∈ Ψ m
H (M) by

[3, Proposition 3.1.16]. The Schwartz kernel kP of an operator P ∈ Ψ m
H (M)

satisfies estimates similar to a Calderón–Zygmund kernel. In a local frame, kP

can be written as

kP(x, y) = |ε′x |K P(x,−εx(y))+ R(x, y),

where εx denotes privileged coordinates depending smoothly on x , R is smoothing
and K P admits a homogeneous expansion as in [3, Definitions 3.1.11 and 3.1.13].
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Nonclassical spectral asymptotics and Dixmier traces 45

The Schwartz kernel kP is smooth away from the diagonal and satisfies

|kP(x,−εx(y))| . dCC(x, y)−(d+1+m)

|Vx VykP(x,−εx(y))| . dCC(x, y)−(d+1+m+k),

for x 6= y and any products Vx and Vy of horizontal differential operators acting
on x and y, respectively, with total order k.

5.2. A Connes-type formula on the Hardy space. We will now turn to a
computation of Dixmier traces of weak trace class operators acting on the image
of a Szegö projection. We focus on the 2m−1-dimensional sphere which is given
the contact structure coming from its realization as the boundary of the open unit
ball in Cm . Any contact manifold is locally modeled on a sphere, by Darboux’
theorem. The Szegö projection P ∈ Ψ 0

H (S
2m−1) on the 2m−1-dimensional sphere

is given by

P f (z) :=
1

(2π i)m

∫
S2m−1

f (w) d S(w)
(1− z · w̄)m

.

The right hand side should be interpreted as an interior limit.

THEOREM 5.4. Assume that G ∈ L1,∞(H 2(S2m−1)) is a weakly sub-Laplacian
modulated operator with kernel kG . Then

trω(G) = lim
N→ω

1
log(N )

∫
S2m−1×S2m−1

kG(z, w) hN (1− z · w̄) dV (z) dV (w),

where

hN (t) :=
1
n!

dm−1

dtm−1

1− (1− t)N+m

t
.

REMARK 5.5. Let θ denote the contact form on S2m−1. If exp : T S2m−1
→

S2m−1
× S2m−1, we note that |1 − zw̄ − (|v|2 + iθ(v))| = O(dCC(z, w)3) and∣∣|v|2 + iθ(v)

∣∣ ∼ dCC(z, w)2 whenever exp(z, v) = (z, w) is close enough to the
diagonal. These facts raise the question of whether Theorem 5.4 holds true for
localizable sub-Laplacian modulated operators on a Hardy space for a general
contact manifold when replacing 1 − zw̄ with |v|2 + iθ(v) (for the contact form
θ ). We note that under these assumptions on G, a formula similar to that in
Theorem 5.4 can be written up on a general contact manifold once a covering
of contact coordinate charts has been made.
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H. Gimperlein and M. Goffeng 46

Proof of Theorem 5.4. Define an ON-basis for H 2(S2m−1) by eα(z) = cαzα for
α ∈ Nm where

cα :=

√
(m + |α| − 1)!
(m − 1)!α!

.

We consider the Kohn sub-Laplacian

∆K :=
∑

16 j<k6m

M jk M̄ jk + M̄ jk M jk where M jk := z̄ j
∂

∂zk
− z̄k

∂

∂z j
.

The operator ∆K is H -elliptic of order 2 and a computation shows that
∆K eα = (m − 1)|α|eα. We can by Theorem 2.18 write

trω(G) = lim
N→ω

1
m log(N )

∑
|α|6N

〈Geα, eα〉

= lim
N→ω

1
m log(N )

∫
S2m−1×S2m−1

[∑
|α|6N

c2
αzαw̄α

]
kG(z, w) dV (z) dV (w).

(5.5)

The binomial theorem implies the identity

∑
|α|6N

(m + |α| − 1)!
(m − 1)!α!

zαw̄α
=

N∑
k=0

(m + k − 1)(m + k − 2) · · · (k + 1)
(m − 1)!

(zw̄)k .

A geometric series computation shows

N∑
k=0

(m + k − 1)(m + k − 2) · · · (k + 1)
(m − 1)!

t k
=

1
(m − 1)!

dm−1

dtm−1

1− t N+m

1− t

= mhN (1− t).

These computations show
∑
|α|6N c2

αzαw̄α
= mhN (1−zw̄) and the lemma follows

from equation (5.5).

REMARK 5.6. It follows from the proof of Theorem 5.4 that the horizontal
Sobolev scale on S2m−1 satisfies that

W s
H (S

2m−1) ∩ H 2(S2m−1) =

{
f =

∑
α∈Nm

aαeα : (|α|s/2aα)α∈Nm ∈ `2(Nm)

}
.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.33
Downloaded from https:/www.cambridge.org/core. Heriot-Watt University, on 23 Jan 2017 at 15:04:19, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.33
https:/www.cambridge.org/core


Nonclassical spectral asymptotics and Dixmier traces 47

Here eα(z) := zα/‖zα‖L2(S2m−1). We note that an elementary computation with
partial derivatives shows the analogous equality in the interior of S2m−1

W s(B2m) ∩O(B2m) =

{
f =

∑
α∈Nm

aα ẽα : (|α|saα)α∈Nm ∈ `2(Nm)

}
,

where ẽα(z) := zα/‖zα‖L2(B2m ). By using polar coordinates, one sees that

ẽα|S2m−1 = (2|α| + 2m)1/2eα.

Therefore, the trace mapping induces a unitary isomorphism

W s(B2m) ∩O(B2m)→ W 2s−1
H (S2m−1) ∩ H 2(S2m−1) for all s > 1

2 .

In general, if Ω is a relatively compact strictly pseudoconvex domain in an m-
dimensional complex manifold,Ω is near the boundary locally biholomorphically
equivalent to a neighborhood of a point on S2m−1 in B2m . From the localizability
of Sobolev spaces we deduce the following proposition.

PROPOSITION 5.7. Assume that Ω is a relatively compact strictly pseudoconvex
domain in a complex manifold of complex dimension m. The trace mapping
induces an isomorphism

W s(Ω) ∩O(Ω)→ W 2s−1
H (∂Ω) ∩ H 2(∂Ω) for all s > 1

2 .

5.3. Approximation of Lipschitz functions and Wodzicki residues. In this
subsection we study Dixmier traces of operators of the form T0[T1, f1] · · ·

[Tk, fk] when the spectral asymptotics is not governed by singularities. Here T0

is a bounded operator and T1, . . . , Tk ∈ Ψ
0
H (M). By showing that the Dixmier

traces are continuous in slightly weaker norms than the Hölder norm, we extend
formulas for Dixmier traces from smooth functions by continuity to larger spaces.
In the particular case when f1, . . . , fk are Lipschitz, the smooth functions are
dense in LipCC(M) with respect to these weaker norms, and Dixmier traces can
be computed using Ponge’s Wodzicki residue in the Heisenberg calculus [38],
analogously to Theorem 2.29.

The basic idea in this subsection is to use techniques of Rochberg and
Semmes [42] to estimate singular values, and we generalize these to the sub-
Riemannian setting. The work of Feldman and Rochberg [22] extended the results
of [42] to the Szegö projection on the unit sphere—the results in this subsection
go even further.

To rephrase the results of Rochberg–Semmes for sub-Riemannian H -
manifolds, we need some further notation. Recall from Section 5.1 that a
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H. Gimperlein and M. Goffeng 48

sub-Riemannian H -manifold is locally modeled on G = Rd−2m
× H2m+1. We let

Γ = Zd−2m
× Γ2m+1 denote the standard lattice in G, that is, Γ is identified with

Zd+1 under a suitable identification of G with Rd+1. The lattice Γ2m+1 is denoted
by Γ1 = Γ(1,1,...,1) in [23]. The anisotropic scalings by λ > 0 (from equation (5.1))
will be denoted by δλ : G→ G.

We decompose G using Christ cubes; see [12]. We follow the construction
in [34, Section 2.C1]; there the construction is carried out for the Heisenberg
group but the generalization to G = Rd−2m

× H2m+1 is straightforward. The
technical details are found in [12, Section 3]. Let QC denote a Christ cube
centered at 0 ∈ G, written Q(0, α) in the notation of [34, Section 2.C1]. The
set QC is open and precompact. For a suitable re-scaling, that we suppress for
notational simplicity, the family {γQC : γ ∈ Γ } partitions G up to a set of
measure 0.

For γ ∈ Γ and β ∈ Z we define

Qγ,β := δ2β (γ ·QC) ⊆ G.

For any β, G\∪γ∈ΓQγ,β has measure zero. We write I = {Qγ,β : γ ∈ Γ, β ∈ Z}.
We often identify I with Γ × Z, and sometimes with the subset {(δ2βγ, 2β) :
γ ∈ Γ, β ∈ Z} ⊆ G× R+. The set I has the property that if Q1,Q2 ∈ I satisfy
Q1∩Q2 6= ∅, then Q1 ⊆Q2 or Q2 ⊆Q1. Moreover, for any (γ1, β1) and β2 > β1

there is a unique γ2 such that Qγ1,β1 ⊆ Qγ2,β2 . For Q = Qγ,β ∈ I we write

ξ(Q) := δ2βγ ∈ G and η(Q) := 2β ∈ R+.

We also write |Q| for the euclidean volume of Q. Note that |Q| ∼ η(Q)d+2.
Motivated by Rochberg–Semmes, we make the following definition.

DEFINITION 5.8. A sequence (eQ)Q∈I ⊆ L2(G) is called an HNWO-sequence
(Heisenberg Nearly Weakly Orthogonal) if there is a C = C((eQ)Q) > 0 such
that for any f ∈ L2(G), we have

‖ f ∗‖L2 6 C‖ f ‖L2,

where

f ∗(x) := sup
{
|〈 f, eQ〉|
|Q|1/2 : Q ∈ I s.t. |x−1ξ(Q)|H < η(Q)

}
.

We call C the HNWO-constant of (eQ)Q.

The analogous definition in the euclidean case was called an NWO-sequence
in [42]. The reader is referred to the discussion in [42] regarding the uses of
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Nonclassical spectral asymptotics and Dixmier traces 49

NWO-sequences. In [22], the holomorphic extension of the kernel of the Szegö
projection gave rise to the HNWO-sequence needed to prove estimates of singular
values.

PROPOSITION 5.9 ([42], bottom of page 239). Let (eQ)Q∈I ⊆ L2(G) be a
sequence of functions such that supp eQ ⊆ δ3(Q) for each Q and such that there
is a p > 2 with ‖eQ‖L p 6 c|Q|1/p−1/2 for each Q. Then (eQ)Q∈I ⊆ L2(G) is an
HNWO-sequence.

Proof. For Q ∈ I and h ∈ L2(G), we estimate for |x−1ξ(Q)|H < η(Q)

|Q|−1/2
|〈h, eQ〉| 6 c|Q|1/p−1

‖hχδ3(Q)‖L p/(p−1)

6 c|Q|−((p−1)/p)

(∫
δ3(Q)
|h|p/(p−1)

)(p−1)/p

6 c′M(|h|p/(p−1))(p−1)/p,

where M is the maximal function defined by

M f (x) := sup
{
|Q|−1

∫
Q
| f | : |x−1ξ(Q)|H < η(Q)

}
.

It follows from [24, Theorem 2.4.b] (or a classical ball counting argument) that M
is bounded on Lq for q > 1. Hence ‖h∗‖L2 6 c′‖M‖L2−(2/p)	‖h‖L2 , and (eQ)Q∈I
is an HNWO-sequence.

LEMMA 5.10 [42]. Let K be an integral operator on L2(G) with kernel
k = k(x, y) and p, q ∈ [1,∞].

(1) Suppose that there are two HNWO-sequences (eQ)Q∈I and ( fQ)Q∈I such
that

k(x, y) =
∑
Q∈I

λQeQ(x) fQ(y). (5.6)

Then ‖K‖Lp,q 6 C‖(λQ)Q‖`p,q (I), where C depends only on the HNWO-
sequences {eQ}Q∈I and { fQ}Q∈I .

(2) Suppose that k =
∑

k∈ZN kk, where each kk decomposes as in equation (5.6)
for sequences (λQ,k)Q∈I and two HNWO-sequences (eQ,k)Q and ( fQ,k)Q
with uniformly bounded HNWO-constants. Then there is a constant C > 0
only depending on the HNWO-sequences such that for a large enough a > 0,

‖K‖Lp,q 6 C sup
k
|k|a‖(λQ,k)Q)‖`p,q (I).
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H. Gimperlein and M. Goffeng 50

The proof of part (1) of the lemma can be found on [42, page 241] and part (2)
follows from part (1) and [42, Lemma 1.16].

LEMMA 5.11 [42, Proposition 4.1]. Let f ∈ L1
loc(G), p, q ∈ [1,∞], β > 0 and

assume that {eQ}Q∈I is an HNWO-sequence. For Q ∈ I , we define

fQ :=
1
|Q|

∫
Q

f (y) dy.

For r > 1, we set

Osc( f, r,Q) :=
[

1
|Q|

∫
Q
| f (x)− fQ|r dx

]1/r

.

The following statements are equivalent:

(1) The sequence (Osc( f, r,Q))Q belongs to `p,q(I) for all r > 1.

(2) The sequence (Osc( f, r,Q))Q belongs to `p,q(I) for r = 1.

(3) There exists a function F ∈ C1(G × R+) with lims→0 F(x, s) = f (x) and
F∗ ∈ L p,q(G× R+, s−d−3 ds dx) where

F∗(x, s) := sup
{
v|∇̃H F(u, v)| : |ux−1

|H < βs, v ∈ (s/2, s)
}
.

Here ∇̃H denotes the horizontal gradient on G× R+.

In particular, for any r > 1, there exists a constant C > 0 such that

‖(Osc( f, r,Q))Q‖`p,q (I)

6 C inf{‖F∗‖L p,q (G×R+,s−d−3 ds dx) : F ∈ C1(G× R+) with F |s=0 = f }.

The proof proceeds identically to the one of [42, Proposition 4.1], apart from
the fact that |Q| ∼ η(Q)d+2, which explains the different weight appearing in
the L p,q-space of Condition (3). Motivated by Lemma 5.11, we drop r from the
notation and write simply Osc( f,Q).

DEFINITION 5.12. We define

Oscp,q
H (G) := { f ∈ L1

loc(G) : (Osc( f,Q))Q∈I ∈ `p,q
}.

If M is a closed sub-Riemannian H -manifold, we write

Oscp,q
H (M) := { f ∈ L1

loc(M) : f belongs to Oscp,q
H in each coordinate chart}.
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Nonclassical spectral asymptotics and Dixmier traces 51

It is immediate from the construction that Oscp,q
H (G) and Oscp,q

H (M) are Banach
spaces in the norm defined from the embedding into `p,q(I). We now come to the
main technical result of this subsection.

THEOREM 5.13. If M is a closed sub-Riemannian H-manifold and Q ∈ Ψ 0
H (M)

there is a constant CQ > 0 such that for a ∈ Oscp,q
H (M) we can estimate

[Q, a] ∈ Lp,q(L2(M)) and ‖[Q, a]‖Lp,q 6 CQ‖a‖Oscp,q
H (M).

For the proof, one argues mutatis mutandis as in [42, Ch. II.A]. We only
recall its outline. The main difference is that the Calderón–Zygmund kernel kQ

of Q satisfies different estimates (see Remark 5.3) than in the Riemannian case
(see [42, Equation (2.2)]). This does not alter the structure of the proof, since the
diagonal growth behavior is dampened by the size of the cubes in [42, Lemma
2.9], as captured in the next lemma.

We form a Whitney decomposition P of G×G\Diag using Heisenberg dyadic
cubes. Here Diag := {(x, x) : x ∈ G} denotes the diagonal. The construction
of the Whitney decomposition goes as in [47, Ch. VI.1] using the dyadic
decomposition of G×G defined from the lattice Γ × Γ ⊆ G×G and its Christ
cube QC ×QC ⊆ G×G. Its main properties are that a cube Q = Q1 ×Q2 ∈ P
satisfies that Q1,Q2 ∈ I and

diam(Q1) = diam(Q2) ∼ η(Qi) ∼ distdH (Q,Diag), i = 1, 2.

Moreover, we can guarantee that there is a number N0 such that for a point
x ∈ G×G \ Diag there are at most N0 cubes Q ∈ P with x ∈ 6

5Q.
The characteristic function of a cube Q will be denoted by χQ. Let k denote

the integral kernel of Q and decompose k =
∑

Q∈P kQ, where kQ = kχQ.

LEMMA 5.14. Let k denote the Calderón–Zygmund kernel of an operator in
Ψ 0

H (M). There exists an a0 > 0 such that for a > 0 there is a constant
C = C(k) > 0 such that for any cube Q = Q1 ×Q2 ∈ P there exists:

(1) a sequence of numbers (λQ,k)k∈Z2(d+1) for which |k|a|λQ,k| 6 C,

(2) sequences of functions ( fi,Q,ki )ki∈Zd+1 on G, for i = 1, 2 such that supp fi,Q,ki

⊆ Qi and ‖ fi,Q,ki‖L∞ 6 1,

and this data relates to the kernel kQ via the identity

kQ(x, y) =
∑

k=(k1,k2)

λQ,k|Q1|
−1/2 f1,Q,k1(x)|Q2|

−1/2 f2,Q,k2(y).
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H. Gimperlein and M. Goffeng 52

The decomposition of kQ follows the idea in the proof of [42, Lemma 2.9]:
extend kQ to a smooth compactly supported function k̃Q on a 2ε-neighborhood
of Q (for ε ∼ η(Qi)/3 so small that {x : dCC(x,Q) < 3ε} does not intersect the
diagonal) by truncating k using a smooth cutoff ϕQ. The smooth cutoff ϕQ has to
satisfy ϕQ ∈ C∞c ({x : dCC(x,Q) < 2ε}), ϕQ|Q = 1 and that |∂βϕQ| . η(Q1)

−〈β〉.
As above, 〈β〉 := 2β0 +

∑d
i=1 βi for β = (β0, β1, . . . , βd) ∈ Nd+1.

We expand k̃Q in a double Fourier series on a large enough euclidean cube,

k̃Q(x, y) =
∑

k=(k1,k2)

λQ,k|Q1|
−1/2eeeQ,k1(x)|Q2|

−1/2eeeQ,k2(y),

where eee1,Q,k1 and eee2,Q,k2 are complex exponentials for k1,k2 ∈ Z2. Since k̃Q is
smooth, standard estimates show that the coefficients (λQ,k)k∈I×I of k̃Q in this
expansion satisfy that for a > 0 there is a constant C > 0 (depending on k and a)
such that |k|a|λQ,k| 6 C . We arrive at the conclusion of the lemma once setting

fi,Q,ki = eQ,kiχQi .

Note that by Proposition 5.9, the sequences (|Qi |
−1/2 fi,Q,k)Qi form HNWO-

sequences with uniformly bounded HNWO-constant. The argument to prove
Theorem 5.13 now proceeds as in [42, page 252–253]. We can write the integral
kernel of [Q, a] as∑

Q∈P

∑
k∈Zd+1

λQ,k|Q|−1/2(a(x)− aQ1) f1,Q,k(x) f2,Q,k(y)

+

∑
Q∈P

∑
k∈Zd+1

λQ,k|Q|−1/2 f1,Q,k(x)(aQ1 − a(y)) f2,Q,k(y).

The HNWO-constants of the sequences appearing compare to the oscillation
numbers of a as in [42, page 252], and the cubes in the Whitney decomposition
P compare with the cubes in the dyadic decomposition I as in [42, page 253].

REMARK 5.15. In [42], there are also sufficient conditions on the integral kernel
of an operator Q which guarantee that [Q, a] ∈ Lp,q(L2(M)) implies that
a ∈ Oscp,q(M) (in the Riemannian setting). We note that since Lp,q is an operator
ideal, the space {a : [Q, a] ∈ Lp,q(L2(M))} forms a Banach ∗-algebra. Therefore,
Oscp,q(M) is a Banach ∗-algebra. As this line of questions is not relevant for the
computation of Dixmier traces, we do not pursue it here.

To apply Theorem 5.13, of course, the main issue is to identify the spaces
Oscp,q

H (M) and understand their topology. Based on the discussion in [42, Ch. 4],
one is lead to suspect that Oscp,q

H (M) coincides with asub-Riemannian Besov-type
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space if p > d+2 or q <∞. However, it is unclear what the correct definition of
Besov spaces is in the sub-Riemannian setting. We will be interested in the case
p = d+2 and q =∞. Here the results of [18, Appendix] lead one to believe that
Oscd+2,∞

H (M) coincides with W 1,d+2
H (M). We only require one of these inclusions.

PROPOSITION 5.16. There is a bounded inclusion W 1,d+2
H (M) ↪→ Oscd+2,∞

H (M).

The horizontal Sobolev spaces were defined on page 43 and the space W 1,p
H (M)

in equation (5.4). The Riemannian analogue of Proposition 5.16 was proved
in [41, page 228].

Proof. By localizing and using a density argument, we may reduce the proof to
showing the following; for f ∈ W 1,d+2

H (G) ∩ C1
c (G), an estimate of the form

‖ f ‖Oscd+2,∞ 6 C‖ f ‖W 1,d+2
H

holds. We define

F(x, s) := f (x)

and estimate F∗(x, s) 6 s|∇H f (x)|, where ∇H denotes the horizontal gradient
on G. We compute that

m{(x, s) : s|∇H f (x)| > u} =
∫

s|∇H f (x)|>u

∫
s−d−3 ds dx

=
1

d + 2

∫
|∇H f (x)|d+2u−d−2 dx =

‖|∇H f |‖Ld+2

d + 2
u−d−2

6
‖ f ‖W 1,d+2

H

d + 2
u−d−2.

Therefore ‖F∗‖L p,q (G×R+,s−d−3 ds dx) 6 C‖ f ‖W 1,d+2
H

and the proposition follows from
the concluding remark of Lemma 5.11.

THEOREM 5.17. Let M be an n-dimensional sub-Riemannian H-manifold and
T0, T1, . . . , Tn+1 ∈ Ψ

0
H (M). Consider the two n + 1-linear mappings

C∞(M)⊗n+1
3 a1 ⊗ · · · ⊗ an+1 7→ d(2π)d trω(T0[T1, a1] · · · [Tn+1, an+1]), (5.7)

C∞(M)⊗n+1
3 a1 ⊗ · · · ⊗ an+1 7→WResH (T0[T1, a1] · · · [Tn+1, an+1]). (5.8)

The two n + 1-linear functionals in (5.7) and (5.8) coincide and are both
continuous in the W 1,n+1

H -topology. Moreover, for a1, . . . , an+1 ∈ W 1,n+1
H (M)

trω(T0[T1, a1] · · · [Tn+1, an+1]) =WResH (T0[T1, a1] · · · [Tn+1, an+1]).

In particular, T0[T1, a1] · · · [Tn+1, an+1] is measurable for a1, . . . , an+1 ∈

LipCC(M).
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Here WResH denotes Ponge’s Wodzicki residue in the Heisenberg calculus
(see [38]). The proof proceeds exactly as the one of Theorem 2.29 and is left
to the reader. Using Theorem 5.17, we can extend a computation of Englis and
Zhang [20] to a larger class of functions.

COROLLARY 5.18. Suppose that M is an n-dimensional contact manifold and
that PM ∈ Ψ

0
H (M) is a Szegö projection. For any a1, . . . , an+1 ∈ W 1,n+1

H (M) we
have the equality

trω ([PMa1 PM , PMa2 PM ] · · · [PMan PM , PMan+1 PM ])

=
1

n!(2π)n

∫
∂Ω

L∗(∂̄ba1, ∂̄ba2) · · ·L∗(∂̄ban, ∂̄ban+1) dVθ ,

where ∂̄b denotes the boundary ∂̄-operator, L∗ the dual Levi form and dVθ the
volume form associated with the contact structure.
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