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A TREFFTZ POLYNOMIAL SPACE-TIME DISCONTINUOUS
GALERKIN METHOD FOR THE SECOND ORDER WAVE

EQUATION∗

LEHEL BANJAI† , EMMANUIL H. GEORGOULIS‡ , AND OLUWASEUN LIJOKA§

Abstract. A new space-time discontinuous Galerkin (dG) method utilizing special Trefftz poly-
nomial basis functions is proposed and fully analyzed for the scalar wave equation in a second order
formulation. The dG method considered is motivated by the class of interior penalty dG methods,
as well as by the classical work of Hughes and Hulbert [Comput. Methods Appl. Mech. Engrg., 66
(1988), pp. 339–363; Comput. Methods Appl. Mech. Engrg., 84 (1990), pp. 327–348]. The choice of
the penalty terms included in the bilinear form is essential for both the theoretical analysis and for
the practical behavior of the method for the case of lowest order basis functions. A best approxi-
mation result is proven for this new space-time dG method with Trefftz-type basis functions. Rates
of convergence are proved in any dimension and verified numerically in spatial dimensions d = 1
and d = 2. Numerical experiments highlight the effectivness of the Trefftz method in problems with
energy at high frequencies.
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1. Introduction. The use of nonpolynomial basis functions in the context of
finite element methods dates back at least to the early 1980s [3]. In recent years,
there has been much interest in using nonpolynomial basis functions to discretize
wave propagation problems in the frequency domain [8, 25]. A prominent example is
the use of plane wave bases to solve the Helmholtz equation at high frequencies. The
motivation behind this approach is to reduce the number of degrees of freedom per
wavelength required to obtain accurate results. Thus obtained, Trefftz methods have
proved very successful in practice, hence it is a natural question to ask whether they
can be extended and whether they can be equally successful in the time domain.

The most natural way of including space-time Trefftz basis functions is within
the confines of a space-time discontinuous Galerkin (dG) method. In this work, we
construct and analyze a new space-time interior penalty dG method for the second
order wave equation, that can utilize Trefftz polynomials as local basis functions. The
method discretizes the wave equation in primal form and is defined using space-time
slabs to ensure solvability on each time step, as well as to aid the presentation and
the analysis. However, with minor modifications, completely unstructured space-time
meshes are, in principle, possible in the proposed space-time dG framework. This
results in a stable, dissipative scheme for general polynomial bases. For Trefftz basis,
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we prove quasi-optimality in the dG energy norm, which we show to be an upper
bound for a standard space-time energy norm. Numerical results in the dG norm
show that the theoretical estimates of the convergence order are optimal. Further-
more, the numerical results show that higher order schemes have excellent energy
conservation properties and work well for systems with energy at high frequencies.
Comparison with standard polynomial bases show that the same convergence order
and approximation properties are obtained with considerably fewer degrees of free-
dom. Furthermore, the implementation is less expensive due to integration being
restricted to the space-time skeleton.

Space-time variational methods for wave-type problems have appeared in the late
1980s with the works of Hughes and Hulbert [17, 18] and Johnson [19]. First numerical
experiments with Trefftz space-time dG methods were performed in [27]. Currently
there is significant activity on the topic [12, 20, 13, 24, 21]. In particular in [12, 20]
a Trefftz space-time local dG method for the Maxwell equations, written as a first
order system, resulting in a two-field formulation, has been analyzed. The dG method
designed and analyzed in the present work involves interior-penalty-type numerical
fluxes in space, resulting in a one-field approximation in space, as well as a one-field
dG method in time, with very similar computational stencil widths compared to the
local dG method introduced in [20].

Typically, finite element methods for linear (and some spatially nonlinear) wave
problems are based on a continuous or discontinuous finite element discretization of
the spatial variables complemented with standard time-stepping schemes, the most
popular of which are explicit, such as the leapfrog scheme, due to the acceptable CFL
restrictions. Though even the low order methods can be conservative, for accept-
able accuracy when energies at high frequencies are excited, higher order methods
are essential [9, 2, 1]. Compared to these methods, introduction of higher order
approximations is much more straightforward in the context of space-time dG meth-
ods. Moreover, space-time dG methods, such as the one presented below, do not
require any CFL-type restrictions, owing to their implicit time-stepping interpreta-
tion. If a general space-time mesh can be used, a judicious choice of the mesh can
result in a quasi-explicit method where only small local systems need to be solved
[14, 26].

The remainder of this work is structured as follows. In the next section, we
introduce the model problem. In sections 3 and 4 we construct the space-time inte-
rior penalty method and we show its stability. We proceed in section 5 to analyze
polynomial Trefftz spaces and prove quasi-optimality. Finally in section 6, we prove
convergence rates for the d-dimensional method in space, d = 1, 2, 3; moreover, we
also provide hp-version a priori bounds for d = 1. A series of numerical experiments
in section 7, illustrates the theoretical findings and highlights the good performance
of the proposed method in practice.

2. Model problem. We consider the wave equation

(2.1)

ü−∇ · (a∇u) = 0 in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],

u(x, 0) = u0(x), u̇(x, 0) = v0(x) in Ω,

where Ω is a bounded Lipschitz domain in Rd, ∂Ω its boundary, and 0 < ca <
a(x) < Ca a piecewise constant function. If Ωj and Ωk are two subsets of Ω with the
boundary Γjk separating them and with a ≡ ak in Ωk and a ≡ aj in Ωj , then if we
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denote uj = u|Ωj and uk = u|Ωk we further have the transmission conditions

(2.2) uj = uk, aj∂nuj = ak∂nuk on Γjk,

where n is the exterior normal to Ωj (or Ωk).
We denote by Lp(Σ), 1 ≤ p ≤ +∞, the standard Lebesgue spaces, Σ ⊂ Rd, d ∈

{2, 3, 4}, with corresponding norms ‖·‖p,Σ; the norm of L2(Σ) will be denoted by ‖·‖Σ.
Further, (·, ·)Σ denotes the standard L2-inner product on Σ; when the arguments are
vectors of L2-functions, the L2-inner product is modified in the standard fashion. We
denote by Hs(Σ) the standard Hilbertian Sobolev space of index s ∈ R of real-valued
functions defined on Σ ⊂ Rd; in particular, H1

0 (Σ) signifies the space of functions
in H1(Σ) whose traces onto the boundary ∂Σ vanish. For 1 ≤ p ≤ +∞, we denote
the standard Bochner spaces by Lp(0, T ;X), with X being a Banach space with
norm ‖ · ‖X . Finally, we denote by C(0, T ;X) the space of continuous functions
v : [0, T ]→ X with norm ‖v‖C(0,T ;X) := max0≤t≤T ‖v(t)‖X < +∞.

Let u0 ∈ H1
0 (Ω) and v0 ∈ L2(Ω), then (2.1) has a unique (weak) solution u with

(2.3) u ∈ L2([0, T ];H1
0 (Ω)), u̇ ∈ L2([0, T ];L2(Ω)), ü ∈ L2([0, T ];H−1(Ω));

see [22, Theorem 8.1]. Furthermore (see [22, Theorem 8.2]), the solution is continuous
in time with

(2.4) u ∈ C([0, T ];H1
0 (Ω)), u̇ ∈ C([0, T ];L2(Ω)).

We denote the space of all solutions by

(2.5) X =
{
u | u weak solution of (2.1), (2.2) with u0 ∈ H1

0 (Ω), v0 ∈ L2(Ω)
}
.

3. Space-time finite element space. We aim to discretize this problem by a
new space-time interior penalty dG method. In principle, this could be done on a
general space-time mesh, however for the simplicity of presentation (and implemen-
tation) we construct a time discretization 0 = t0 < t1 < · · · < tn · · · < tN = T and
locally quasi-uniform spatial meshes Tn of Ω consisting of open d-dimensional sim-
plices or d-box-type elements such that Ω = ∪K∈TnK with K ∩ K̃ = ∅ for K, K̃ ∈ Tn
and K 6= K̃. Therefore the space-time mesh consists of time slabs Tn × In, where
In = (tn, tn+1) and τn := tn+1 − tn.

The discrete space-time mesh will consist of piecewise polynomials on each time
slab, given by the local space-time finite element space

Sh,pn :=
{
u ∈ L2(Ω× In) : u|K×In ∈ Pp(Rd+1), K ∈ Tn

}
,

where Pp is the space of polynomials of total degree p; the complete space-time finite
element space on Ω× [0, T ] will be denoted by

V h,p := {u ∈ L2(Ω× [0, T ]) : u|Ω×In ∈ Sh,pn , n = 0, 1, . . . , N − 1}.

We require some notation. The skeleton of the mesh is defined by Γn := ∪K∈Tn∂K
and the interior skeleton by Γint

n = Γn \ ∂Ω. Moreover, we define the union of two
skeletons of two subsequent meshes by Γ̂n := Γn−1 ∪ Γn; see Figure 1.

Remark 1. The numerical method presented below naturally admits variable spa-
tial meshes from one space-time slab to the next. This flexibility will be crucial for
future developments in the context of space-time adaptive dG methods, aiming to use
local spatiotemporal resolution to resolve sharp moving fronts. If the spatial mesh
remains fixed, all the formulas hold with Γ = Γn = Γ̂n for all n.
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Fig. 1. An example of a space-time mesh. Skeletons Γn and Γn−1 are highlighted by black dots.

The union of the two we denote by Γ̂n.

Let K+ and K− be two spatial elements sharing a face e = K̄+ ∩ K̄−⊂Γint
n with

respective outward normal vectors n+ and n− on e. For u : Ω→ R and v : Ω→ Rd,
let u± : e → R and v± : e → Rd be the traces on e with limits taken from K±. We
define the respective jumps and averages across each face e ∈ Γint

n by

{u} |e = 1
2 (u+ + u−), {v} |e = 1

2 (v+ + v−),

[u] |e = u+n+ + u−n−, [v] |e = v+ · n+ + v− · n−;

if e⊂ K+∩∂Ω, we set {v} |e = v+ and [u] |e = u+n+. Further, we define the temporal
jump by

Ju(tn)K = u(t+n )− u(t−n ), Ju(t0)K = u(t+0 ).

We will denote the spatial mesh size by h : Ω × [0, T ] → R, defined by h(x, t) =
diam(K) if x ∈ K for K ∈ Tn and t ∈ In; when x ∈ e = K̄+∩K̄−, we set h(x, t) := {h}
to be the average. Finally we assume that there exists cT > 0 such that

(3.1) diam(K)/ρK ≤ cT ∀K ∈ Tn, n = 0, 1, . . . , N − 1,

where ρK is the radius of the inscribed circle of K.
For simplicity of the presentation only of the a priori error bounds below, we

shall later make a shape-regularity assumption on the space-time mesh (cf., Assump-
tion 13). We stress, however, that the stability results presented below do not depend
on Assumption 13 and, therefore, the numerical method proposed below is uncondi-
tionally stable for any choice of spatial and temporal mesh sizes. Indeed, an important
advantage in using such space-time methods is that they do not require any CFL-type
restrictions.

Finally, the broken spatial gradient will be denoted by ∇nv, given by (∇nv)|K :=
(∇v)|K for all K ∈ Tn and a v ∈ C(In;H1

0 (Ω)) + Sh,pn ; collectively, we shall denote

the broken gradient by ∇̃v defined as (∇̃v)|Ω×In := (∇nv)|Ω×In , n = 0, . . . , N −1, for

v ∈ C(
∏N−1
n=0 I̊n;H1

0 (Ω)) + V h,p, i.e., v is allowed to be discontinuous both in space
and in time.
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4. A space-time dG method. To derive the weak form suitable for dG dis-
cretization we will follow an energy argument. We start by assuming that u is a
smooth enough solution of (2.1) and let v ∈ X + V h,p. The standard symmetric
interior penalty dG weak formulation on the time slab In when tested with v̇, is given
by

(ü, v̇)Ω×In + (a∇̃u, ∇̃v̇)Ω×In − ({a∇u} , [v̇])Γn×In

− ([u] , {a∇v̇})Γn×In + (σ0 [u] , [v̇])Γn×In = 0,
(4.1)

where

(4.2) σ0(x, t) = Cσ0p
2(h(x, t))−1

for a positive constant Cσ0 to be made precise later. This motivates the following
definition of discrete energy Eh(t, v) at time t ∈ In for v ∈ X + V h,p:

Eh(t, v) := 1
2‖v̇(t)‖2Ω + 1

2‖
√
a∇̃v(t)‖2Ω + 1

2‖
√
σ0 [v(t)] ‖2Γn − ({a∇v(t)} , [v(t)])Γn

.

Using the classical inverse inequality ‖v‖2∂K ≤ Cinvp
2|∂K|/|K|‖v‖2K , for all v ∈

Pp(K), (see, e.g., [11, 28]) we see that

2

∫
Γn

| {a∇v(t, s)} |2ds ≤ C2
a

∑
K∈Tn

∫
∂K

|∇v(t, s)|2ds

≤
∑
K∈Tn

C2
aCinvp

2|∂K|
|K|

∫
K

|∇v(t, x)|2dx

≤
∑
K∈Tn

cT C
2
aCinvp

2

cahK

∫
K

|
√
a∇v(t, x)|2dx.

Hence, if the penalization parameter Cσ0 is chosen large enough, in particular,

(4.3) Cσ0 ≥ cT C2
aCinv/ca,

suffices, we have that

| ({a∇v(t)} , [v(t)])Γn
| ≤ 1

2‖
√
σ0 [v(t)] ‖2Γn + 1

2

∫
Γn

σ−1
0 | {a∇v(t, s)} |2ds

≤ 1
2‖
√
σ0 [v(t)] ‖2Γn + 1

4‖
√
a∇̃v(t)‖2Ω,

(4.4)

ensuring the nonnegativity of the energy Eh(t, v) for functions in V h,p:

Eh(t, v) ≥ 1
2‖v̇(t)‖2Ω + 1

4‖
√
a∇̃v(t)‖2Ω for all v ∈ X + V h,p.

Choosing as test function v = u in (4.1) and summing over n, we obtain

0 =

N−1∑
n=0

∫
In

d

dt

(
1
2‖u̇‖

2
Ω + 1

2‖
√
a∇̃u‖2Ω − ({a∇u} , [u])Γn

+ 1
2‖
√
σ0 [u]‖2Γn

)
dt

= Eh(t−N , u)− Eh(t+0 , u)−
N−1∑
n=1

JEh(tn, u)K.
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In order to allow for discontinuities in time, the formulation (4.1) needs to be modified
(in a consistent fashion) to control the terms JEh(tn, u)K that have no sign. To this
end, we shall use the elementary algebraic identity

−Jf(u(tn))g(u(tn))K + Jf(u(tn))Kg(u(t+n )) + Jg(u(tn))Kf(u(t+n ))

= Jf(u(tn))KJg(u(tn))K
(4.5)

for some scalar quantities f, g which may, in general, be discontinuous across tn.
The idea here is to add terms that change the jump of a product to the product
of jumps in the above energy identity, without compromising its consistency. For
instance, to (ü, v̇)Ω×In in (4.1) we add the extra term (Ju̇(tn)K, v̇(t+n ))Ω. For n > 0,
this does not change the consistency of (4.1) with respect to (2.1) in weak form, as
the smoothness assumptions on the initial data ensure that the exact solution satisfies
u̇ ∈ C([0, T ];L2(Ω)); for n = 0, we have by the initial condition u̇(t0) = v0 that

(
Ju̇(t0)K, v̇(t+0 )

)
Ω

=
(
u̇(t+0 ), v̇(t+0 )

)
Ω

=
(
v0, v̇(t+0 )

)
Ω
.

Hence, for consistency, we add the term
(
u̇0, v̇(t+0 )

)
Ω

to the right-hand side also. Using
(4.5) now, for u = v = w with w a piecewise sufficiently smooth function, we have

N−1∑
n=0

(ẅ, ẇ)Ω×In +
(
Jẇ(tn)K, ẇ(t+n )

)
Ω

= 1
2‖ẇ(t−N )‖2Ω +

N−1∑
n=0

(
Jẇ(tn)K, ẇ(t+n )

)
Ω
− J 1

2‖ẇ(tn)‖2ΩK

= 1
2‖ẇ(t−N )‖2Ω + 1

2‖ẇ(t+0 )‖2Ω + 1
2

N−1∑
n=1

‖Jẇ(tn)K‖2Ω

with the additional terms contributing to energy dissipation leading to a stable method.
Completely analogous considerations lead to addition of corresponding terms to treat
the second and the last terms on the left-hand side of (4.1). For the remaining
third and fourth terms on the left-hand side of (4.1), we include the additional terms

−(J{a∇̃u(tn)}K, [v(t+n )])Γ̂n
and −(J[u(tn)]K, {a∇v(t+n )})Γ̂n

; note that these again do

not change the consistency due to both u ∈ C([0, T ];H1
0 (Ω)) and (2.2). The use of

Γ̂n = Γn−1 ∪ Γn in the last terms also merits a brief explanation: since we assume
that both the solution and its spatial flux are continuous within a space-time element
K × In, K ∈ Tn, it follows that

({a∇u} , [v̇])Γn×In = ({a∇u} , [v̇])Γ̂n×In and ([u] , {a∇v̇})Γn×In = ([u] , {a∇v̇})Γ̂n×In .

For consistency, the terms −({a∇u0}, [v(t+0 )])Γ0
− ([u0],

{
a∇v(t+0 )

}
)Γ0

are also added
to the right-hand side of (4.1). The above identity can again be used to show that

we will have terms of the type (J{a∇̃u(tn)}K, J[u(tn)]K)Γ̂n
in the energy identity; these

do not have a sign but can be bounded by the other terms in the energy using
(4.4).
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In view of the above considerations, we can now state the space-time weak for-
mulation of our method:
(4.6)

N−1∑
n=0

(ü, v̇)Ω×In +
(
Ju̇(tn)K, v̇(t+n )

)
Ω

+
(
a∇̃u, ∇̃v̇

)
Ω×In

+
(
Ja∇̃u(tn)K, ∇̃v(t+n )

)
Ω

− ({a∇u} , [v̇])Γn×In −
(
J
{
a∇̃u(tn)

}
K,
[
v(t+n )

])
Γ̂n

− ([u] , {a∇v̇})Γn×In −
(
J[u(tn)]K,

{
a∇v(t+n )

})
Γ̂n

+ (σ0 [u] , [v̇])Γn×In +
(
σ0J[u(tn)]K,

[
v(t+n )

])
Γ̂n

+ (σ1 [u] , [v])Γn×In + (σ2 [a∇u] , [a∇v])Γn×In = binit(v),

where binit is given by

(4.7)
binit(v) :=

(
v0, v̇(t+0 )

)
Ω

+
(
a∇̃u0, ∇̃v(t+0 )

)
Ω
−
(
{a∇u0} ,

[
v(t+0 )

])
Γ0

−
(
[u0] ,

{
a∇v(t+0 )

})
Γ0

+
(
σ0 [u0] ,

[
v(t+0 )

])
Γ0
.

Note that the last two terms in the definition of binit are zero if the initial data are
continuous in space. The terms with positive penalty parameters σ1 and σ2 in the
weak formulation (4.6) do not affect the consistency of the weak formulation; the need
for their inclusion in the method will become apparent in the convergence analysis.

Although the choice of σ0, σ1, and σ2 will only become evident in the analysis,
for easy referral we state the choice of the stabilization parameters σ0, σ1, and σ2

here also: σ0 is chosen as (4.2), (see also (4.3)) and we set

σ1|∂K∩Γn×In = Ca
p3

hτn
, σ2 =

h

Caτn
.

Thus, we arrive at a space-time discrete method, which can be thought of in two
ways: as a method for obtaining a discrete solution on a fixed space-time domain Ω×
[0, T ], or as a time-stepping method. The former viewpoint will be useful in obtaining
convergence estimates, while the latter in implementing the method. Consequently,
we define the following three bilinear forms to describe these two viewpoints:

(4.8)

an(u, v) := (ü, v̇)Ω×In +
(
u̇(t+n ), v̇(t+n )

)
Ω

+
(
a∇̃u, ∇̃v̇

)
Ω×In

+
(
a∇̃u(t+n ), ∇̃v(t+n )

)
Ω

− ({a∇u} , [v̇])Γn×In −
({
a∇u(t+n )

}
,
[
v(t+n )

])
Γn

− ([u] , {a∇v̇})Γn×In −
([
u(t+n )

]
,
{
a∇v(t+n )

})
Γn

+ (σ0 [u] , [v̇])Γn×In +
(
σ0

[
u(t+n )

]
,
[
v(t+n )

])
Γn

+ (σ1 [u] , [v])Γn×In + (σ2 [a∇u] , [a∇v])Γn×In ,
(4.9)

bn(u, v) :=
(
u̇(t−n ), v̇(t+n )

)
Ω

+
(
a∇̃u(t−n ), ∇̃v(t+n )

)
Ω
−
({
a∇u(t−n )

}
,
[
v(t+n )

])
Γn

−
([
u(t−n )

]
,
{
a∇v(t+n )

})
Γn−1

+
(
σ0

[
u(t−n )

]
,
[
v(t+n )

])
Γ̂n
,

and

(4.10) a(u, v) :=

N−1∑
n=0

an(u, v)−
N−1∑
n=1

bn(u, v),

which just gives the left-hand side in (4.6).
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Definition 2. Given subspaces Xn ⊆ Sh,pn , the time-stepping method is described
by find un ∈ Xn, n = 1, 2, . . . , N − 1, such that

(4.11) an(un, v) = bn(un−1, v) for all v ∈ Xn

and

(4.12) a0(u0, v) = binit(v) for all v ∈ X0.

Equivalently, given a subspace X ⊆ V h,p, the full space-time discrete system can be
presented as find u ∈ X such that

(4.13) a(u, v) = binit(v) for all v ∈ X.

Lemma 3. The following identities hold for any w ∈ X + V h,p:

(4.14) an(w,w) = Eh(t−n+1, w) + Eh(t+n , w) + ‖
√
σ1 [w]‖2Γn×In + ‖

√
σ2 [a∇w]‖2Γn×In

for n = 0, 1, . . . , N − 1, and

a(w,w) = Eh(t−N , w) + Eh(t+0 , w)

+

N−1∑
n=1

(
1
2‖Jẇ(tn)K‖2Ω + 1

2‖
√
aJ∇̃w(tn)K‖2Ω

−
(
J
{
a∇̃w(tn)

}
K, J[w(tn)]K

)
Γ̂n

+ 1
2‖J
√
σ0 [w(tn)]K‖2

Γ̂n

)
+

N−1∑
n=0

(
‖
√
σ1 [w]‖2Γn×In + ‖

√
σ2 [a∇w]‖2Γn×In

)
.

(4.15)

Proof. The identities follow from the definitions of the bilinear forms and the
energy Eh(t, w).

Next we investigate the consistency and stability of the discrete scheme.

Theorem 4 (consistency and stability). Let the space V h,p be given. Then, the
following statements hold:

1. Let u be the weak solution of (2.1), (2.2), with u0 ∈ H1
0 (Ω) and v0 ∈ L2(Ω).

Then u satisfies (4.13).
2. For Cσ0

satisfying (4.3) and for any v ∈ V h,p and t ∈ (0, T ), the energy
Eh(t, v) is bounded from below by

(4.16) Eh(t, v) ≥ 1
2‖v̇(t)‖2Ω + 1

4‖
√
a∇̃v(t)‖2Ω.

Further, if X is a subspace of V h,p and U ∈ X is the discrete solution, i.e.,
satisfies (4.13), then Eh(t−N , U) ≤ Eh(t−1 , U).

Proof. Statement 1 follows from the derivation of the formulation and the reg-
ularity of the unique solution u; see (2.3) and (2.4). We have already shown the
positivity of the energy under the condition on Cσ0

; see (4.4).
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To prove the remaining statement we proceed as follows. Combining (4.13) with
(4.15) gives the energy identity

Eh(t−N , U) = binit(U)− Eh(t+0 , U)−
N−1∑
n=1

1
2‖JU̇(tn)K‖2Ω + 1

2‖
√
aJ∇̃U(tn)K‖2Ω

+

N−1∑
n=1

(
J
{
a∇̃U(tn)

}
K, J[U(tn)]K

)
Γ̂n
− 1

2‖
√
σ0J[U(tn)]K‖2

Γ̂n

−
N−1∑
n=0

‖
√
σ1 [U ]‖2Γn×In −

N−1∑
n=0

‖
√
σ2 [a∇U ]‖2Γn×In .

(4.17)

Expression (4.14) implies that

a0(U,U) = Eh(t−1 , U) + Eh(t+0 , U) + ‖
√
σ1 [U ]‖2Γ0×I0 + ‖

√
σ2 [a∇U ]‖2Γ0×I0 = binit(U).

Hence, the energy identity (4.17) can be written as

Eh(t−N , U) = Eh(t−1 , U)

−
N−1∑
n=1

(
1
2‖JU̇(tn)K‖2Ω + 1

2‖
√
aJ∇̃U(tn)K‖2Ω

−
(
J
{
a∇̃U(tn)

}
K, J[U(tn)]K

)
Γ̂n

+ 1
2‖
√
σ0J[U(tn)]K‖2

Γ̂n

+ ‖
√
σ1 [U ]‖2Γn×In + ‖

√
σ2 [a∇U ]‖2Γn×In

)
.

(4.18)

Arguments used to prove the nonnegativity of the discrete energy (4.4) also show that
the above equality implies that the discrete energy decreases at each time step.

5. Polynomial Trefftz spaces. We shall consider the discrete space of local
polynomial solutions to the wave equation, where we make an additional assumption
on the mesh and on a(x) that allows us to define the Trefftz spaces. Such polynomial
spaces have already appeared in the literature; see, for example, [20, 23, 29].

Assumption 5. Let the diffusion coefficient a(·) and the mesh be such that a(·) is
constant in each element K ∈ Tn for each n.

Definition 6 (polynomial Trefftz spaces). Let Sh,pn,Trefftz ⊆ Sh,pn be a subspace of
functions satisfying the homogeneous wave equation on any space-time element K×In:

Sh,pn,Trefftz :=
{
v ∈ Sh,pn : v̈(t, x)−∇ · (a∇v) (t, x) = 0, t ∈ In, x ∈ K, K ∈ Tn

}
.

The space on Ω× [0, T ] is then defined as

V h,pTrefftz =
{
u ∈ L2(Ω× [0, T ]) : u|Ω×In ∈ S

h,p
n,Trefftz, n = 0, 1 . . . , N − 1

}
⊆ V h,p.

Polynomial plane waves are examples of functions in this space

(t+ a−1/2α · x)j , |α| = 1, α ∈ Rd, j ∈ {0, . . . , p}.

Proposition 7. The local dimension of the Trefftz space in Rd is given by

dim(Sh,pn,Trefftz(K)) =

 2p+ 1, d = 1,
(p+ 1)2, d = 2,

1
6 (p+ 1)(p+ 2)(2p+ 3), d = 3.
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Proof. The proof for d = 1 is clear. For d = 3 in [29] it is shown that the
dimension of the space of Trefftz, homogeneous polynomials of degree j is (j + 1)2,
hence the total dimension is given by

p∑
j=0

(j + 1)2 = 1
6 (p+ 1)(p+ 2)(2p+ 3).

The case d = 2 is proved similarly by noticing that the dimension of the space of
Trefftz, homogeneous polynomials of degree j is 2j + 1.

Example 1. In two dimensions, with a constant, scalar diffusion coefficient a > 0,
the following is a basis for Sh,pn,Trefftz with p = 3:{

1, t, x, y, tx, ty, xy, at2 + x2, at2 + y2,

xyt, at3 + 3x2t, x3 + 3at2x, y3 + 3at2y, (at2 + x2)y, (at2 + y2)x, (x2 − y2)t
}
.

5.1. Existence and uniqueness. Next we prove that the dG energy norm is
indeed a norm on the subspace of Trefftz polynomials. This also includes piecewise
linear polynomials as V h,pTrefftz = V h,p for p = 1.

Proposition 8. With the choice of Cσ0 as in (4.3) and σ1, σ2 > 0, bilinear forms
an(·, ·) and a(·, ·) give rise to two seminorms

|||v|||n :=
(
an(v, v)

)1/2
, v ∈ Sh,pn ,

and
|||v||| :=

(
a(v, v)

)1/2
, v ∈ V h,p.

These are in fact norms on Trefftz subspaces Sh,pn,Trefftz and V h,pTrefftz.

Proof. Recalling (4.14) and using (4.16), we deduce that |||v|||2n ≥ 0 and is hence
a seminorm.

Suppose |||v|||n = 0 for v ∈ Sh,pn,Trefftz. Then, a∇v and v have no jumps across the
space skeleton and hence v is a weak solution of the homogeneous wave equation on
Ω×In with zero initial and boundary conditions. Uniqueness implies v ≡ 0 and hence
that |||·|||n is a norm on this space.

The analysis of |||·||| is similar recalling (4.15), which shows that |||·||| is a semi-
norm if the stabilization parameter is chosen correctly. Proceeding as in the first case,
shows that it is in fact a norm on the Trefftz spaces.

Corollary 9. Under the conditions of the above proposition and with initial
data u0 ∈ H1

0 (Ω), v0 ∈ L2(Ω), the discrete system (4.13) with X = V h,pTrefftz has a
unique solution.

Proof. The uniqeness of the solution to (4.13) over the Trefftz space X = V h,pTrefftz

follows from a(·, ·) being a norm on this space. Existence of the solution to the linear
system follows from uniqueness.

Next, we present the convergence analysis of the Trefftz-based method.

5.2. Convergence analysis. We shall now establish the quasi-optimality of the
proposed method.

Proposition 10. Let w ∈ X + V h,pTrefftz and v ∈ V h,pTrefftz, then

|a(w, v)| ≤ C?|||w|||?|||v|||
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for some constant C? > 0 and

|||w|||2?

= 1
2

N∑
n=1

(
‖ẇ(t−n )‖2Ω + ‖

√
a∇w(t−n )‖2Ω + ‖

√
σ0

[
w(t−n )

]
‖2Γn + ‖σ−1/2

0

{
a∇w(t−n )

}
‖2Γn
)

+

N−1∑
n=0

(
‖
√
σ1 [w]‖2Γn×In + ‖

√
σ2 [a∇w]‖2Γn×In + ‖σ−1/2

2 {ẇ}‖2Γint
n ×In

+ ‖σ−1/2
1 {a∇ẇ}‖2Γn×In + ‖σ0σ

−1/2
1 [ẇ]‖2Γn×In

)
.

Proof. Integration by parts gives

(ẅ, v̇)Ω×In + (a∇w,∇v̇)Ω×In = − (ẇ, v̈)Ω×In − (a∇ẇ,∇v)Ω×In

+
(
ẇ(t−n+1), v̇(t−n+1)

)
Ω
−
(
ẇ(t+n ), v̇(t+n )

)
Ω

+
(
a∇w(t−n+1),∇v(t−n+1)

)
Ω
−
(
a∇w(t+n ),∇v(t+n )

)
Ω

= − ([ẇ] , {a∇v})Γn×In − ({ẇ} , [a∇v])Γint
n ×In

+
(
ẇ(t−n+1), v̇(t−n+1)

)
Ω
−
(
ẇ(t+n ), v̇(t+n )

)
Ω

+
(
a∇w(t−n+1),∇v(t−n+1)

)
Ω
−
(
a∇w(t+n ),∇v(t+n )

)
Ω
,

since v ∈ V h,pTrefftz and by using the (elementary) identity

− (a∇ẇ,∇v)Ω×In = (ẇ,∇ · a∇v)Ω×In − ([ẇ] , {a∇v})Γn×In − ({ẇ} , [a∇v])Γint
n ×In

,

in the second step. Further applications of integration by parts in time yield

− ([ẇ] , {a∇v})Γn×In = ([w] , {a∇v̇})Γn×In

−
([
w(t−n+1)

]
,
{
a∇v(t−n+1)

})
Γn

+
([
w(t+n )

]
,
{
a∇v(t+n )

})
Γn
,

and

− ({a∇w} , [v̇])Γn×In + (σ0 [w] , [v̇])Γn×In

= ({a∇ẇ} , [v])Γn×In − (σ0 [ẇ] , [v])Γn×In

−
({
a∇w(t−n+1)

}
,
[
v(t−n+1)

])
Γn

+
({
a∇w(t+n )

}
,
[
v(t+n )

])
Γn

+
(
σ0

[
w(t−n+1)

]
,
[
v(t−n+1)

])
Γn
−
(
σ0

[
w(t+n )

]
,
[
v(t+n )

])
Γn
.

Substituting these into (4.8), we obtain

(5.1)

an(w, v) = ({a∇ẇ} , [v])Γn×In −
({
a∇w(t−n+1)

}
,
[
v(t−n+1)

])
Γn

− (σ0 [ẇ] , [v])Γn×In +
(
σ0

[
w(t−n+1)

]
,
[
v(t−n+1)

])
Γn

− ({ẇ} , [a∇v])Γint
n ×In

−
([
w(t−n+1)

]
,
{
a∇v(t−n+1)

})
Γn

+
(
ẇ(t−n+1), v̇(t−n+1)

)
Ω

+
(
a∇w(t−n+1),∇v(t−n+1)

)
Ω

+ (σ1 [w] , [v])Γn×In + (σ2 [a∇w] , [a∇v])Γn×In .
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Therefore, upon adopting the notational convention Jf(t−N )K := f(t−N ), we have

a(w, v) =

N−1∑
n=0

an(w, v)−
N−1∑
n=1

bn(w, v)

=

N−1∑
n=0

(
({a∇ẇ} , [v])Γn×In − (σ0 [ẇ] , [v])Γn×In − ({ẇ} , [a∇v])Γint

n ×In

+ (σ1 [w] , [v])Γn×In + (σ2 [a∇w] , [a∇v])Γn×In

)
−

N∑
n=1

( (
ẇ(t−n ), Jv̇(tn)K

)
Ω

+
(
a∇w(t−n ), J∇v(tn)K

)
Ω

−
({
a∇w(t−n )

}
, J[v(tn)]K

)
Γn
−
([
w(t−n )

]
, J{a∇v(tn)}K

)
Γn

+
(
σ0

[
w(t−n )

]
, J[v(tn)]K

)
Γn

)
.

(5.2)

It is now clear how to estimate most of the terms to obtain the stated result using
the Cauchy–Schwarz inequality. The first two terms on the right-hand side in the
above sum are estimated as follows(

σ
−1/2
1 ({a∇ẇ} − σ0 [ẇ]),

√
σ1 [v]

)
Γn×In

≤ ‖σ−1/2
1 ({a∇ẇ} − σ0 [ẇ])‖Γn×In‖

√
σ1 [v]‖Γn×In ;

for the third term, we have

({ẇ} , [a∇v])Γint
n ×In

≤ ‖σ−1/2
2 {ẇ}‖Γint

n ×In‖
√
σ2 [a∇v]‖Γint

n ×In .

Remark 11. Note that (5.1) shows that for Trefftz functions the bilinear form can
be evaluated without computing integrals over the volume terms Ω × In. This can
bring considerable savings, especially in higher spatial dimensions; see Figure 3.

It is possible to define the space-time dG method above with the classical (dis-
continuous) space of all polynomials of degree p (total degree or of degree p on each
variable). The resulting method then appears to work in practice also. Some nu-
merical experiments and comparison with the smaller polynomial Trefftz space are
given in section 7. The error analysis of the method with the full polynomial space of
degree p is not straightforward, though. In particular, it is not immediately clear how
to treat the volume terms which do not vanish in this case. This would be essential
in completing an error analysis for such spaces also.

Theorem 12. Let U ∈ V h,pTrefftz be the discrete solution of the Trefftz time-space
dG method and let u ∈ X be the exact solution. Then, we have

|||U − u||| ≤ inf
V ∈V h,pTrefftz

(
C?|||V − u|||? + |||V − u|||

)
.

Proof. By Galerkin orthogonality

a(V − U, v) = a(V − u, v)

for any V, v ∈ V h,pTrefftz. Hence,

|||V − U |||2 = a(V − U, V − U) = a(V − u, V − U) ≤ C?|||V − u|||?|||V − U |||,
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giving
|||U − u||| ≤ |||V − U |||+ |||V − u||| ≤ C?|||V − u|||? + |||V − u|||.

To conclude this section we show that in the case of Trefftz polynomials, the
discrete norm can be bounded below by an L2-temporal norm. For simplicity of the
presentation only, we shall, henceforth, make the following assumption.

Assumption 13. We assume that diam(K × In)/ρK×In ≤ cT for all K ∈ Tn,
n = 0, 1, . . . , N − 1.

In the simplifying context of space-time meshes consisting of prismatic meshes
without local time stepping, Assumption 13 implies global quasi-uniformity. Given
the tensor-product/prismatic structure of the space-time elements K × In, it is by all
means possible to extend the error analysis below to space-time meshes not satisfying
Assumption 13. Moreover, with minor modifications only, it is possible to extend
the findings of this work to meshes with space-time elements with variable temporal
dimension lengths; the notational overhead for such a development is deemed excessive
given the a priori error analysis point of view of this work.

Proposition 14. For any v ∈ Sh,pn,Trefftz it holds

‖v̇‖2Ω×In + ‖
√
a∇̃v‖2Ω×In ≤ (tn+1 − tn)eC̃(tn+1−tn)/h

(
‖v̇(t+n )‖2Ω + ‖

√
a∇̃v(t+n )‖2Ω

)
,

where C̃ := cT Cinvp
2Ca and h := minx∈Ω h(x, t), t ∈ In. The same estimate holds

with t+n replaced by t−n+1.
Consequently, under Assumption 13,

‖V̇ ‖2Ω×(0,T ) + ‖
√
a∇̃V ‖2Ω×(0,T ) ≤ Ce

C̃cT τ |||V |||2?

for all V ∈ V h,pTrefftz with a constant C > 0 independent of the mesh size and τ =
maxn τn.

Proof. Note that for an element K with exterior normal ν

d

dt

(
1
2‖v̇(t)‖2K + 1

2‖
√
a∇v(t)‖2K

)
= (v̈(t), v̇(t))K + (a∇v(t),∇v̇(t))K

= (ν · a∇v(t), v̇(t))∂K

≤ 1
2‖ν · a∇v(t)‖2∂K + 1

2‖v̇(t)‖2∂K
≤ Cinvp

2|∂K|/|K|
(

1
2‖a∇v(t)‖2K + 1

2‖v̇(t)‖2K
)
,

≤ CaCinvp
2cT h

−1
K

(
1
2‖
√
a∇v(t)‖2K + 1

2‖v̇(t)‖2K
)
,

where we have used the discrete trace inequality. The Gronwall inequality now gives
us

1
2‖
√
a∇v(t)‖2K + 1

2‖v̇(t)‖2K ≤ eC̃(t−tn)/hK
(

1
2‖
√
a∇v(t+n )‖2K + 1

2‖v̇(t+n )‖2K
)
,

as well as

1
2‖
√
a∇v(t)‖2K + 1

2‖v̇(t)‖2K ≤ eC̃(tn+1−tn)/hK
(

1
2‖
√
a∇v(t−n+1)‖2K + 1

2‖v̇(t−n+1)‖2K
)

for all t ∈ [tn, tn+1]. Integrating in time and summing over all K gives the required
result. The final inequality follows from the definition of the discrete dG norm.

The above two results allow us to conclude that we can also bound the error in a
more standard norm.
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Corollary 15. Under the hypothesis of Theorem 12 and under Assumption 13,
we have

‖U̇ − u̇‖Ω×[0,T ] + ‖
√
a∇̃(U − u)‖Ω×[0,T ]

≤ C inf
V ∈V h,pTrefftz

(√
τ |||V − u|||? + ‖V̇ − u̇‖Ω×[0,T ] + ‖

√
a∇̃(V − u)‖Ω×[0,T ]

)
for some positive constant C, independent of the mesh parameters and of u and U .

Proof. Triangle inequality and Proposition 14 imply that, for any V ∈ V h,pTrefftz,

‖U̇ − u̇‖Ω×[0,T ] + ‖
√
a∇̃(U − u)‖Ω×[0,T ]

≤ ‖U̇ − V̇ ‖Ω×[0,T ] + ‖
√
a∇̃(U − V )‖Ω×[0,T ]

+ ‖V̇ − u̇‖Ω×[0,T ] + ‖
√
a∇̃(V − u)‖Ω×[0,T ]

≤ C
√
τ |||U − V |||? + ‖V̇ − u̇‖Ω×[0,T ] + ‖

√
a∇̃(V − u)‖Ω×[0,T ].

6. A priori error bounds. We show next the Trefftz basis is sufficient to deliver
the expected rates of convergence for the proposed method.

Lemma 16. Let the setting of Theorem 12 hold, let vh ∈ V h,pTrefftz be an arbitrary
function in the discrete space, and let η = u− vh. Then
(6.1)

|||U − u|||2 ≤ C

N−1∑
n=0

∑
K∈T n

Ca

(
p2

τn

(
max

{
1,
τ2
n

h2
K

}
‖η̇‖2K×In + ‖∇η‖2K×In

)
+ τn

(
‖∇η̇‖2K×In + max

{
1,
h2
K

τ2
n

}
p−1‖D2η‖2K×In

)
+
h2
Kτn
p4
‖D2η̇‖2K×In +

p4

h2
Kτn
‖η‖2K×In

)
,

where U ∈ V h,pTrefftz is the discrete solution.

Proof. Theorem 12 implies

|||U − u||| ≤ C?|||η|||? + |||η|||.

We shall now estimate each term of the norms on the right-hand side. We shall
repeatedly use the standard trace estimate ‖v‖2∂ω ≤ C‖v‖ω(‖v‖2ω + ‖∇v‖2ω)1/2 for
v ∈ H1(ω), where ω is a subset of Rk, k = 1, . . . , d+ 1. We proceed as follows:

N∑
n=1

‖η̇(t−n )‖2Ω =

N∑
n=1

∑
K∈T n−1

‖η̇‖2
K×{t−n }

≤ C
N−1∑
n=0

∑
K∈T n

(
Cap

τn
‖η̇‖2K×In +

τn
Cap
‖η̈‖2K×In

)

≤ C
N−1∑
n=0

∑
K∈T n

(
Cap

τn
‖η̇‖2K×In +

τn
Cap
‖∇ · a(·)∇η‖2K×In

)

≤ C
N−1∑
n=0

∑
K∈T n

Ca

(
p

τn
‖η̇‖2K×In +

τn
p
‖∆η‖2K×In

)
.

We prefer to retain an explicit dependence on the polynomial degree p at this point,
as it will be of relevance in the error analysis for d = 1. In analogous fashion, we also
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have

N∑
n=1

‖
√
a∇η(t−n )‖2Ω ≤ C

N−1∑
n=0

∑
K∈T n

Ca

(
p

τn
‖∇η‖2K×In +

τn
p
‖∇η̇‖2K×In

)
.

Next, we estimate the penalty term:

N∑
n=1

‖√σ0

[
η(t−n )

]
‖2Γn ≤ C

N−1∑
n=0

∑
K∈T n

Ca

(
p3

τnhK
‖η‖2∂K×In + p

τn
hK
‖η̇‖2∂K×In

)

≤ C
N−1∑
n=0

∑
K∈T n

Ca

(
p4

τnh2
K

‖η‖2K×In +
p2

τn
‖∇η‖2K×In

+
p2τn
h2
K

‖η̇‖2K×In + τn‖∇η̇‖2K×In

)
.

Similarly, we also have

N∑
n=1

‖σ−1/2
0

{
a∇η(t−n )

}
‖2Γn ≤ C

N−1∑
n=0

∑
K∈T n

Ca

(
hK
p τn
‖∇η‖2∂K×In +

hKτn
p3
‖∇η̇‖2∂K×In

)

≤ C
N−1∑
n=0

∑
K∈T n

Ca

(
1

τn
‖∇η‖2K×In +

h2
K

p2τn
‖D2η‖2K×In

+
τn
p2
‖∇η̇‖2K×In +

h2
Kτn
p4
‖D2η̇‖2K×In

)
.

Next, recalling that σ1|∂K∩Γn×In = Cap
3/(hKτn), we estimate

N−1∑
n=0

‖
√
σ1 [η]‖2Γn×In ≤ C

N−1∑
n=0

∑
K∈T n

Ca

(
p4

τnh2
K

‖η‖2K×In +
p2

τn
‖∇η‖2K×In

)
.

Further, since σ2 = hK/(Caτn), we have

N−1∑
n=0

‖
√
σ2 [a∇η]‖2Γn×In ≤ C

N−1∑
n=0

∑
K∈T n

Ca

(
p2

τn
‖∇η‖2K×In +

h2
K

p2τn
‖D2η‖2K×In

)
.

The next term is treated as follows:

N−1∑
n=0

‖σ−1/2
2 {η̇}‖2Γint

n ×In
≤ C

N−1∑
n=0

∑
K∈T n

Ca

(
p2τn
h2
K

‖η̇‖2K×In +
τn
p2
‖∇η̇‖2K×In

)
.

Continuing, we have

N−1∑
n=0

‖σ−1/2
1 {a∇η̇}‖2Γn×In ≤ C

N−1∑
n=0

∑
K∈T n

Ca

(
τn
p2
‖∇η̇‖2K×In +

τnh
2
K

p4
‖D2η̇‖2K×In

)
.

Finally, we estimate

N−1∑
n=0

‖σ0σ
−1/2
1 [u̇]‖2Γn×In ≤ C

N−1∑
n=0

∑
K∈T n

Ca

(
p2τn
h2
K

‖η̇‖2K×In + τn‖∇η̇‖2K×In

)
.

The remaining terms in |||η||| are treated completely analogously.
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We have kept the explicit dependence on the local spatial and temporal mesh
sizes to further emphasize that the proposed method does not require any CFL-type
restrictions for stability and convergence: as long as hK ∼ τn the above bound is
sufficient to show optimal convergence, as we shall see below. To complete the error
analysis, we need to prove the existence of an appropriate approximation in V h,pTrefftz

of the exact solution. We first show how to obtain such an approximation locally.

Proposition 17. Let J ⊂ Rd+1 be star shaped with respect to a ball B ⊂ J .
Then, there exists a projector

Πp : Hp+1(J)→ Pp(J)

such that for any v ∈ Hp+1(J)

‖Dβ(v −Πpv)‖J ≤ C(diam(J))p+1−|β|‖v‖Hp+1(J), |β| ≤ p,

and, further, if v satisfies the wave equation ü−∇ · a∇v = 0 in J then so does Πpv.
The constant C depends on p and on the shape of J .1

Proof. We can define Πpv to be the averaged Taylor polynomial of order p,

Πpv(x) =
∑
|α|≤p

1

α!

∫
B

Dαv(y)(x− y)αφ(y)dy,

where φ ∈ C∞0 (Rd+1) is an arbitrary cutoff function satisfying
∫
B
φ = 1 and suppφ =

B; for details see [6]. Then the Bramble–Hilbert lemma gives us the approximation
property required (see [6, Lemma 4.3.8]), and so it only remains to show that Πpv
satisfies the wave equation if v does. For p ≤ 1 this is clear. For p ≥ 2, the result fol-
lows from the linearity of Πp, the fact that the wave equation contains only operators
of second order, and the following property of averaged Taylor polynomials:

DαΠpv = Πp−|α|Dαv, |α| ≤ p.

Applying such a projector to the exact solution and combining this with Lemma 16
gives us a proof of the convergence order of the discrete scheme.

Theorem 18. Let the exact solution u ∈ X be such that for each space-time
element K × In, u|K×In ∈ Hs+1(K × In) for some 0 ≤ s ≤ p. Then

(6.2) |||U − u||| ≤ C

(
N−1∑
n=0

∑
K∈T n

(h
(n)
K )2s−1‖u‖2Hs+1(K×In)

)1/2

≤ C(u)hs−1/2,

where h = maxK,n h
(n)
K and

C(u) =

(
N−1∑
n=0

∑
K∈T n

‖u‖2Hs+1(K×In)

)1/2

.

1Here, the shape of the domain means the chunkiness parameter diam(J)/ρmax, where ρmax =
sup{ρ : J is star shaped with respect to a ball of radius ρ}.
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6.1. hp-version error analysis for d = 1. As we shall now show, the Trefftz
basis is sufficient to deliver the expected hp-version a priori error bounds for d = 1,
along with a proof of the exponential convergence of the p-version space-time dG
method for the case of analytic exact solutions. See [20] for another hp-analysis in
one dimension of a different Trefftz-based method.

To discuss the Trefftz-basis case for d = 1, we let K = [x0, x1] and start from
the basic observation that the exact solution to the wave equation on each space-time
element is of the form

(6.3) u(x, t)|K×In = F 1
n,K(a−1/2x+ t) + F 2

n,K(a−1/2x− t),

where we can define F 1 and F 2 by

F 1
n,K(a−1/2x+ t) = 1

2u(x, t) + 1
2v(x, t), (x, t) ∈ K × In,

and

F 2
n,K(a−1/2x− t) = 1

2u(x, t)− 1
2v(x, t), (x, t) ∈ K × In,

where

v(x, t) = a1/2

∫ t

tn

ux(x, τ)dτ + a−1/2

∫ x

x0

ut(x
′, tn)dx′.

It is not difficult to see that these are well-defined, i.e., that the right-hand sides
indeed depend only on a−1/2x±t by virtue of satisfying the equations a1/2fx∓ft = 0,
respectively.

For Î := (−1, 1), we define the H1-projection operator λ̂p : H1(Î)→ Pp(Î), p ≥ 1,

defined by setting, for û ∈ H1(Î),

(λ̂pû)(x) :=

∫ x

−1

π̂p−1(û′)(η) dη + û(−1), x ∈ Î ,

with π̂p−1 being the L2-orthogonal projection operator onto Pp−1(Î).

Now, upon considering the linear scalings ψ1
n,K : Î → J1

n,K , K ∈ Tn, such that

J1
n,K :=

(
min

(x,t)∈K×In
{x+ ct}, max

(x,t)∈K×In
{x+ ct}

)
,

and ψ2
n,K : Î → J2

n,K , K ∈ Tn, such that

J2
n,K :=

(
min

(x,t)∈K×In
{x− ct}, max

(x,t)∈K×In
{x− ct}

)
,

we define the univariate space-time elemental projection operators λip, i = 1, 2, piece-
wise by

(λipF )|Jin,K := λ̂ip((F ◦ ψin,K)|Î), K ∈ Tn, n = 0, 1, . . . , N − 1.

Using these, we can now define the Trefftz projection Πpu of a function u of the form
(6.3) elementwise by

(6.4) (Πpu)|K×In := λ1
pF

1
n,K(x+ ct) + λ2

pF
2
n,K(x− ct),
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K ∈ Tn, n = 0, 1, . . . , N − 1. The approximation properties of Πp follow from the

respective properties of λip, i = 1, 2. Space-time shape regularity implies J in,K ∼ h
(n)
K ,

i = 1, 2.
We denote by Φ(p, s) the quantity Φ(p, s) := (Γ(p − s + 1)/Γ(p + s + 1))

1
2 with

p, s real numbers such that 0 ≤ s ≤ p and Γ(·) being the gamma function; we also
adopt the standard convention Γ(1) = 0! = 1. Making use of Stirling’s formula,

Γ(n) ∼
√

2πnn−
1
2 e−n, n > 0, we have, Φ(p, s) ≤ Cp−s for p ≥ 1 with 0 ≤ s ≤ p and

C > 0 constant depending only on s.
We have the following hp-approximation results for λip, i = 1, 2.

Lemma 19. Let v ∈ Hk+1(J), for k ≥ 1, and let h = diam(J) for an open,
bounded interval J ⊂ R; finally, let λp be any of the λip, i = 1, 2. Then the following
error bounds hold:

(6.5) ‖v − λpv‖J ≤ Cp−1Φ(p, s)hs+1|v|s+1,J

and

(6.6) ‖v′ − (λpv)′‖J ≤ CΦ(p, s)hs|v|s+1,J

with 0 ≤ s ≤ min{p, k}, p ≥ 1. Also, let v ∈ Hk+1(J) with k ≥ 2. Then, the following
bound holds:

(6.7) ‖v′′ − (λpv)′′‖J ≤ Cp3/2Φ(p,m)hm−1|v|m+1,J

with 1 ≤ m ≤ min{p, k}. Finally, let v ∈ Hk+1(J) with k ≥ 3. Then, the following
bound holds:

(6.8) ‖v′′′ − (λpv)′′′‖J ≤ Cp7/2Φ(p, l)hl−2|v|l+1,J

with 2 ≤ l ≤ min{p− 1, k}.
Proof. The proof of (6.5) and (6.6) for the H1-projection λip can be found, e.g.,

in [28]. The proof of (6.7) can be found in [15], while the proof of (6.8) follows along
the same lines as in the proof of (6.7) from [15].

These hp-approximation estimates imply the following bound.

Theorem 20. Let u|K×In ∈ Hk+1(K × In), for k ≥ 3 be the exact solution to
(2.1). Then, for space-time meshes satisfying Assumption 13, the following error
bounds hold:

(6.9) |||U − u|||2 ≤ Cp3Φ2(p, s)

N−1∑
n=0

∑
K∈T n

diam(K × In)
2s−1|u|2s+1,K×In

for 3 ≤ s ≤ min {p + 1, k} and h = maxK,n{diam(K × In)} with C > 0 constant,
independent of p, h, u, and U . Moreover, if u is analytic on a neighborhood of Ω,
there exists r > 0, depending on the analyticity region of u in a neighborhood of
Ω× (0, T ), such that

(6.10) |||U − u|||2 ≤ C(u)p3 exp(−rp)
N−1∑
n=0

∑
K∈T n

|K × In|diam(K × In)
2s−1

.
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Proof. The proof of (6.9) follows by combining the hp-approximation bounds from
(19) with Lemma 16.

For (6.10), we work as follows. Analyticity of u implies that there exists a d > 0,
such that for all s ≥ 0,

(6.11) |u|s,K×In ≤ CdsΓ(s+ 1)|K × In|1/2;

cf., e.g., [10, Theorem 1.9.3]. Using this (6.11), setting s = γp for some 0 < γ < 1,
along with Stirling’s formula, we can arrive at the bound

Φ2(p, γp)|u|2γp+1,K×In ≤ C
(

(2γd)2γ (1− γ)1−γ

(1 + γ)1+γ

)p
|K × In|

with the precise choice of γ remaining at our disposal. The function

F (γ) := (2γd)2γ (1− γ)1−γ

(1 + γ)1+γ
,

has a minimum at γmin := (1 + 4d2)−1/2, giving F (γmin) < 1. Setting, now, r =
1/2| logF (γmin)|, the result follows.

Remark 21. The bound (6.9) is suboptimal in p by one order. This is a standard
feature of hp-version dG methods whose analysis requires the use of hp-type inverse
estimates. It is possible to slightly improve on this result and obtain only 1/2 order
p-suboptimal bounds, using the classical hp-approximation results from [7, 4], instead
of the H1-projection operator as done above. These results, however, are not suitable
for the proof of the exponential rate of p-convergence.

7. Numerical experiments. We present a series of numerical experiments aim-
ing to highlight the performance of the proposed method above. In each experiment,
the spatial meshes are kept fixed T = Tn and a uniform time step is used. In the one-
dimensional (d = 1) examples the spatial mesh is a uniform set of intervals, whereas
for d = 2, the spatial mesh is a quasi-uniform triangulation. The resulting linear
systems at each time step are solved by standard sparse direct solvers.

7.1. Experiments in one dimension. We consider the wave equation with
constant diffusion coefficient a ≡ 1, spatial domain Ω = (0, 1), and initial data

(7.1) u(x, 0) = e−( x−5/8
δ )

2

, u̇(x, 0) = 0,

where δ ≤ δ0 = 7.5 × 10−2. Note that the initial data are not exactly zero at the
boundary, but are less than 10−11 in the range of the parameter δ that we consider.
This slight incompatibility with the boundary condition does not influence in any
visible way our numerical results. Since the energy of the exact solution stays constant
it is given for all times by

exact energy = 1
2‖ux(x, 0)‖2Ω ≈ 2δ−1

∫ ∞
−∞

y2e−2y2dy = δ−1

√
π

2
√

2
,

where the approximation in the second step is on the order of 10−11 for reasons given
above and the final equality is obtained by using integration by parts to reduce it to
the Gaussian integral [16].
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Fig. 2. Convergence of the Trefftz, on the left, and polynomial, on the right, time-space dG
method of order p. The error is plotted against the uniform mesh width in time and space h = T/N .

Table 1
Numerically obtained orders of convergence of the error in the dG norm |||·||| for Trefftz spaces

on the left and for polynomial spaces on the right.

N p = 2 p = 3 p = 4 p = 5
5 0.98 1.85 3.64 5.07
10 1.37 2.10 3.57 5.06
20 1.38 2.28 3.52 4.77
40 1.46 2.42 3.51 4.76
80 1.49 2.51 3.51 4.63

N p = 2 p = 3 p = 4 p = 5
5 0.90 1.85 3.74 5.56
10 1.17 2.11 3.39 5.05
20 1.34 2.26 3.41 4.31
40 1.44 2.38 3.41 4.91
80 1.45 2.54 3.46 4.79

Table 2
Numerically obtained orders of convergence of the error in the dG norm |||·||| for linear elements.

N 80 160 320 640 1280 2560 5120
p = 1 0.08 0.11 0.19 0.29 0.38 0.44 0.47

As the problem is in one spatial dimension, the exact solution is not difficult to
obtain. The error will be computed in the dG norm

error = |||u− uh|||.

Since the exact solution is smooth, note that (see (4.15)),

|||u|||2 = a(u, u) = 2× exact energy.

7.1.1. Convergence order. We first investigate the convergence order of the
numerical method. Though we did not analyze full polynomial spaces, we also give
numerical experiments for these as it is interesting to compare the two sets of results.

In this subsection, we choose δ0 = 7.5 × 10−2 and T = 1/4. Note that we
choose such a small time interval in order to reach the asymptotic regime earlier—
this will especially be important for lower orders. In Figure 2 and Tables 1 and 2, the
convergence curves and numerically computed convergence orders are given. These
confirm the theoretical results. Note that the errors obtained by the full and the
Trefftz spaces are very similar for the same order, but the Trefftz spaces require fewer
degrees of freedom and cheaper implementation; see Remark 11 and Figure 3. We
have also found that higher order approximation converges without the two extra
stabilization terms, i.e., with σ1 = σ2 = 0, but with the piecewise linear functions it
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Fig. 3. Error against computational time for Trefftz (on the left) and polynomial spaces (on
the right). The much lower times for Trefftz spaces are due both to the smaller number of degrees
of freedom for the same accuracy and to the cheaper construction of matrices; see Remark 11.
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Fig. 4. Convergence of the Trefftz method with fixed mesh width h = 1/40 and increasing
polynomial order p.
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Fig. 5. Plot of the energy E(t) = 1
2
‖u̇h(t)‖2 + 1

2
‖∇uh(t)‖2 against time for the Trefftz spaces

on the left and polynomial spaces on the right.

stagnates. To test the hp-version estimates, we have also performed experiments with
fixed h = 1/40 and increasing p; see Figure 4.

7.1.2. Long-time energy behavior. The time-space dG method that we de-
veloped is dissipative, so we expect the energy to decay over time. However, if the
accuracy of the approximation is high we expect this decay to be very slow. This is
indeed reflected in the numerical experiments shown in Figure 5, where we compute
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Fig. 6. The plot of the scaled error (see (7.2)) against h/δ, for Trefftz space.The final time is
chosen to be T = 1.

the energy
E(t) = 1

2‖u̇h(t)‖2 + 1
2‖∇uh(t)‖2

up to time T = 5 with δ = δ0/4.

7.1.3. Waves with energy at high frequences. Note that if we decrease
the parameter δ > 0 in the definition of the initial data (7.1), the Gaussian becomes
narrower and energy at higher frequences is excited. In the following set of experiments
we investigate the error while decreasing both δ > 0 and the mesh width h > 0. In
an ideal scenario, h ∝ δ would be sufficient to obtain a constant relative error which
we define as

(7.2) errorδ =

(
δ

2
‖u̇(·, T )− u̇h(·, T−)‖2Ω +

δ

2
‖∇u(·, T )−∇uh(·, T−)‖2Ω

)1/2

.

The results given in Figure 6 show that already for p = 3 the performance is good
and for larger p for this range of δ, the error does not visibly change for different δ’s
as long as h ∝ δ.

7.2. Experiments in two dimensions. We conclude the section on numerical
experiments by considering the wave equation

ü−∆u = 0

on the square [0, 1]2 ⊂ R2 with homogeneous Dirichlet boundary condition and initial
data

u(x, y, 0) = sinπx sinπy, u̇(·, 0) = 0.

The analytical solution is given by

u(x, y, t) = cos(
√

2πt) sinπx sinπy.

We investigate the convergence of the error in the energy norm at the final time step

(7.3) error =
(

1
2‖u̇(·, T )− u̇h(·, T−)‖2Ω + 1

2‖∇u(·, T )−∇uh(·, T−)‖2Ω
)1/2

.

The convergence plots are given in Figure 7 and the computed convergence orders in
Table 3. Note that, for the weaker error notion (7.3), we do not lose half an order of
convergence as when computing the error in the discrete norm |||·|||. The theory pre-
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Fig. 7. Convergence of the error (7.3) at the final time for the Trefftz basis on the left and full
polynomial basis on the right.

Table 3
Numerically obtained convergence orders of the error (7.3) at the final time for the Trefftz on

the left and for the full polynomial space on the right.

N p = 1 p = 2 p = 3 p = 4
10 0.046 2.039 2.219 3.935
20 0.115 1.990 2.539 3.977
40 0.160 1.979 2.819 3.996

N p = 1 p = 2 p = 3 p = 4
10 0.046 1.897 2.133 3.956
20 0.115 1.896 2.248 3.967
40 0.160 1.935 2.612 3.982

sented above does not predict this behavior. The observed rate of convergence is not,
however, surprising as, unlike the dG norm, this error measure does not accumulate
the errors over all time steps.
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