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Abstract
Given a homomorphism τ from a suitable finite group Γ to SU(4) with image Γτ ,
we construct a cohomological gauge theory on a non-commutative resolution of
the quotient singularity C4/Γτ whose BRST fixed points are Γ-invariant tetrahedron
instantons on a generally non-effective orbifold. The partition function computes the
expectation values of complex codimension one defect operators in rank r cohomo-
logical Donaldson–Thomas theory on a flat gerbe over the quotient stack [C4/ Γτ ].We
describe the generalized ADHM parametrization of the tetrahedron instanton moduli
space and evaluate the orbifold partition functions through virtual torus localization.
If Γ is an abelian group the partition function is expressed as a combinatorial series
over arrays of Γ-coloured plane partitions, while if Γ is non-abelian the partition func-
tion localizes onto a sum over torus-invariant connected components of the moduli
space labelled by lower-dimensional partitions. When Γ = Zn is a finite abelian sub-
group of SL(2,C), we exhibit the reduction of Donaldson–Thomas theory on the toric
Calabi–Yau four-orbifoldC2/ Γ×C2 to the cohomological field theory of tetrahedron
instantons, from which we express the partition function as a closed infinite product
formula. We also use the crepant resolution correspondence to derive a closed formula
for the partition function on any polyhedral singularity.
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1 Introduction

Background

Tetrahedron instantons [1–4] are particular solutions of generalized instanton equa-
tions in eight dimensions. They are defined by BRST fixed point equations for a
generalized cohomological gauge theory on a singular stratification of spacetime
which glues together different quantum field theories through real codimension two
supersymmetric defects; the gluing is mediated by bifundamental matter fields on the
codimension four junctions formed by intersections of the strata. These generalize the
spiked instantons introduced byNekrasov [5] as extensions of instanton configurations
from four dimensions to include the most general supersymmetric local and surface
defects. They can be regarded as an intermediary step between instanton solutions in
six and eight dimensions, thereby linking six- and eight-dimensional cohomological
gauge theories. The premise is that one can recover them from eight-dimensional field
configurations through certain specializations of the moduli, analogously to how the
six-dimensional theories are obtained from eight dimensions.

Similarly to spiked instantons [6, 7], tetrahedron instantons find their physical real-
ization in type IIB string theory as bound states of D1-branes probing configurations
of intersecting stacks of D-branes which wrap smooth strata of a singular threefold
inside a local Calabi–Yau fourfold M , while preserving a suitable number of super-
symmetries. In this paper we focus mostly (but not exclusively) on the case M = C4,
where intersecting D7-branes span the four complex codimension one coordinate
hyperplanes in C4, with an appropriate constant Neveu–Schwarz B-field turned on.
These have a description as solutions to non-commutative instanton equations in the
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presence of the most general complex codimension one supersymmetric defects (see
[8] for a review of spiked and tetrahedron instantons in non-commutative field theory).
Given a single stack of D7-branes, we regard its bound state with the D1-branes as a
non-commutative instanton of the gauge theory. The remaining D7-branes with differ-
ent spatial orientations then generate defects in its worldvolume theory. The moduli
space of tetrahedron instantons is isomorphic to a Grothendieck Quot scheme which
parametrizes quotients of a torsion sheaf on the possibly singular threefold formed by
the union of the hyperplanes C3 in the Calabi–Yau fourfold C4 [1, 3, 9, 10].

Generally, BPS state counting in six and eight dimensions is related to Donaldson–
Thomas theory which enumerates virtual invariants of moduli spaces of coherent
sheaves; more generally, Donaldson–Thomas invariants count objects in Calabi–Yau
categories, where the relevant category in the former case is the derived category of
coherent sheaves. From the perspective of cohomological gauge theory, the moduli
space of U(r) instantons on a toric background M is compactified by deforming
the BPS equations to instanton equations in non-commutative field theory and by
introducing an�-deformation of M . This enables evaluation of the instanton partition
function exactly through virtual toric localization by reducing the path integral of the
cohomological gauge theory to an equivariant integral over the instantonmoduli space.
It localizes onto isolated torus fixed points of the moduli space which are in one-to-one
correspondence with higher-dimensional partitions [1, 8, 11–14]. An important role
in this computation is played by the definition of suitable virtual fundamental classes
through an obstruction theory defined by integration over antighost fields.

In eight dimensions, the Donaldson–Thomas invariants have been studied from
the perspective of generalized instanton counting and the related BPS state counting
of D-branes in [4, 13, 15–24]. The compactification of the instanton moduli space
in this case results in a maximal holonomy group SU(4) and sets the cohomological
gauge theory on a toric Calabi–Yau fourfold. The virtual cycles for the Donaldson–
Thomas invariants are constructed in gauge theory by Cao and Leung [25], in derived
differential geometry byBorisov and Joyce [26], aswell as in algebraic geometry byOh
and Thomas [27]. These cycles depend on a choice of local orientations of the moduli
space, requiring a selection of signs that enter into the computation of the partition
function. The choice is unique up to overall orientation; it was conjectured byNekrasov
and Piazzalunga [15] for instanton counting onC4, and subsequently proven by Kool
and Rennemo [28] for the Donaldson–Thomas theory of C4. Related mathematical
developments of Donaldson–Thomas invariants on Calabi–Yau fourfolds are found in
e.g. [29–39]. An adaptation of the proof of [28] is presented by Fasola and Monavari
for tetrahedron instantons in [3], where the instanton partition function computes
expectation values of codimension one defect operators in the Donaldson–Thomas
theory of C3.

Our current understanding of instanton counting in six and eight dimensions, as
well as its relation to Donaldson–Thomas theory, is limited to abelian configura-
tions. In both dimensionalities the matrix equations that result from non-commutative
U(r) instanton equations [12, 18] contain more degrees of freedom (and equations)
than what appear in the generalized ADHM equations from the D-brane picture or
in the non-commutative Quot scheme construction, unless one restricts to solutions
in the maximal torus U(1)r ⊂ U(r) in which case stability implies that the extra
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operators vanish. Thus our higher rank computations are limited to Coulomb branch
invariants, for which the non-abelian U(r) gauge symmetry is broken to the abelian
subgroupU(1)r , mirroring the geometric property that the framedQuot schemeswhich
are well-defined in these dimensions parametrize only split vector bundles (see [10,
Corollary 1.6]).

The geometric moduli problem associated with genuine non-abelian instanton
counting is not currently understood, nor how to compute invariants as the standard
equivariant localization techniques no longer apply. When M is a Calabi–Yau three-
fold, the Coulomb branch invariants of [12] are interpreted by [40] as a degenerate
central charge limit of higher rank Donaldson–Thomas invariants for pure D0–D6
bound states, which enumerate rank r torsion free sheaves on M that are locally free
in codimension three. Higher rank Donaldson–Thomas invariants for U(r) gauge the-
ory on any toric threefold M are constructed from M-theory considerations by [41].

This paper

As a first extension of the original model of [1] beyond flat space, in this paper we pro-
vide a detailed and exhaustive analysis of tetrahedron instantons on local Calabi–Yau
orbifolds of C4 (when they exist). We extend the computations for spiked instantons
on orbifolds in [6, 42] to evaluate partition functions for tetrahedron instantons defined
on orbifolds C4/ Γ, where Γ is a suitable finite group whose action on C4 is defined
by a homomorphism τ : Γ −→ SU(4) to the holonomy group SU(4). The choice of
a general homomorphic image Γτ rather than a subgroup embedding of Γ in SU(4)
allows for more freedom in a description of broader classes of stable ground states, and
technically it enables the application of the virtual localization formula, even when Γ
is non-abelian.

When the kernel Kτ ⊂ Γ of τ is non-trivial, the group Γ acts non-effectively on
C4, i.e. it contains a non-trivial subgroup which acts trivially onC4. Nevertheless, the
subgroup Kτ can still act non-trivially on the field content of the cohomological gauge
theory. This sets the field theory on a Kτ -gerbe over the quotient stack [C4/ Γτ ] and is
equivalent to a twist of the theory on a disjoint union of several copies of [C4/ Γτ ]. We
interpret the corresponding enumerative invariants of the quotient singularityC4/ Γτ

as the orbifold Donaldson–Thomas invariants ‘twisted’ by a Kτ -gerbe. The gerbe may
be viewed as a flat B-field and the theory enumerates Kτ -projectively Γτ -equivariant
coherent sheaves onC4, which correspond to boundary states of D-branes supporting
twisted Chan–Paton gauge bundles.

Our computations produce the instanton partition function of the cohomological
gauge theory on a non-commutative resolution of the quotient singularity C4/ Γτ ,
described by a certain non-commutative algebra A. The algebra A is the path algebra
of a generalization of the bounded McKay quiver determined by the representation
theory data of Γ together with the homomorphism τ , whose relations provide a gener-
alized ADHM parametrization of the orbifold non-commutative tetrahedron instanton
equations. The gauge theory is then defined by projecting onto the Γ-invariant field
configurations on C4, whose instanton moduli space is identified as a quiver variety
associated with the generalized McKay quiver, or equivalently as the moduli space of
stable framed representations for the bounded derived category of the McKay quiver.
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This bridges the cohomological gauge theories for orbifold instantons in six and eight
dimensions, considered for the case of toric Calabi–Yau orbifolds in [43] and [18],
respectively.

When Γ is abelian, the image Γτ of τ commutes with the maximal torus T�ε of
the holonomy group SU(4). Consequently, through toric localization, the equivariant
partition function localizes onto isolated fixed points of the T�ε -action which are also
Γ-invariant. The orbifold partition functions in this case describe the twisted orbifold
Donaldson–Thomas theory of C3/ Γτ in the presence of general codimension one
defects which are invariant under the maximal toric symmetry of the �-deformation.

The case where Γ is non-abelian presents some technical complications, as Γτ does
not commute with T�ε and it is necessary to work with the centralizer of Γτ in T�ε in
order to apply torus localization. The gauge theory is then equivariant with respect to
a smaller torus, and torus localization only reduces the partition function to a sum over
contributions from the connected components of the moduli space of torus-invariant
tetrahedron instantons, which generally admit continuous deformations, i.e. the torus
fixed points are no longer isolated. We demonstrate that the partition function is still
well-defined in these instances by proving that these components are compact in their
natural complex analytic topology inherited from the ADHM parametrization, and
we describe how to compute it. The orbifold partition functions in these cases again
describe the twisted orbifold Donaldson–Thomas theory ofC3/ Γτ , with or without a
single codimension one defect and with reduced toric symmetry.

In both abelian and non-abelian cases, in addition to the generalizations to twisted
orbifold Donaldson–Thomas invariants, another novelty of our approach that it is
general enough to deal with orbifolds by arbitrary finite subgroups Γτ ⊂ U(3), and
hence it computes the (twisted) Donaldson–Thomas theory of general local Kähler
three-orbifolds.

Outline and summary of results

In the following sections, we shall begin with a review and extension of the pertinent
cohomological gauge theories in six dimensions, which are then naturally extended
to the field theories whose BPS states are tetrahedron instantons in eight dimensions.
The structure of the remainder of this paper and its main results are summarized as
follows:

• In Sect. 2, we review the construction of a six-dimensional cohomological gauge
theory for the holonomy group U(3), following [12] (see also [44]). We study the
generalized instanton equations and we evaluate the equivariant instanton partition
function from the tangent-obstruction deformation complex of the instanton moduli
space. It is expressed as a combinatorial expansion in plane partitions which can be
summed to a closed form in terms of the MacMahon function.

• In Sect. 3, we analyse instanton configurations on orbifolds C3/ Γ, where Γ is a
finite group acting on C3 by a homomorphism τ : Γ −→ U(3) to the holonomy
group U(3), vastly generalizing the treatment for toric Calabi–Yau three-orbifolds
considered in [43] (see also [44, 45]). We describe the instanton moduli space as a
quiver variety through an ADHM-type parametrization. In the case where Γ is an
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abelian group, we evaluate the equivariant instanton partition functions explicitly
as combinatorial series over Γ-coloured plane partitions.

• In Sect. 4, we study tetrahedron instantons. We construct their ADHM equations in
analogy with the six-dimensional case. We evaluate the instanton partition function
from both a quiver matrix model for the ADHM data and from the tangent-
obstruction deformation complex of the instanton moduli space. Using the ADHM
matrix model we further recover the partition function for tetrahedron instantons
from the equivariant partition function for instantons on C4, considered in [18],
after a suitable specialization of variables. Using this relation we derive a closed
formula for the tetrahedron instanton partition function in terms of the MacMahon
function which agrees with the generating functions computed by [2, 3].

• In Sect. 5, we generalize our discussion to tetrahedron instantons on orbifoldsC4/ Γ
with a homomorphism τ : Γ −→ SU(4). For orbifolds of the typeC2/ Γ×C2,where
Γ = Zn is a finite abelian subgroup of SL(2,C), we extend the relation between
the equivariant partition functions for tetrahedron instantons and instantons in eight
dimensions, and hence derive closed formulas for the orbifold tetrahedron instanton
partition functions in terms of MacMahon functions based on the results from [18]
for instantons on local toric Calabi–Yau four-orbifolds. When Γ is a finite abelian
subgroup of SL(3,C), we recover the instanton partition functions for local toric
Calabi–Yau three-orbifolds C3/ Γ with U(3) holonomy.
Finally, we consider the case of a finite non-abelian orbifold group Γ, with a gen-
erally non-faithful representation in SU(4). We discuss in detail the two admissible
classes of Γ-actions which permit the application of virtual localization techniques,
and show that the torus-invariant connected components of the moduli space are
parametrized, respectively, by linear partitions and integer points. We compute, for
each case, the equivariant orbifold partition functions for tetrahedron instantons.
We explain how to explicitly unravel the formulas for Kleinian singularities in C4

using geometric crepant resolution techniques, and we derive a closed formula in
terms of MacMahon functions for any polyhedral singularity.

• In Sect. 6, we recapitulate our findings and comment on the physical and mathe-
matical relevance of our results.

• Two appendices at the end of the paper contain some technical results complement-
ing the analysis of the main text. In Appendix A we summarize the classification of
the finite subgroups of SU(3), which play a prominent role throughout this paper. In
Appendix B we prove that, for the smaller tori T′ ⊂ T�ε which act on our theories,
the T′-fixed components of the moduli space for orbifold tetrahedron instantons
are compact in the natural complex analytic topology inherited from the ADHM
parametrization.

2 Donaldson–Thomas Theory on Kähler threefolds

In this section, we review the computation of Donaldson–Thomas invariants of a
Kähler threefold from the perspective of instanton counting in a six-dimensional
cohomological gauge theory. This sets the stage and notations for all subsequent com-
putations in this paper.
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2.1 U(3)-instanton equations

Let (M3, ω) be a Kähler threefold. We define a cohomological gauge theory on M3
through a topological twist of the maximally supersymmetric N = 2 Yang–Mills
theory in six dimensions. It can be obtained by dimensional reduction from ten-
dimensional N = 1 supersymmetric Yang–Mills theory on M3 with gauge group
U(r) and holonomy group U(3). The bosonic field content is valued in the adjoint rep-
resentation ofU(r) and consists of aU(r) gauge connectionAwith curvature two-form
F = ∇2

A = dA+A ∧A, which we assume has vanishing first Chern class, as well
as a (3, 0)-form ϕ and a complex Higgs field �. We denote the associated covariant
derivatives with a subscript A.

The path integral of the gauge theory localizes onto solutions of BRST fixed point
equations known as generalized instanton equations. They are given by [11, 12, 46]

F2,0 + ∂̄
†
A ϕ = 0 ,

ω ∧ ω ∧ F1,1 + ϕ ∧ ϕ̄ = 0 ,

∇A� = 0 .

(2.1)

Here F = F2,0 + F1,1 + F0,2 is the decomposition of the field strength in the basis
of (1, 0)- and (0, 1)-forms with respect to the underlying complex structure of M3.

When M3 is a Calabi–Yau threefold, the holonomy group is reduced to SU(3) ⊂
U(3) and uniqueness of the holomorphic three-form of the SU(3)-structure implies
ϕ = 0 in (2.1). Then, the first two instanton equations reduce to the Donaldson–
Uhlenbeck–Yau equations which describe stable holomorphic vector bundles on M3
with finite characteristic classes.

The finite action solutions of (2.1) are labelled by the third Chern class

k = 1

48π3

∫
M3

Tru(r) F ∧ F ∧ F , (2.2)

which is a topological invariant called the instanton number, as well as Kähler charges
determined by the second Chern class which we suppress. For each charge k ∈ Z≥0,
we define the instanton moduli space Mr ,k . They form the connected components of
the stratification of the moduli space

Mr =
⊔
k≥0

Mr ,k (2.3)

of solutions A to the U(r) instanton equations (2.1) modulo gauge transformations.
The moduli space has a global colour symmetry under PU(r) = U(r)/U(1), where
U(1) is the centre of U(r).
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2.2 ADHM data

The BPS equations (2.1) on the affine Kähler threefold M3 = C3 describe the low-
energy interactions of k D0-branes inside r D6-branes in type IIA string theory in
the limit where the D6-branes are heavy. From the perspective of the theory on the
D0-branes, bound states corresponding to supersymmetric vacua are solutions to cer-
tain quadratic matrix equations, generalizing the celebrated ADHM equations [47],
deformed by a Fayet–Iliopoulos coupling ζ ∈ R>0 related to a suitable large nonzero
constant background B-field [48]. They arise as F-term and D-term equations. The
Neveu–Schwarz B-field induces a non-commutative deformation of the gauge theory
on the D6-branes obtained by Berezin–Toeplitz quantization of the constant Poisson
structure θ = ζ ω−1 [44].

Generalized ADHM equations

Let V and W be Hermitian vector spaces of complex dimensions k and r , respectively;
from the perspective of the D0-branes, V is the Chan–Paton space while W is a flavour
representation. Then, the ADHM equations are

μC
ab := [Ba, Bb] − 1

2 εabc [B†
c ,Y ] = 0 ,

μR :=
∑
a ∈ 3

[Ba B†
a ] + [Y † ,Y ] + I I † = ζ 1V ,

σ := I † Y = 0 ,

(2.4)

where Ba,Y ∈ EndC(V ) for

a ∈ 3 := {1, 2, 3} and (a, b) ∈ 3⊥ := {(1, 2) , (1, 3) , (2, 3)} , (2.5)

while I ∈ HomC(W , V ). Here εabc is the Levi–Civita symbol in three dimensions
with ε123 = +1, and throughout implicit summation over repeated indices is assumed
unless otherwise explicitly indicated.

The ADHM equations (2.4) are invariant under the natural action by unitary auto-
morphisms g ∈ U(V ) � U(k) of the vector space V given by

g · (Ba,Y , I )a ∈ 3 = (g Ba g−1 , g Y g−1 , g I )a ∈ 3 . (2.6)

The instanton moduli space Mr ,k is then equivalently described as the quotient by
this U(V )-action of the subvariety of the affine space of ADHM data cut out by the
equations (2.4). There is additionally a natural action on the moduli space by unitary
automorphisms h ∈ U(W ) � U(r) of the vector space W given by framing rotations

h · (Ba,Y , I )a ∈ 3 = (Ba , Y , I h−1)a ∈ 3 . (2.7)
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Stability and Quot schemes

By standard arguments the second equation of (2.4) (the D-term relation) is equivalent
to the following stability condition: there is no proper subspace S ⊂ V such that
Ba(S) ⊂ S for all a ∈ 3 , Y †(S) ⊂ S and im(I ) ⊂ S.

We write

‖T ‖2F := TrU2

(
T † T

) = TrU1

(
T T †) (2.8)

for the Frobenius norm of a linear map T ∈ HomC(U1,U2) between Hermitian vector
spaces U1 and U2. Then

∑
(a,b)∈ 3⊥

∥∥μC
ab

∥∥2
F
= 1

2

∑
(a,b)∈ 3⊥

∥∥[Ba, Bb]
∥∥2

F
+ 1

2

∑
a ∈ 3

∥∥[Ba,Y †]∥∥2
F
. (2.9)

This vanishes by the first equation of (2.4), which implies

[Ba, Bb] = 0 and [Ba,Y †] = 0 , (2.10)

for all a, b ∈ 3 .
Using the relations (2.10) and the third equation of (2.4), the stability condition is

thus equivalent to

V = C[B1, B2, B3] I (W ) . (2.11)

This implies, by the first equation of (2.10) and the third equation of (2.4), that Y † = 0.
If we denote μC := (μC

ab)(a,b)∈ 3⊥ , then the instanton moduli space Mr ,k is equiva-
lently expressed as the non-commutative Quot scheme

Mr ,k � μC−1(0)stable
/
GL(V ) , (2.12)

where the superscript stable indicates the stable solutions of the first equation of (2.4)
with Y = 0 (the F-term relations), and g ∈ GL(V ) � GL(k,C) acts on the ADHM
data as in (2.6).

It now follows from [10] that the instanton moduli spaceMr ,k is isomorphic to the
Quot scheme Quotkr (C

3) of zero-dimensional quotients of the free sheaf O⊕r
C3 on C

3

with length k,

Mr ,k � Quotkr (C
3) , (2.13)

which parametrizes framed torsion free sheaves E on complex projective space P3

of rank r and ch3(E) = k. When r = 1 the quotients are structure sheaves of closed
zero-dimensional subschemes of C3, and in this case the Quot scheme is the Hilbert
scheme Hilbk(C3) of k points on C3.
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2.3 Tangent-obstruction theory

The local geometry of the instanton moduli space Mr ,k is described by the instanton
deformation complex [46]

∧0 T ∗M3 ⊗ g
C−−→
∧0,1 T ∗M3 ⊗ g

⊕
∧0,3 T ∗M3 ⊗ g

DA−−−→∧0,2 T ∗M3 ⊗ g , (2.14)

whose differentials are defined by linearized complex gauge transformations C and
the linearization DA of the first equation in (2.1), respectively.

We assume that the degree zero cohomology of the complex (2.14) vanishes,
i.e. ker(C) = 0, which amounts to restricting to irreducible connections A with
only trivial automorphisms. The first cohomology ker(DA)/im(C) of the complex
(2.14) describes the tangent bundle TMr ,k −→ Mr ,k over a fixed holomorphic
connection A. The second cohomology coker(DA) defines the obstruction bundle
Obr ,k −→Mr ,k whose fibres are spanned by the zero modes of the antighost fields.

The virtual tangent bundle T virMr ,k is the two-term elliptic complex

T virMr ,k :=
[
TMr ,k

DA−−−→ Obr ,k
]
, (2.15)

where the fibrewise Kuranishi mapDA is the linearization of the first two equations in
(2.1) composed with the projector onto the subspace orthogonal to the tangent space to
the gauge orbit of A. Accordingly, we define the complex virtual dimension of Mr ,k

as

vdimMr ,k := rk(TMr ,k)− rk(Obr ,k) = dim kerDA − dim cokerDA , (2.16)

and the Euler class of its virtual tangent bundle as

e(T virMr ,k) := e
(
TMr ,k

)
e
(
Obr ,k

) . (2.17)

The complex (2.15) defines a virtual fundamental class [Mr ,k]vir; roughly speaking,
it can be thought of as the Poincaré dual of the Euler class e

(
Obr ,k

)
of the obstruction

bundle. The Atiyah–Singer index theorem computes its virtual dimension (2.16) as
the Euler character of the deformation complex (2.14). When M3 = C3, the virtual
dimension can also be computed from the ADHM parametrization by subtracting the
number of equations and gauge symmetries from the total number of ADHMvariables
(Ba, I ,Y )a ∈ 3, which vanishes:

vdimMr ,k = (3 k2 + r k + k2)− (3 k2 + r k)− k2 = 0 . (2.18)
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The ADHM parametrization of the instanton deformation complex is described by
introducing two complex vector bundles over Mr ,k whose fibres over a gauge orbit
[A] are, respectively, the complex vector spaces V and W introduced in Sect. 2.2: the
tautological rank k vector bundle

V = μC−1(0)stable ×GL(V ) V , (2.19)

and the trivial rank r Chan–Paton framing bundle

W =Mr ,k ×W . (2.20)

Then, the tangent-obstruction theory is equivalently described by the cochain com-
plex of vector bundles

End(V )
d1−−→

Hom(V ,V ⊗ Q3)

⊕
Hom(W ,V )

⊕
Hom(V ,V ⊗∧3 Q3)

d2−−→
Hom(V ,V ⊗∧2 Q3)

⊕
Hom(V ,W ⊗∧3 Q3)

, (2.21)

where the differentials d1 and d2 act fibrewise as an infinitesimal GL(V ) gauge
transformation and the linearization of the two complex ADHM equations of (2.4),
respectively, while the three-dimensional Hermitian vector space Q3 is the fundamen-
tal representation of the U(3) holonomy group. The stability condition implies that the
degree zero cohomology is trivial: ker(d1) = 0.

2.4 Instanton partition function

Since the virtual dimension is zero, the instanton partition function of the six-
dimensional cohomological gauge theory is given by

Zr ,k
C3 =

∫
[Mr ,k ]vir

1 . (2.22)

The integral (2.22) is understood as the T-equivariant volume of the moduli space
Mr ,k , evaluated via the virtual localization formula with respect to the action of some
torus group T [49]. The T-action on the moduli space induces T-equivariant structures
on the vector bundles V and W .

Ä-Background

The natural choice for T is associated with defining the gauge theory on Nekrasov’s
�-background [50, 51]. The global symmetry group of the six-dimensional cohomo-
logical field theory is
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G = PU(r)× U(3) , (2.23)

where PU(r) is the group of non-trivially acting framing rotations, and the holonomy
group U(3) acts in the fundamental representation Q3 on B = (Ba)a ∈ 3, trivially on

I , and in the determinant representation∧3Q3 on Y .
After conjugating G to its maximal torus, the symmetry group acting on the theory

is

T = T�a × T�ε , (2.24)

where T�a and T�ε are (complex) maximal tori of PU(r) and U(3) with coordinates
�a = (a1, . . . ,ar ) (the vacuum expectation values of the complex Higgs field �
parametrizing the positions of the r D6-branes) and �ε = (ε1, ε2, ε3) (the parameters
of the �-deformation), respectively. The Coulomb moduli are equivalence classes,
identified under simultaneous shifts al �−→ al + c by any c ∈ C for l = 1, . . . , r .

By the virtual localization formula [49], the full equivariant instanton partition
function is given as a function of the equivariant parameters (�a, �ε ) by a sum over
T-fixed points

Zr
C3(q; �a, �ε ) =

∞∑
k=0

qk Zr ,k
C3(�a, �ε ) =

∞∑
k=0

qk
∑

�π ∈MT
r ,k

1

eT
(
T vir
�π Mr ,k

) , (2.25)

where q is the Boltzmann weight parameter for instantons, MT
r ,k is the set of T-fixed

points of the instanton moduli space, and eT denotes the T-equivariant Euler class.

Fixed points and plane partitions

The T-fixed points of the moduli space Mr ,k are all isolated and in one-to-one corre-
spondence with arrays �π = (π1, . . . , πr ), where each πl for l = 1, . . . , r is a plane
partition [12].Aplane partition is an ordered sequenceπ = (πi, j )i, j≥1 of non-negative
integers πi, j ∈ Z≥0 decreasing along both directions:

πi, j ≥ πi+1, j and πi, j ≥ πi, j+1 . (2.26)

Wemay view π as a three-dimensional Young diagram inZ3≥0, obtained by piling πi, j

boxes over (i, j) ∈ Z2≥0. The size of π is the total number of boxes and is denoted
|π | := ∑

i, j≥1 πi, j . The size | �π | of �π is defined to be the sum of the sizes of its
components πl . Then, �π ∈MT

r ,k partitions the instanton number k:

| �π | =
r∑

l=1
|πl | = k . (2.27)

To explicitly compute theEuler classes in (2.25),we use theADHMparametrization
of the instantondeformation complex.Thefibre of the complexof vector bundles (2.21)
over the fixed point �π ∈MT

r ,k reads
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EndC(V�π )
d1−−→

HomC(V�π , V�π ⊗ Q3)

⊕
HomC(W�π , V�π )

⊕
HomC(V�π , V�π ⊗∧3 Q3)

d2−−→
HomC(V�π , V�π ⊗∧2 Q3)

⊕
HomC(V�π ,W�π ⊗∧3 Q3)

,

(2.28)

where here the vector space Q3 � C3 is regarded as the three-dimensional funda-
mental T�ε -module with weight decomposition

Q3 = t−11 + t−12 + t−13 (2.29)

in the representation ring of T�ε , where ta = e i εa .
The equivariant character of the virtual tangent bundle is computed from the index

of the complex (2.28) and is given by

chT
(
T vir
�π Mr ,k

) = W ∗
�π ⊗ V�π −

V ∗�π ⊗W�π
t1 t2 t3

+ V ∗�π ⊗ V�π
(1− t1) (1− t2) (1− t3)

t1 t2 t3
.

(2.30)

Seen as modules in the representation ring of T, it follows from the stability condition
(2.11) that, after a gauge transformation, the vector spaces V and W decompose at the
fixed point �π ∈MT

r ,k with respect to the T-action as

V�π =
r∑

l=1
el

∑
�p ∈πl

t p1−1
1 t p2−1

2 t p3−1
3 and W�π =

r∑
l=1

el , (2.31)

where el = e ial . The dual involution acts on the weights as t∗a = t−1a and e∗l = e−1l .
We can then extract the Euler classes from the top-form part of the character (2.30)
through the operation

ê
[∑

I

n I e
wI
]
=
∏
wI �=0

wnI
I . (2.32)
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Equivariant generating function

The full equivariant instanton partition function is given by the combinatorial formula

Zr
C3(q; �a, �ε ) =

∑
�π∈MT

r

q| �π | ê
[− chT(T

vir
�π Mr ,k)

]

=
∑
�π∈MT

r

q| �π |
r∏

l=1

�=0∏
�pl∈πl

Pr (−al − �pl · �ε |ε123 − �a)
Pr (al + �pl · �ε |�a)

×
r∏

l ′=1

�=0∏
�p ′

l′ ∈πl′
R(al − al ′ + ( �pl − �p ′l ′) · �ε |�ε ) ,

(2.33)

where �p · �ε :=∑a ∈ 3 pa εa .
In (2.33), we introduced the polynomial and rational functions

Pr (x | �w) =
r∏

l=1
(x − wl) and R(x |�ε ) = x (x − ε12) (x − ε23) (x − ε13)

(x − ε1) (x − ε2) (x − ε3) (x − ε123)
,

(2.34)

along with the shorthand notation

εab··· = εa + εb + · · · . (2.35)

The superscripts �=0 on the products designate the omission of terms with zero numer-
ator or denominator according to the top-form operation (2.32).

The complicated combinatorial series (2.33) can be summed to a simple closed
formula [52–54].

Theorem 2.36 The generating function Zr
C3(q; �a, �ε ) for the rank r Donaldson–

Thomas invariants of C3 with U(3) holonomy is independent of the Coulomb moduli
�a and can be expressed as

Zr
C3(q; �ε ) = M

(
(−1)r q)−r

ε12 ε23 ε13
ε1 ε2 ε3 , (2.37)

where M(q) := M(1, q) is the generating function which counts plane partitions, and

M(x, q) =
∞∏

n=1

1

(1− x qn)n
(2.38)

is the MacMahon function.
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3 Cohomological gauge theory on local Kähler three-orbifolds

In this section, we turn to the study of non-commutative instantons on orbifolds of
C3, i.e. on local three-orbifolds. We consider holomorphic actions on C3 by finite
orbifold groups which preserve the U(3) holonomy, and hence the Kähler form ω.
The orbifold cohomological gauge theory is constructed by allowing the fields to be
equivariant and gauging the orbifold group action, followed by projection to invariant
states described by equivariant decomposition of the generalized instanton equations
(2.1); this can be thought of as a field theory on the corresponding orbifold resolution
of the quotient singularity. The construction is motivated by considerations of D-
branes on orbifolds [43], and in particular it naturally incorporates ‘twisted sectors’
corresponding to conjugacy classes of the orbifold group. The orbifold BRST fixed
point equations are naturally realized in non-commutative gauge theory, along the lines
of [8, 43, 44]. Here, we describe the vacuum states via equivariant decomposition of
the corresponding ADHM parametrization.

We start by reviewing the construction of the generalized McKay quiver QΓ for
a finite subgroup Γ of SU(3). To these quivers, we associate ADHM-type equations
whichparametrize themoduli space of instantons onC3/ Γ, viewed as themoduli space
of Γ-equivariant instantons on C3, as a quiver variety, that is, as the moduli space of
stable framed representations of the boundedMcKayquiver. Then,we analyse themost
general admissible orbifoldswhich allow for the definition of a torus-equivariant gauge
theory, in both cases where Γ is an abelian and a non-abelian finite group represented
in U(3); these considerations lead to more general classes of orbifold theories based
on non-effectively acting groups Γ. Although the orbifold singularity is generally
supersymmetric only when Γ embeds in SU(3) ⊂ U(3), the orbifold instanton locus
of the cohomological gauge theory is always stable and has a realization in terms of
states of D-branes.

See Appendix A for our notational conventions for finite groups, as well as for the
classification of the finite subgroups of SU(3) which we use extensively throughout
this paper. The McKay quivers QΓ for finite subgroups Γ ⊂ SL(3,C) are described in
[55], while for small finite subgroups Γ ⊂ GL(3,C) they are detailed in [56].

3.1 Quiver varieties

Let Γ be a finite subgroup of SL(3,C) which acts onC3 by the fundamental represen-
tation Q3.

McKay quivers

The McKay quiver associated with Γ is denoted QΓ = (QΓ
0 ,Q

Γ
1

)
, where QΓ

0 and QΓ
1

denote the sets of vertices and edges, respectively, and it is constructed in the fol-
lowing way. As a set, QΓ

0 � Γ̂ is the set of irreducible representations of Γ, which
corresponds bijectively to the set of conjugacy classes of Γ. We write λi ∈ Γ̂ for the
irreducible representation labelled by i ∈ QΓ

0 ; the trivial one-dimensional representa-
tion is denoted λ0. The number of oriented edges (arrows) from a vertex i to a vertex i′
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is determined by the adjacency matrix A = (aii′)
i,i′∈QΓ

0

of tensor product multiplicities
aii′ = dimHomΓ(λi, Q3 ⊗ λi′) ∈ Z≥0 in the decomposition of Γ-modules

Q3 ⊗ λi =
⊕
i′∈QΓ

0

aii′ λi′ . (3.1)

If e ∈ QΓ
1 is an edge determined by (3.1), the source vertex of e is denoted by s(e)

and its target vertex by t(e); this defines source and targetmapsQΓ
1

s−→−→
t

QΓ
0 . The quiver

QΓ contains no loop edges e, i.e. s(e) = t(e), if and only if the trivial representation
λ0 does not appear in the decomposition of Q3 into irreducible Γ-modules.

Example 3.2 Consider the non-abelian groupΓ = C3(1, 0) = (Z3×Z3)�Z3 of typeC,
where the action of the groups Z3 × Z3 = {ci, j }i, j∈{0,1,2} and Z3 = {1,C,C2} on
C3 is given by the SU(3) matrices

ci, j =
⎛
⎝ξ

i
3
ξ
− j
3

ξ
−i+ j
3

⎞
⎠ and C =

(
0 1 0
0 0 1
1 0 0

)
, (3.3)

with ξ3 = e 2π i/3 a primitive third root of unity. As shown in [56], the group C3(1, 0)
has two three-dimensional irreducible representations, λ10 = Q3 and λ20, and nine
one-dimensional irreducible representations, λ00i , λ12i and λ21i with i ∈ {0, 1, 2},
where λ000 = λ0.

The tensor product decompositions with the fundamental representation Q3 give

Q3 ⊗ λ10 = 3 λ20 , Q3 ⊗ λ20 =
2⊕

i=0

(
λ00i ⊕ λ12i ⊕ λ21i

)
,

Q3 ⊗ λ00i = Q3 ⊗ λ12i = Q3 ⊗ λ21i = λ10 .

(3.4)

The generalized McKay quiver QC3(1,0) constructed from these representation theory
data is

000 001 002 120 121 122 210 211 212

20

10

(3.5)

Enhanced framed quiver representations

The McKay quiver QΓ = (
QΓ
0 ,Q

Γ
1

)
serves as a powerful combinatorial device for

describing the Γ-equivariant decomposition of the ADHM equations (2.4), which we
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view as BRST fixed point equations for a cohomological field theory on the orbifold
crepant resolution

πorb :
[
C3 / Γ

] −→ C3 / Γ (3.6)

of the quotient singularity C3/ Γ. A field on the quotient stack [C3/ Γ] is the same
thing as a Γ-equivariant field on C3; for example, we may present the quotient stack
as the action groupoid Γ×C3 −→−→ C3 and the morphism πorb as the quotient map to
the orbit space. The nodes i ∈ QΓ

0 specify the basis of fractional instantons which
are stuck at the orbifold singularity. The McKay quiver will also aid in describing the
corresponding moduli space of solutions.

To implement the orbifold projection, we regard the Hermitian vector spaces V and
W as Γ-modules and decompose them into irreducible representations of the orbifold
group as

V =
⊕
i∈QΓ

0

Vi ⊗ λ∗i and W =
⊕
i∈QΓ

0

Wi ⊗ λ∗i . (3.7)

The multiplicity spaces Vi = HomΓ(λi, V ) and Wi = HomΓ(λi,W ) are Hermitian
vector spaces of complex dimensions ki and ri, respectively, which carry a trivial Γ-
action; the dimensions ki are called fractional instanton charges. We assemble the
dimensions into vectors �k, �r ∈ Z

QΓ
0≥0 . The dimensions k = dim V and r = dim W

correspondingly decompose into sums

k = |�k | :=
∑
i∈QΓ

0

di ki and r = |�r | :=
∑
i∈QΓ

0

di ri , (3.8)

where di is the dimension of the irreducible representation λi. The special case of n
freely moving instantons corresponds to taking ki = n di, with total charge k = n #Γ;
when n = 1 this is called a regular instanton, as it lives in the regular representation
C[Γ] of the orbifold group Γ.

Next we regard the ADHM variables as Γ-equivariant maps

(B, I ,Y ) ∈ HomΓ(V , V ⊗ Q3) ⊕ HomΓ(W , V ) ⊕ HomΓ(V , V ⊗∧3Q3) .

(3.9)

From (3.1) and Schur’s lemma, it follows that B decomposes into linear maps associ-
ated with each edge of the McKay quiver:

B =
⊕

e∈QΓ
1

Be with Be : Vs(e) −→ Vt(e) . (3.10)

Thus the ADHM datum B defines a linear representation of the McKay quiver QΓ

with dimension vector �k.
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Similarly, I decomposes into linear maps associated with each vertex:

I =
⊕
i∈QΓ

0

Ii with Ii : Wi −→ Vi . (3.11)

Thus, I defines a framing of the representation of theMcKayquiverQΓ with dimension
vector �r .

Finally, since Γ ⊂ SL(3,C), it follows that the determinant representation∧3Q3 �
λ0 is trivial as a Γ-module and hence

Y =
⊕
i∈QΓ

0

Yi with Yi ∈ EndC(Vi) . (3.12)

We may depict the decomposition of Y by the addition of a single edge loop at each
vertex. We call this an enhancement of the framed quiver representation of QΓ.

Orbifold ADHM equations

The set of maps (Be, Ii,Yi)
e∈QΓ

1 ,i∈QΓ
0

satisfy ADHM-type equations which are derived

by decomposing the equations (2.4) as Γ-equivariant maps

(
μC, μR, σ

) ∈ HomΓ(V , V ⊗∧2Q3) ⊕ EndΓ(V ) ⊕ HomΓ(V ,W ⊗∧3Q3) .

(3.13)

Since ∧3Q3 � λ0, the second and third equations have isotypical components
which live at the vertices i ∈ QΓ

0 . Writing their equivariant decompositions

μR =
⊕
i∈QΓ

0

μR
i and σ =

⊕
i∈QΓ

0

σi , (3.14)

with μR
i ∈ EndC(Vi) and σi ∈ HomC(Vi,Wi), these equations read explicitly as

μR
i :=

∑
e∈ t−1(i)

Be B†
e −

∑
e∈ s−1(i)

B†
e Be +

[
Y †
i ,Yi

]+ Ii I †i = ζi 1Vi ,

σi := I †i Yi = 0 ,

(3.15)

for all i ∈ QΓ
0 , where the Fayet–Iliopoulos parameters ζi ∈ R>0 are determined by the

decomposition of the Neveu–Schwarz B-field into twisted NS–NS sectors of type IIA
string theory on C3/ Γ.
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The isotypical decomposition of the equations μC ∈ HomΓ(V , V ⊗ ∧2Q3) is
more complicated. We start by rewriting it in a basis independent form as

μC = B ∧ B − 〈B†,Y 〉Q3 + 〈Y , B†〉Q3 = 0 , (3.16)

where 〈 ·, · 〉Q3 is the Hermitian inner product on Q3. The equations μC
ab = 0 from

(2.4) follow by expanding B in the canonical basis of Q3 = C3.
The tensor product decomposition (3.1) together with triviality of the determinant

representation imply

∧2Q3 ⊗ λi � Q∗3 ⊗ λi =
⊕
i′∈QΓ

0

ai′i λi′ . (3.17)

Hence, the multiplicities of linear maps from Vi to Vi′ given by the isotypical decom-
position of the equations μC is equal to the number of oriented edges connecting the
vertex i′ to the vertex i; that is, the number of arrows i′ −→ i in the opposite direction.
In particular, the isotypical components of μC can be labelled by the edges e ∈ QΓ

1 .
Writing the equivariant decomposition μC = 0 as

μC =
⊕

e∈QΓ
1

μC
e , (3.18)

the ADHM equations μC
e = 0 can be inferred from unravelling (3.16) in a basis

tailored to the particular Γ-action on C3, by multiplying matrices in the equivariant
decompositions (3.10) and (3.12). In concrete examples, the equations are always
independent of all choices made for a particular quiver QΓ.

Example 3.19 Let Γ be a finite subgroup of SU(2) acting in the fundamental representa-
tion Q2 on an affine planeC2 ⊂ C3 and trivially on the affine lineC = C3\C2. Then,
C3/ Γ � C2/ Γ × C. Since the representation Q2 � Q∗2 is self-dual, the adjacency

matrix A of the McKay quiver QΓ is symmetric, i.e. aii′ = ai′i. Thus, QΓ = DynkΓ is
the double of a quiverDynkΓ, i.e. the quiver with the same set of nodesQΓ

0 = DynkΓ 0

and with arrow set QΓ
1 = DynkΓ 1 � Dynkop

Γ 1
, where the opposite quiver Dynkop

Γ
is

obtained fromDynkΓ by reversing the orientation of the edges. By the classicalMcKay
correspondence [57], the quiver DynkΓ is associated with any choice of orientation of
an affine Dynkin diagram of type ADE [58, 59], with an additional edge loop at each
vertex. In this case we label the vertices of the McKay quiver as QΓ

0 = {0, 1, . . . , rΓ},
where 0 indicates the trivial representation and rΓ is the rank of the corresponding
simply laced Lie algebra gΓ.

To each arrow e of the extended Dynkin diagram underlying DynkΓ, we associate
two linear maps Be : Vs(e) −→ Vt(e) and B̄e : Vt(e) −→ Vs(e). To each vertex i of
DynkΓ, we associate three maps L i, Ii,Yi ∈ EndC(Vi). Then, the ADHM equations
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(3.15) and (3.16) can be expressed as

μC
i =

∑
e∈ s−1(i)

B̄e Be −
∑

e∈ t−1(i)
Be B̄e +

[
L†
i ,Yi

] = 0 ,

μC
e = L t(e) Be − Be Ls(e) − B̄†

e Ys(e) + Yt(e) B̄†
e = 0 ,

μ̄C
e = Ls(e) B̄e − B̄e L t(e) + B†

e Ys(e) − Yt(e) B†
e = 0 ,

μR
i =

∑
e∈ t−1(i)

(
Be B†

e − B̄†
e B̄e

)− ∑
e∈ s−1(i)

(
B†

e Be − B̄e B̄†
e

)

+ [Y †
i ,Yi

]+ [L†
i , L i

]+ Ii I †i = ζi 1Vi ,

σi = I †i Yi = 0 .

(3.20)

This construction is independent of the choice of orientation of the Dynkin diagram.

Moduli spaces of orbifold instantons

The action of Γ on the decompositions (3.7) is defined by group homomorphisms
γV : Γ −→ U(k) and γW : Γ −→ U(r) with

γV (g)
(
vi ⊗ �i

) = vi ⊗ (λ∗i (g)(�i)) and γW (g)
(
wi ⊗ �i

) = wi ⊗ (λ∗i (g)(�i)) ,
(3.21)

for all g ∈ Γ, �i ∈ λ∗i , v
i ∈ Vi and wi ∈ Wi, where λ∗i (g) ∈ U(di). These break the

U(k) and U(r) symmetries to the subgroups

U
(�k ) :=×

i∈QΓ
0

U(ki) and U(�r ) :=×
i∈QΓ

0

U(ri) (3.22)

commuting with the respective Γ-actions in (3.21). In the type IIA picture, the isotyp-
ical components of (3.7) specify fractional D0-branes and D6-branes, respectively,
whose bound states can be identified geometrically with Γ-equivariant sheaves onC3.

The action of a unitary automorphism

g = (gi)
i∈QΓ

0

∈ U
(�k ) (3.23)

on the orbifold ADHM data, given by

g · (Be , Ii , Yi
)
i∈QΓ

0 , e∈QΓ
1

= (gt(e) Be g−1s(e) , gi Ii , gi Yi g−1i

)
i∈QΓ

0 , e∈QΓ
1

, (3.24)

leaves the ADHM equations (3.15) and (3.16) invariant. Let

�μ := (μC , μR
i , σi

)
i∈QΓ

0

and �ζ := (0 , ζi , 0)
i∈QΓ

0

. (3.25)
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For each pair of dimension vectors �k, �r ∈ Z
QΓ
0≥0 , we define the quiver variety as the

quotient

M�r ,�k = �μ−1(�ζ ) /U(�k ) . (3.26)

The quiver varieties form the connected components of the stratification of the
moduli space

MΓ
r ,k =

⊔
|�r |=r , |�k |=k

M�r ,�k (3.27)

of charge k non-commutative U(r) instantons on the Calabi–Yau orbifold C3/ Γ. It
can be regarded as a moduli space of modules over a corresponding path algebra of the
quiver QΓ, which is Morita equivalent to the skew group algebraC[Q3]�Γ. We view
this algebra as a non-commutative crepant resolution of the quotient singularityC3/ Γ,
and identify MΓ

r ,k as the moduli space for the non-commutative Donaldson–Thomas
theory of C3/ Γ.

Remark 3.28 (Framing Symmetry) The quiver variety (3.26) is invariant under the
framing rotations

h = (hi)
i∈QΓ

0

∈ U(�r ) (3.29)

which act on the orbifold ADHM data as

h · (Be , Ii , Yi
)
i∈QΓ

0 , e∈QΓ
1

= (Be , Ii h
−1
i , Yi

)
i∈QΓ

0 , e∈QΓ
1

. (3.30)

The maximal torus of the global colour group U(�r ) is

T�a =×
i∈QΓ

0

T�ai , (3.31)

where T�ai is the maximal torus of U(ri).

Remark 3.32 (Trivial Orbifold) The McKay quiver associated with the action of the
trivial group Γ = 1 on C3 is the three-loop quiver L3:

• (3.33)
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Its enhanced framed ADHM representation is

W V

B1 B2

B3Y

I (3.34)

In this case the equations (3.15) and (3.16) reduce to the ADHM equations (2.4) of
Sect. 2.2, andM1

r ,k is the moduli spaceMr ,k of rank r non-commutative k-instantons
on C3. Note that (3.34) is identical to the framed ADHM quiver representation for
SU(4)-instantons on C4 [18]. This is not a coincidence; it will be explained through
the introduction of tetrahedron instantons in Sect. 4.

Stability and Quot schemes

A set of maps (3.10) and (3.11) is said to be stable if there are no proper Γ-submodules

S =
⊕
i∈QΓ

0

Si ⊗ ρ∗i (3.35)

of V such that Be(Ss(e)) ⊂ St(e), Y †
i (Si) ⊂ Si and im(Ii) ⊂ Si, for all i ∈ QΓ

0 and

e ∈ QΓ
1 . The stability condition is equivalent to the condition that the actions of the

operators Be and Y †
i for e ∈ QΓ

1 and i ∈ QΓ
0 on I i

′
(Wi′) generate the subspaces Vi′′ .

Similarly to the proof of [5], we can show that the D-term equations μR
i = ζi 1Vi in

(3.15) for generic Fayet–Iliopoulos parameters ζi > 0 can be traded for the stability
condition.

Let Πi be the orthogonal projection of Vi to the orthogonal complement S⊥i of the

invariant subspace Si ⊂ Vi, for each i ∈ QΓ
0 . ThenΠi Ii = 0,Πt(e) Be Πs(e) = Πt(e) Be

and Πi Y
†
i Πi = Πi Y

†
i , so

0 ≤
∑
i∈QΓ

0

ζi dim S⊥i =
∑
i∈QΓ

0

TrVi

(
Πi μ

R
i

)

=
∑

e∈QΓ
1

TrVt(e)

(
Πt(e) Be B†

e − Be Πs(e) B†
e

)+ ∑
i∈QΓ

0

TrVi

(
Πi Y

†
i Yi −Πi Yi Y

†
i

)

= −
∑

e∈QΓ
1

∥∥(1Vt(e) −Πt(e)) Be Πs(e)
∥∥2

F
−
∑
i∈QΓ

0

∥∥(1Vi −Πi) Y †
i Πi

∥∥2
F
≤ 0 .

(3.36)

This implies that Si = Vi for all i ∈ QΓ
0 .
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The equations μC = 0 from (3.16) arise as the complex moment map equations
μC

ab = 0 from (2.4) for the Γ-equivariant decomposition (3.18). Since the equations
μC

ab = 0 are equivalent to the commuting relations [Ba, Bb] = 0 and [Ba,Y †] = 0,
we can replace (3.16) with the equations

B ∧ B = 0 and 〈B†,Y 〉Q3 = 〈Y , B†〉Q3 . (3.37)

In particular, the second equation in (3.37) implies

B†
e Yt(e) = Ys(e) B†

e , (3.38)

for all e ∈ QΓ
1 . Then the relations (3.37) and the equations σi = 0 from (3.15) enable

us to restate the stability condition as the condition that the actions of the operators
Be for e ∈ QΓ

1 on I i(Wi) generate the subspaces Vj. As a consequence, Y †
i = 0 for all

i ∈ QΓ
0 .

The quiver variety (3.26) may now be equivalently described as the non-
commutative Γ-Quot scheme

M�r ,�k � μC−1(0)stable
/
G�k , (3.39)

where stable designates the stable solutions of (3.15) with Y = 0, and

G�k :=×
i∈QΓ

0

GL(ki,C) (3.40)

is the complex gauge group of the Γ-module V , acting on the orbifold ADHM data as
in (3.24). In this holomorphic description, the orbifold instanton moduli space MΓ

r ,k
parametrizes zero-dimension-al quotients ofO⊕r

[C3/Γ] with length k.When r = 1 these
correspond to properly supported substacks of the orbifold resolution [C3/ Γ], which
may be regarded as zero-dimensional Γ-invariant closed subschemes of C3.

3.2 Non-effective orbifolds

The global symmetries of the cohomological gauge theory which are used to define
equivariant instanton partition functions severely restrict the allowed Γ-actions. In
order to preserve the holonomy, Γ must be a subgroup of U(3), whereas to preserve
the maximal torus T = T�a× T�ε it must commute with the action of the maximal torus
T�ε ⊂ U(3). These conditions force Γ to be an abelian diagonally embedded subgroup
of U(3), and if Γ ⊂ SU(3) it is of the form Γ = Zn1 × Zn2 with order n = n1 n2. The
orbifold instanton partition functions in this case have been thoroughly analysed in
[43].

However, we can relax the condition that Γ is an embedded subgroup of the holon-
omy group and consider generic finite abelian groups Γ by defining the action of Γ on
C3 via a homomorphism τ : Γ −→ U(3) whose image lies in the maximal torus T�ε ;
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this provides a (not necessarily faithful) representation of Γ in the holonomy group.
Even more generally, we can still define an equivariant gauge theory for any finite
group Γ as long as the theory has a torus action commuting with the Γ-action, in
order to enable the application of the virtual localization formula. The quotient stacks
obtained from these more general quotients ofC3 yield ‘twisted’ orbifold resolutions,
in a sense which we momentarily explain.

Let

τ : Γ −→ U(3) (3.41)

be a homomorphism from a finite group Γ to the holonomy group. Although Γ is not
necessarily a finite subgroup of U(3), the image τ(Γ) is. To identify this subgroup, we
note that the kernel

Kτ := ker(τ ) (3.42)

is a normal subgroup of Γ, and the First Isomorphism Theorem for groups implies

τ(Γ) � Γ
/
Kτ . (3.43)

We write Γτ ↪−→U(3) for the embedding of Γ/ Kτ in the holonomy group by the
isomorphism (3.43).

We can collect the finite groups introduced so far into a short exact sequence

1 −→ Kτ −→ Γ −→ Γτ −→ 1 . (3.44)

Whereas Γτ acts effectively on C3, because it is represented faithfully in U(3), its
extension Γ acts non-effectively, because the subgroup Kτ acts trivially on C3 by
construction. The extension (3.44) means that Γ acts on C3 by first projecting to Γτ ,
and the quotient stack [C3/ Γ] is a principalBKτ -bundle, i.e. aKτ -gerbe, over [C3/ Γτ ];
the classifying stack

BKτ = [1 / Kτ ] (3.45)

may be presented as the delooping groupoid Kτ −→−→ 1. Since τ(Γ) ⊂ U(3), it is a
Kähler Kτ -gerbe.

To implement the quotient by the trivially acting kernel in (3.43), we take the semi-
direct product of the groupoids presenting [C3/ Γ] and BKτ [60]. Since the Kτ -action
on C3 is trivial, this is just the direct product [C3/ Γ] × BKτ , which has the same
orbit space as the quotient stack [C3/ Γτ ]. Hence, we regard it as a ‘twisted’ orbifold
resolution

πtw
orb :

[
C3 / Γ

] × BKτ −→ C3 / Γτ (3.46)

of the quotient singularity C3/ Γτ .
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The cohomological gauge theory on the non-effective orbifold [C3/ Γ] is not the
same as the theory on [C3/ Γτ ], even though the kernel Kτ ⊂ Γ acts trivially on C3:
gauging a non-effective group action is not equivalent to gauging an effective group
action [61]. This will become evident in our ensuing constructions of quiver varieties
below, as well as in explicit computations of orbifold instanton partition functions. If
Z(Kτ ) denotes the centre of Kτ , then the 2-group BZ(Kτ ) acts on BKτ and on [C3/ Γτ ].
In the modern language of generalized global symmetries [62], in addition to Γτ -
equivariance, the fields of the non-effective orbifold theory are equivariant under a
one-form symmetry corresponding to the action of BZ(Kτ ) by translations along the
fibres of the Kτ -gerbe [C3/ Γ] over [C3/ Γτ ].

We interpret this theory as the orbifold Donaldson–Thomas theory of [C3/ Γτ ]
twisted by a Kτ -gerbe, which computes the ordinary (untwisted) Donaldson–Thomas
invariants of C3/ Γτ if and only if τ is a monomorphism. This is supported by the
general statement [63] that a sheaf on a gerbe is the same thing as a twisted sheaf on
the underlying base.Whence a Γ-equivariant coherent sheaf onC3 is a Kτ -projectively
Γτ -equivariant coherent sheaf onC3. Similarly to [64], where the Donaldson–Thomas
invariants of gerbes over projective Calabi–Yau orbifolds are studied in this setting, we
shall find that the cohomological gauge theory on the Kτ -gerbe [C3/ Γ] is equivalent
to a suitable twist of the cohomological gauge theory on a disjoint union of #Kτ copies
of the base [C3/ Γτ ].

This picture is in agreement with the structure of boundary states of D-branes in
non-effective orbifolds, which is discussed in [61, 63]. Although the subgroup Kτ acts
trivially on C3, in general Kτ can act non-trivially on the Chan–Paton bundles, as in
(3.21). This is consistent as long as one distinguishes boundary states in each of the
twisted sectors corresponding to conjugacy classes in K̂τ . The combination of a trivial
Kτ -action on C3 and a non-trivial Kτ -action on the Chan–Paton bundles means that
the worldvolume theories of D-branes on the non-effective orbifold support twisted
gauge bundles, as in the more familiar cases of D-branes in flat non-trivial B-field
backgrounds [65].

Remark 3.47 (Banded Gerbes) If Γ is a central extension of Γτ , then Z(Kτ ) = Kτ and
[C3/ Γ] −→ [C3/ Γτ ] is a banded Kτ -gerbe. It is trivial if and only if the principal
Γτ -bundle C3 −→ [C3/ Γτ ] has a lift to a principal Γ-bundle on [C3/ Γτ ] [63].
Notation 3.48 We write Γab for a general finite abelian group. It takes the form

Γab =
p×

i=1
Zni , (3.49)

with order n = n1 · · · n p. The set Γ̂ab is also an abelian group, isomorphic to Γab,
under the tensor product of irreducible representations.

If we use a homomorphism τ to represent the action of a finite non-abelian group
Γ on C3, then there are two possible classes of groups which are of the form

Γm = Υm × Γab , (3.50)
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where Υm is a finite non-abelian subgroup of SU(m) for m = 2, 3. We call the
corresponding twisted orbifold resolution of the quotient singularity C3/ Γm an
SU(m)× abelian orbifold. In contrast to the abelian orbifolds based on Γab alone,
neither of these orbifold actions commute with the maximal torus T�ε .

In general, the maximal torus is broken to the centralizer Cτ of the image of Γ in T�ε
under the homomorphism τ . The maximal torus of the equivariant gauge theory thus
becomes

Tτ = T�a × Cτ . (3.51)

We proceed to study each of the three cases of Notation 3.48 in turn.

Abelian orbifolds

Since the irreducible representations of an abelian group are all one-dimensional, the
most general representation of Γab in U(3) which commutes with the maximal torus
T�ε is through a homomorphism τ�s : Γab −→ U(3) specified by a triple of weights
�s = (s1, s2, s3). It is defined by

τ�s (Γab) = ρs1(Γab)× ρs2(Γab)× ρs3(Γab) ⊂ U(1)×3 ⊂ U(3) , (3.52)

where ρs : Γab −→ U(1) is the unitary irreducible representation of Γab with weight
s. This defines the action of Γab on C3 as the three-dimensional Γab-module

Q�s3 = ρs1 ⊕ ρs2 ⊕ ρs3 . (3.53)

The kernel of τ�s is the subgroup of Γab given by

K�s := ker(τ�s) = ker(ρs1) ∩ ker(ρs2) ∩ ker(ρs3) (3.54)

The McKay quivers Qτ�s (Γab) are built similarly to the construction in Sect. 3.1. To
each irreducible representation of Γab, we associate a vertex s ∈ Γ̂ab. Using

ρs ⊗ ρs′ � ρs+s′ and ρ∗s � ρ−s , (3.55)

the number ass′ of arrows connecting vertex s to vertex s′ is determined by the tensor
product decomposition of Γab-modules

Q�s3 ⊗ ρs = ρs1+s ⊕ ρs2+s ⊕ ρs3+s (3.56)

to be

ass′ = δs′,s+s1 + δs′,s+s2 + δs′,s+s3 . (3.57)

123



Tetrahedron instantons on orbifolds Page 27 of 99    11 

Example 3.58 Let Γab = Z2 × Z2 × Z2 be represented in SO(3) ⊂ U(3) as

τ�s (Z×32 ) = ρ(1,0,0)(Z
×3
2 )× ρ(0,1,0)(Z

×3
2 )× ρ(1,1,0)(Z

×3
2 ) , (3.59)

with

ρ(l1,l2,l3)
(
ξ

n1
2 , ξ

n2
2 , ξ

n3
2

) = eπ i (n1 l1+n2 l2+n3 l3) , (3.60)

where ξ2 is the generator of Z2 and li , ni ∈ {0, 1}. The kernel of τ�s is

K�s = Z2 , (3.61)

generated by (1, 1, ξ2) ∈ Z×32 . It follows from (3.43) that the image of τ�s

(
Z×32

)�s � Z2 × Z2 (3.62)

is the Klein four-group in SO(3), generated by (ξ2, 1, 1) and (1, ξ2, 1).

The generalized McKay quiver Qτ�s (Z
×3
2 ) is the disconnected quiver

(0, 1, 0) (1, 0, 0) (1, 0, 1) (1, 1, 1)

(0, 0, 0) (0, 0, 1)

(1, 1, 0) (0, 1, 1)

(3.63)

Thus,

Qτ�s (Z
×3
2 ) = QZ×22 � QZ×22 , (3.64)

whereQZ×22 is theMcKay quiver for the toric Calabi–Yau three-orbifoldC3/Z2 × Z2
considered in e.g.[43, Sect. 6]. This represents the twisted orbifold resolution

πtw
orb :

[
C3 /Z2 × Z2 × Z2

] × BZ2 −→ C3 /Z2 × Z2 . (3.65)

Since τ�s (Γab) commutes with T�ε = U(1)×3, the maximal torus of the equivariant
gauge theory is unbroken and is again

T = T�a × T�ε . (3.66)

We study this gauge theory in detail in Sect. 3.3.
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SU(2)× Abelian orbifolds

Let Γ2 = Υ2 × Γab, where Υ2 is a finite non-abelian subgroup of SU(2) acting on
C2 in the fundamental representation Q2. Let Γ2 act on C3 via the homomorphism
τ�s : Γ2 −→ U(3) defined by

τ�s (Γ2) =
(
Υ2 × ρs1(Γab)

) × ρs2(Γab) ⊂ U(2)× U(1) ⊂ U(3) , (3.67)

where �s = (s1, s2) and as before ρs : Γab −→ U(1) is the unitary irreducible represen-
tation ofΓabwithweight s. This defines the action ofΓ2 onC3 as the three-dimensional
Γ2-module

Q�s3 = (Q2 ⊗ ρs1) ⊕ (λ0 ⊗ ρs2) , (3.68)

where λ0 is the trivial one-dimensional representation of Υ2. The kernel of τ�s is the
normal subgroup

K�s := ker(τ�s) =
{
(g, ξ) ∈ Υ2 × Γab

∣∣ g = ρ−s1(ξ)12 ∈ Υ2 , ξ ∈ ker(ρs2)
}
(3.69)

of Γ2.
When �s = (0, 0), the kernel is K(0,0) = 12×Γab and theMcKay quiverQτ(0,0)(Γ2) =

QΥ2 is constructed in Example 3.19 as the double of an oriented affineDynkin diagram
DynkΥ2

of type ADE.
When �s �= (0, 0), the associated McKay quiverQτ�s (Γ2) is formed from #Γab copies

of the vertices of the McKay quiver QΥ2 , one for each irreducible representation ρs

of Γab. An irreducible representation

R(i,s) = λi ⊗ ρs (3.70)

of Γ2 is labelled by a pair (i, s), where i ∈ QΥ2
0 labels an irreducible representation λi

of Υ2 and s ∈ Γ̂ab. The number a(i,s) (i′,s′) of arrows from the vertex (i, s) to the vertex
(i′, s′) in Qτ�s (Γ2) is determined by the tensor product decomposition of Γ2-modules

Q�s3 ⊗R(i,s) =
⊕

i′∈QΥ2
0

aΥ2
ii′ R(i′,s1+s) ⊕ R(i,s2+s) , (3.71)

where AΥ2
= (aΥ2

ii′
)
is the adjacency matrix of the simply laced extended Dynkin

diagram corresponding to Υ2. Thus,

a(i,s) (i′,s′) = aΥ2
ii′ δs′,s+s1 + δi′,i δs′,s+s2 . (3.72)

Example 3.73 Let Υ2 = S∗3 ⊂ SU(2) be the generalized quaternion group of order
12; this is the binary extension of the symmetric group S3 ⊂ SO(3) of degree three,
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which corresponds to the dihedral group D3 = Z3 � Z2 of the triangle in the ADE
classification. It has a pair of two-dimensional irreducible representations, λ2 = Q2
and λ3, and four one-dimensional irreducible representations, λ0, λ1, λ4 and λ5. Given
an orientation for the affine Dynkin diagram of type D5, the McKay quiver QS∗3 is

1 4

2 3

0 5

(3.74)

Let Γ2 = S∗3 ×Z2, acting onC3 as in (3.67) with weights s1 = 1 and s2 = 0. The
kernel of τ(1,0) is

K(1,0) = Z2 × Z2 , (3.75)

embedded as the central subgroup {±12} × Z2 ⊂ S∗3 × Z2. It follows from (3.43) that
the image of τ(1,0) is given by

(S∗3 × Z2)
(1,0) � S3 , (3.76)

where S3 = S∗3 /Z2 under the double covering

S∗3 ↪ SU(2)

S3 ↪ SO(3)

(3.77)

The McKay quiver Qτ(1,0)(S
∗
3×Z2) is

• •

• •

• •

◦ ◦

◦ ◦

◦ ◦

(3.78)

where the empty (filled) vertices carry the irreducible representation ρ0 (ρ1) of Z2.
This represents the twisted orbifold resolution

πtw
orb :

[
C3 /S∗3 × Z2

] × BZ×22 −→ C3 /S3 (3.79)
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of the dihedral singularity C3 /S3, whose standard non-commutative Donaldson–
Thomas theory is studied in [66].

Indeed, the quiver (3.78) is a four-cover lift of the McKay quiver QS3 :

1

2

0

(3.80)

which can also be obtained from (3.74) by removing representations of SU(2) which
are not pullbacks of representations of SO(3) by (3.77).

The centralizer of τ�s (Γ2) is

C�s = U(1)×2�ε ⊂ T�ε = U(1)×3 , (3.81)

consisting of diagonal matrices

(
t1 12

t2

)
, (3.82)

where �ε = (ε1, ε2) are the equivariant parameters and ta = e i εa . It follows that the
maximal torus of the equivariant gauge theory is broken to

T�s = T�a × U(1)×2�ε . (3.83)

In the notation of Example 3.19, the action of U(1)×2�ε on the ADHM data
(B, B̄, L, I ,Y ) is

(B, B̄, L, I ,Y ) �−→ (
t−11 B , t−11 B̄ , t−12 L , I , t−21 t−12 Y

)
. (3.84)

Remark 3.85 (SU(3)-Holonomy) Restricting the holonomy to SU(3) ⊂ U(3) imposes
the constraint

ρ 2s1(ξ) ρs2(ξ) = 1 , (3.86)

for all ξ ∈ Γab. This implies 2s1 + s2 = 0. In this sector of the equivariant gauge
theory the centralizer is broken to U(1)ε with ε := ε2 = −2 ε1.

SU(3)× Abelian orbifolds

Let Γ3 = Υ3 × Γab, where Υ3 is a finite non-abelian subgroup of SU(3) acting on
C3 in the fundamental representation Q3. Let Γ3 act on C3 by the homomorphism
τs̃ : Γ3 −→ U(3) defined by

τs̃(Γ3) = Υ3 × ρs̃(Γab) ⊂ U(3) . (3.87)
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This defines the action of Γ3 on C3 as the three-dimensional Γ3-module

Qs̃
3 = Q3 ⊗ ρs̃ . (3.88)

The kernel of τs̃ is the normal subgroup of Γ3 given by

Ks̃ := ker(τs̃) =
{
(g, ξ) ∈ Υ3 × Γab

∣∣ g = ρ−s̃(ξ)13 ∈ Υ3
}

(3.89)

The McKay quiver Qτs̃ (Γ3) is constructed in a completely analogous way to the
McKay quivers for the SU(2)× abelian orbifolds above, starting from the general
construction of the McKay quivers QΥ3 for finite subgroups Υ3 ⊂ SU(3) dis-
cussed in Sect. 3.1. Again there are #Γab copies of the vertices of QΥ3 , labelled by
(i, s) ∈ QΥ3

0 × Γ̂ab. The number of arrows a(i,s) (i′,s′) from the vertex (i, s) to the vertex
(i′, s′) in Qτs̃ (Γ3) is given by

a(i,s) (i′,s′) = aΥ3
ii′ δs′,s+s̃ , (3.90)

where AΥ3
= (aΥ3

ii′
)
is the adjacency matrix of QΥ3 .

The centralizer of τs̃(Γ3) is

Cs̃ = U(1)ε ⊂ T�ε , (3.91)

consisting of diagonal matrices t 13 where t = e i ε . The maximal torus of the equiv-
ariant gauge theory is thereby broken to

Ts̃ = T�a × U(1)ε . (3.92)

In the notation of Sect. 3.1, the torus U(1)ε acts on the ADHM data (B, I ,Y ) as

(B, I ,Y ) �−→ (
t−1 B , I , t−3 Y

)
. (3.93)

Unlike the previous case of SU(2)× abelian orbifolds, it is not possible to define
a twisted Calabi–Yau quotient stack for the cohomological gauge theory. Indeed, if
the holonomy group were reduced to SU(3), then the centralizer would be Z3, and the
only Z3-fixed point is B = Y = 0.

3.3 Abelian orbifold partition functions

In the remainder of this section,we define and evaluate the instanton partition functions
for the twisted quotient stacks [C3 / Γab] ×BK�s , where Γab is a generic finite abelian
group acting onC3 by the homomorphism τ�s : Γab −→ U(3) defined in (3.52). Then,
the image τ�s (Γab) commutes with T�ε , and both the holonomy group U(3) as well as
the maximal torus T = T�a × T�ε are preserved. This generalizes the cases where τ�s is
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a monomorphism (K�s = 1) and Γab is a finite abelian subgroup of SL(3,C), which
were exhaustively discussed in [43].

We do not treat the non-abelian SU(m)× abelian orbifolds in this section. They
will appear in Sect. 5 as special cases in our treatment of tetrahedron instantons on
orbifolds.

Moduli spaces

We follow closely the construction of quiver varieties from Sect. 3.1, except that now
we carefully relax the Calabi–Yau condition of SU(3) holonomy by using the isomor-
phisms of Γab-modules

∧2Q�s3 � ρs12 ⊕ ρs13 ⊕ ρs23 and ∧3Q�s3 � ρs123 , (3.94)

where we introduced the shorthand notation

sab··· = sa + sb + · · · . (3.95)

The vertices of the McKay quiver Qτ�s (Γab) are labelled by the weights s ∈ Γ̂ab of
irreducible representations ρs of Γab, while the edge structure is given by (3.57).

It follows that the isotypical components of the ADHM data (B, I ,Y ) are linear
maps

Bs
a : Vs −→ Vs+sa , I s : Ws −→ Vs and Y s : Vs −→ Vs+s123 , (3.96)

for a ∈ 3 . In the quiver picture, the maps (Bs
a,Y s, I s)

s∈Γ̂ab, a ∈ 3 constitute the field
content of the quiver varietyM�r ,�k . They are required to satisfy the Γab-equivariant ver-
sion of the ADHM equations (2.4), where the isotypical components of (μC, μR, σ )

are linear maps

μCs
ab : Vs −→ Vs+sab , μRs : Vs −→ Vs and σ s : Vs −→ Ws+s123 , (3.97)

for (a, b) ∈ 3⊥.
The component equations then read

μCs
ab = Bs+sb

a Bs
b − Bs+sa

b Bs
a − 1

2 εabc
(
Bs+sab†

c Y s − Y s−sc Bs−sc†
c

) = 0 ,

μRs =
∑
a ∈ 3

(
Bs−sa

a Bs−sa†
a − Bs†

a Bs
a
)+ Y s† Y s − Y s−s123 Y s−s123† + I s I s† = ζs 1Vs ,

σ s = I s+s123† Y s = 0 .
(3.98)
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These equations are invariant under the action of unitary automorphisms g ∈ U(�k )
given by

g · (Bs
a , I s , Y s)

s∈Γ̂ab , a ∈ 3 =
(
gs+sa Bs

a g−1s , gs I s , gs+s123 Y s g−1s

)
s∈Γ̂ab , a ∈ 3 .

(3.99)

As in Sect. 3.1, the D-term relation can be traded for a stability condition.
Themaximal torus T�a of the usual framing symmetry fromRemark 3.28 gives rise to

an equivariant decomposition of the Coulomb moduli �a = (a1, . . . ,ar ) = (�as)s∈Γ̂ab
,

which associates rs = dim Ws parameters �as to the irreducible representation ρs . This
defines a map

s : {1, . . . , r} −→ Γ̂ab , l �−→ s(l) . (3.100)

Fixed points and coloured plane partitions

Since the actions of Γab and T commute, the T-fixed points of the moduli spaceMΓab
r ,k

are all isolated and are in one-to-one correspondence with arrays of plane partitions
�π = (π1, . . . , πr ) of size k. Each plane partition πl is coloured according to the Γab-
colouring defined through the homomorphism τ�s and the isomorphism Γ̂ab � Γab of
finite abelian groups by

Z⊕3≥0 −→ Γ̂ab , �n = (n1, n2, n3) �−→ ρ⊗n1
s1 ⊗ ρ⊗n2

s2 ⊗ ρ⊗n3
s3 , (3.101)

where the box of πl situated at �p ∈ Z3
>0 carries an irreducible representation of the

orbifold group Γab given by

ρ l; �p := ρs(l) ⊗ ρ
⊗(p1−1)
s1 ⊗ ρ

⊗(p2−1)
s2 ⊗ ρ

⊗(p3−1)
s3 . (3.102)

When �π ∈MT
�r ,�k , the total number of boxes of colour ρs in �π for each s ∈ Γ̂ab is the

fractional instanton number | �π |s = ks .
The instanton deformation complex for the quiver variety M�r ,�k at a fixed point

�π ∈MT
�r ,�k is the Γab-equivariant version of the complex (2.28) given by

EndΓab
(V�π )

d
Γab
1−−−−→

HomΓab
(V�π , V�π ⊗ Q�s3 )
⊕

HomΓab
(W�π , V�π )
⊕

HomΓab
(V�π , V�π ⊗∧3 Q�s3 )

d
Γab
2−−−−→

HomΓab
(V�π , V�π ⊗∧2 Q�s3 )

⊕
HomΓab

(V�π ,W�π ⊗∧3 Q�s3 )
,

(3.103)

where the map dΓab
1 is an infinitesimal G�k gauge transformation, and dΓab

2 is the
linearization of the complex ADHM equations in (3.98).
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The instanton partition function is obtained by computing the character of the
complex (3.103). Since τ�s (Γab) ⊂ T�ε , this may be calculated by taking the Γab-
invariant part of the character (2.30), with the weight decomposition

Q�s3 = t−11 ρs1 + t−12 ρs2 + t−13 ρs3 (3.104)

in the representation ring of T�ε × Γab. It reads as

chΓab
T
(
T vir
�π M�r ,�k

) = [W∗
�π ⊗ V�π −

V ∗�π ⊗W�π
t1 t2 t3

ρs123

+ V ∗�π ⊗ V�π
(1− t1 ρ

∗
s1) (1− t2 ρ

∗
s2 ) (1− t3 ρ

∗
s3)

t1 t2 t3
ρs123

]Γab
.

(3.105)

The decompositions of the vector spaces V and W at the fixed point �π ∈MT
�r ,�k are

given by

V�π =
r∑

l=1
el

∑
�p ∈πl

t p1−1
1 t p2−1

2 t p3−1
3 ⊗ ρ∗l; �p and W�π =

r∑
l=1

el ⊗ ρ∗s(l) ,

(3.106)

as elements of the representation ring of the group T × Γab. The character (3.105) is
evaluated by projecting onto the trivial representation ρ0, leaving an element in the
representation ring of T.

Equivariant generating functions

The full instanton partition function is defined as

Z �r[C3/Γab]×BK�s (�q ; �a, �ε ) =
∑

�k∈Z#Γab≥0

�q �k Z �r ,�k[C3/Γab]×BK�s (�a, �ε ) , (3.107)

where �q = (qs)s∈Γ̂ab
is a set of fugacities for the fractional instanton sectors

�k = (ks)s∈Γ̂ab
with

�q �k :=
∏

s∈Γ̂ab

qks
s . (3.108)
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The equivariant partition function for the quiver variety M�r ,�k is given by

Z �r ,�k[C3/Γab]×BK�s (�a, �ε ) :=
∑

�π ∈MT
�r ,�k

ê
[− chΓab

T (T vir
�π M�r ,�k)

]

=
∑

�π ∈MT
�r ,�k

r∏
l=1

�=0∏
�pl∈πl

Pr ◦ δΓab
0 (−al − �pl · �ε |ε123 − �a)

Pr ◦ δΓab
0 (al + �pl · �ε |�a)

×
r∏

l ′=1

�=0∏
�p ′

l′ ∈πl′
R ◦ δΓab

0 (al − al ′ + ( �pl − �p ′l ′) · �ε |�ε ) ,

(3.109)

where the operation δΓab
0 acts on a combination of equivariant parameters x as the

identity if x is associated with the trivial representation ρ0 and returns 1 otherwise;
for example

δ
Γab
0

(
al − al ′ + ( �pl − �p ′l ′) · �ε

)=
{
al − al ′ + ( �pl − �p ′l ′) · �ε if ρ l; �p ⊗ ρ∗l ′; �p ′ � ρ0 ,

1 otherwise .
(3.110)

Example 3.111 Let Γab = Z2 × Z2 = {1, g1, g2, g3} be the Klein four-group repre-
sented faithfully in SO(3) ⊂ U(3) by the matrices

g1 =
(−1

−1
1

)
and g2 =

(−1
1
−1

)
, (3.112)

together with g3 = g1 g2. The four irreducible representations Γ̂ab = {ρ0, ρ1, ρ2, ρ3}
have weights s0 = (0, 0, 0), s1 = (1, 1, 0), s2 = (1, 0, 1) and s3 = s1+s2 = (0, 1, 1),
respectively. The McKay quiver QZ×22 is displayed in Example 3.58.

Consider the U(1) theory on [C3/Z2×Z2]with dimension vector �r = (1, 0, 0, 0).
Then, s(1) = 0 in (3.106), and the equivariant instanton partition function in this
case gives the generating function for rank one non-commutative Donaldson–Thomas
invariants of the toric orbifold C3/Z2 × Z2 with holonomy group U(3). It evaluates
to the closed formula [18, Proposition 5.12]

Z �r=(1,0,0,0)[C3/Z2×Z2](�q ; �ε ) =
M(−Q)

ε1 ε2 ε3−ε21 ε2−ε21 ε3−ε22 ε3−ε1 ε22−ε1 ε23−ε2 ε23
ε1 ε2 ε3

M̃(q1,−Q) M̃(q2,−Q) M̃(q3,−Q) M̃(q1 q2 q3,−Q)

×
∏

1≤p<s≤3
M̃(qp qs,−Q)

ε
(ps)−−εps

2 ε
(ps)− ,

(3.113)
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where

M̃(x, q) = M(x, q) M(x−1, q) (3.114)

is the MacMahon tilde function, and we introduced the notation

Q = q0 q1 q2 q3 , (3.115)

along with (ps)− = 3 \ {p, s}.
Example 3.116 Let τ�s be the representation of the group Γab = Z2 × Z2 × Z2 in
SO(3) ⊂ U(3) from Example 3.58, and consider the cohomologicalU(2) gauge theory
on [C3/Z2×Z2×Z2]×BZ2.We focus on the contributions to the generating function
from the array of Z×32 -coloured plane partitions

�π = ( , ) (3.117)

with |�k | = 2 boxes and the following Z×32 -colourings:

Z �r ,�k[C3/Z2×Z2×Z2]×BZ2
(�a, �ε ) =

⎧⎪⎨
⎪⎩

a2 − ε212

a2 − ε21

, r(0,0,0) = r(1,0,0) = 1 , k(0,0,0) = k(1,0,0) = 1 ,

1 , r(0,0,0) = r(0,0,1) = 1 , k(0,0,0) = k(0,0,1) = 1 ,

(3.118)

where a := a1−a2. In the first case, the partition function (3.118) coincides with the
contribution to the partition function Z �r ,�k[C3/Z2×Z2](�a, �ε ) of Example 3.111 from the
Z2 × Z2-colouring with r(0,0,0) = r(1,1,0) = 1 and k(0,0,0) = k(1,1,0) = 1, whereas in
the second case there is no correspondence.

This example serves to demonstrate that the non-effective orbifold theory is not
generally equivalent to the theory defined solely by the action of a finite subgroup of
U(3). On the other hand, there is an equivalence of partition functions

Z �r[C3/Z2×Z2×Z2]×BZ2
(�q ; �a, �ε ) = Z �r[C3/Z2×Z2](�q ; �a, �ε ) (3.119)

for all dimension vectors �r whose nonzero entries are coloured by Γab in the same
connected component of the McKay quiver.

4 Tetrahedron instantons in cohomological field theory

Tetrahedron instantons were introduced in [1] as a generalization of non-commutative
instantons on M3 = C3. Roughly speaking, they correspond to configurations of
instantons on the codimension one coordinate hyperplanesC3 inside the affineCalabi–
Yau fourfold M4 = C4. In this section, we elaborate on the analysis of tetrahedron
instantons and their generalized ADHM parametrization.
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Notation 4.1 The set of coordinate labels of the four complex lines Ca ⊂ C4 is
denoted by

a ∈ 4 := {1, 2, 3, 4} . (4.2)

There are four complex codimension one hyperplanes

C3
A =×

a∈A

Ca ⊂ C4 with A ∈ 4⊥ := {(123) , (124) , (134) , (234)} ,
(4.3)

and for any A ∈ 4⊥ we define Ā ∈ 4 to be its complement

Ā = 4 \ A . (4.4)

The lexicographically ordered sets 4 and 4⊥, respectively, label the vertices and faces
of a tetrahedron. We will denote by A1 ∩ A2 = (a1 a2) the unique pair of vertices
a1, a2 ∈ 4 joined by the common edge of two distinct faces A1, A2 ∈ 4⊥; note that
Ā1 ∈ A2 and Ā2 ∈ A1.

We introduce the following vector spaces:

• Q4 : a four-dimensional Hermitian vector space which forms the fundamental
representation of the group SU(4).

• Q A : a three-dimensional Hermitian vector space which forms the fundamental
representation of the subgroup U(3)A ⊂ SU(4) acting on the hyperplaneC3

A ⊂ C4

for A ∈ 4⊥.
• Q A1,A2 : a two-dimensional Hermitian vector space which forms the fundamen-
tal representation of the subgroup U(2)A1,A2 ⊂ SU(4) acting on the intersections
C2

A1,A2
:= C3

A1
∩C3

A2
⊂ C4 for distinct A1, A2 ∈ 4⊥.

• Q(a) : the one-dimensional representation of U(1)(a) ⊂ SU(4) acting on the line
Ca ⊂ C4 for a ∈ 4 .

4.1 SU(4)-Instanton equations

Tetrahedron instantons are solutions of BRST fixed point equations for a cohomo-
logical gauge theory with two supercharges on a Kähler fourfold (M4, ω) with SU(4)
holonomy, which can also be obtained through dimensional reduction of N = 1
supersymmetric Yang–Mills theory with gauge group U(r) in ten dimensions [18].

LetΩ be the nowhere-vanishing holomorphic four-form associated with the SU(4)-
structure. Define the involution

�Ω : ∧0,2 C4 −→∧0,2 C4 , α �−→ �Ω α := ∗ (α ∧Ω) (4.5)
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for α ∈ ∧0,2 C4, where ∗ is the Hodge duality operator compatible with the Kähler
form ω. It gives an orthogonal decomposition of the space of (0, 2)-forms

∧0,2 C4 = ∧0,2
+ C4 ⊕ ∧0,2

− C4 (4.6)

into real ±1-eigenspaces∧0,2
± C4 of �Ω . This induces a decomposition of the (0, 2)-

form part of the field strength tensor F0,2 = F0,2
+ + F0,2

− into eigencurvatures as

F0,2
± = 1

2

(F0,2 ± �Ω F0,2) with �ΩF0,2
± = ±F0,2

± . (4.7)

The BRST symmetry localizes the path integral of the gauge theory onto the space
of solutions of the generalized instanton equations

F0,2
− = 0 ,

ω ∧ ω ∧ ω ∧ F1,1 = 0 ,

∇A� = 0 ,

(4.8)

where again we assume the first Chern class vanishes.
Tetrahedron instantons correspond to particular solutions of (4.8) on a singular

threefold M� embedded in a local Calabi–Yau fourfold M4 as a stratification

M� =
⋃

A∈ 4⊥
MA ⊂ M4 . (4.9)

For instance, M� = �−1(0) may arise as the central fibre of a toric degeneration
� : M4 −→ C with gluing data along intersections of strata MA prescribed by a
polyhedral complex which forms a tetrahedron [3]. The U(r) gauge connectionA and
complex Higgs field � are constrained to assume the forms

A =
⊕

A∈ 4⊥
AA and � =

⊕
A∈ 4⊥

�A , (4.10)

where AA and �A are supported on the smooth stratum MA ⊂ M� with values
in the adjoint representation of U(rA) for A ∈ 4⊥. The restrictions of the fields to
the codimension two transverse intersections MA1,A2 := MA1 ∩ MA2 ⊂ M� yield
bifundamental multiplets of the product group U(rA1)× U(rA2).

The solution (4.10) is labelled by an array of ranks

r := (rA)A∈ 4⊥ = (r123, r124, r134, r234) , (4.11)

which partitions the rank r of the cohomological gauge theory:

r = |r| :=
∑

A∈ 4⊥
rA = r123 + r124 + r134 + r234 . (4.12)
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It breaks to the U(r) gauge symmetry to the subgroup

U(r) := ×
A∈ 4⊥

U(rA) . (4.13)

The nonzero entries of the dimension vector r also determine the unbroken holonomy
group of the solution (4.10) preserving the codimension one defects as

Hr =
⋂

rA �=0
U(3)A ⊂ SU(4) . (4.14)

We can further group the solutions according to their instanton number (fourth
Chern class)

k = 1

384π4

∫
M4

Tru(r) F ∧ F ∧ F ∧ F , (4.15)

which is again a topological charge of the theory. The moduli space of solutions of
(4.8) with charge k ∈ Z≥0 is called the moduli space of tetrahedron k-instantons of
type r , denoted Mr,k . The group PU(r) = U(r)/U(1) remains a global symmetry of
the moduli space, where U(1) is the diagonal subgroup of×rA �=0 U(1) corresponding
to the common centre of the groups U(rA) for A ∈ 4⊥.

4.2 ADHM data

Similarly to non-commutative instantons on C3, tetrahedron instantons appear in the
context of type IIB string theory [1], where the ten-dimensional spacetime R1,9 is
identified with R1,1 × C4 through a choice of complex structure. When M4 = C4,
the singular divisor

C3� =
⋃

A∈ 4⊥
C3

A ⊂ C4 (4.16)

has strata corresponding to the codimension one coordinate hyperplanes C3
A ⊂ C4.

In this case, tetrahedron instantons describe bound states of k D1-branes along
R1,1 which probe intersecting stacks of r D7-branes located in the four different
spatial orientations labelled by A ∈ 4⊥, with rA D7A-branes wrapping the stratum
C3

A ⊂ C3�. The worldvolume R1,1 × C3
A of the rA D7A-branes for fixed A ∈ 4⊥

supports k D1-branes. It is intersected by rA◦ D7A◦ -branes, labelled by A◦ ∈ 4⊥ \ A,
in hyperplanes which produce defects in C3

A of codimension one or two.
In the low-energy two-dimensional N = (0, 2) field theory on the D1-branes, the

Higgs branch is described by generalized ADHM equations, deformed again by a
Fayet–Iliopoulos parameter ζ ∈ R>0 related to an appropriate large constant Neveu–
Schwarz B-field. This breaks supersymmetry, while the D1–D7-brane states decay to
a supersymmetric string theory vacuum via tachyon condensation [48].
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Generalized ADHM equations

Let V and WA be Hermitian vector spaces of dimensions k and rA, respectively; from
the perspective of the D1-branes, V is the Chan–Paton space and WA are flavour
representations. Then, the ADHM equations are [1]

μC
ab := [Ba, Bb] − 1

2 εabcd [B†
c , B†

d ] = 0 ,

μR :=
∑
a ∈ 4

[Ba, B†
a ] +

∑
A∈ 4⊥

IA I †A = ζ 1V ,

σA :=
(
BĀ IA

)† = 0 ,

(4.17)

where a, b ∈ 4 and A ∈ 4⊥, while Ba ∈ EndC(V ) and IA ∈ HomC(WA, V ).
Here, εabcd is the Levi–Civita symbol in four dimensions with ε1234 = +1. Note that
only three of the first set of equations are independent and we may restrict them to
(a, b) ∈ 3⊥, or equivalently any other triple of distinct pairs of vertices from 4 .

If there is only a single nonzero rank rA = r , for some A ∈ 4⊥, then upon set-
ting Y := B†

Ā
and I = IA the equations (4.17) reduce to the ADHM equations

(2.4) for instantons on C3
A with holonomy U(3)A. On the other hand, by neglect-

ing the last equation in (4.17) and combining the linear maps IA into a single map
I =⊕A∈ 4⊥ IA ∈ HomC(W , V ) with W :=⊕A∈ 4⊥ WA, we recover the ADHM
equations for the magnificent four model, i.e. the Donaldson–Thomas theory of the
affine Calabi–Yau fourfold C4 with SU(4)-holonomy [13, 15, 16, 18].

The ADHM data provide a framed linear representation of the four-loop quiver L4
with one vertex and four edge loops:

W123

W234 V W124

W134

B1 B2

B3B4

I234 I124

I123

I134

(4.18)

This generalizes the enhanced framed representation of L3 from (3.34) as well as the
framed representation of L4 from [18, eq. (2.45)].
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Stability and Quot schemes

As pointed out by [13], the complex ADHM equations μC
ab = 0 are equivalent to the

EJ-term equations

[Ba, Bb] = 0 (4.19)

for all a, b ∈ 4 , through the identity

∑
1≤a<b≤4

∥∥μC
ab

∥∥2
F
=

∑
1≤a<b≤4

∥∥[Ba, Bb]
∥∥2

F
, (4.20)

where ‖ · ‖F is the Frobenius norm on EndC(V ).
Instead, the D-term equation μR = ζ 1V of (4.17) is equivalent to a stability

condition similar to the stability condition of Sect. 2.2: there is no proper subspace
S ⊂ V such that

Ba(S) ⊂ S and IA(WA) ⊂ S (4.21)

for all a ∈ 4 and A ∈ 4⊥.
It follows that the moduli space of tetrahedron instantons Mr,k is given by the

non-commutative Quot scheme

Mr,k � μC−1(0)stable
/
GL(V ) , (4.22)

whereμC := (μC
ab, σA)(a,b)∈ 3⊥ , A∈ 4⊥ , the superscript stable indicates the stable solu-

tions of (4.19) and the third equation in (4.17), while g ∈ GL(V ) � GL(k,C) acts on
the ADHM data as

g · (Ba, IA)a ∈ 4 , A∈ 4⊥ = (g Ba g−1, g IA)a ∈ 4 , A∈ 4⊥ . (4.23)

Remark 4.24 The stability condition is equivalent to the statement

V =
∑

A∈ 4⊥
VA :=

∑
A=(a b c)∈ 4⊥

C[Ba, Bb, Bc] IA(WA) . (4.25)

The vector space VA is the smallest subspace of V containing im(IA)which is invariant
under the actions of Ba , Bb and Bc; its complex dimension kA := dim VA is the
instanton number on the stratum C3

A ⊂ C3�. The equation σA = 0 in (4.17) together
with (4.19) then imply

BĀ(VA) = 0 , (4.26)

for all A ∈ 4⊥.
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Let ιA : C3
A ↪−→ C3� be the inclusion of the irreducible codimension one strata

in the singular threefold (4.16) for each A ∈ 4⊥. Let Er be the torsion sheaf on C3�
defined by

Er =
⊕

A∈ 4⊥
ιA∗O⊕ rA

C3
A
. (4.27)

As shown by [3], the description (4.22) implies that the moduli space of tetrahedron
instantons Mr,k is isomorphic to the Quot scheme Quotkr(C

3�) of zero-dimensional
quotients of Er with length k:

Mr,k � Quotkr(C
3�) . (4.28)

There are natural closed immersions among Quot schemes

Mr,k ↪−→ Quotkr (C
3�) ↪−→ Quotkr (C

4) , (4.29)

where r = |r| and Quotkr (C
4) is isomorphic to the moduli space of U(r) instantons

on C4 with charge k [10, 18].

Remark 4.30 (Instantons onC3
A) In the sector where only rA = r is nonzero, for some

A ∈ 4⊥, the Quot scheme (4.28) coincides with the Quot scheme

Quotkr(C
3�) � Quotkr (C

3
A) , (4.31)

which is isomorphic to the moduli space Mr ,k of U(r) instantons on C3
A with charge

k (cf. (2.13)).

4.3 Tangent-obstruction theory

The local geometry of the tetrahedron instanton moduli spaceMr,k is captured by the
instanton deformation complex [46]

∧0 T ∗M4 ⊗ g
∂̄A−−→∧0,1 T ∗M4 ⊗ g

∂̄−A−−→∧0,2
− T ∗M4 ⊗ g . (4.32)

The first differential is a linearized complex gauge transformation, while the second
differential is the linearization of the first equation in (4.8), where ∂̄−A := P−Ω ◦ ∂̄A and

P−Ω = 1
2 (1− �Ω) : ∧0,2C4 −→∧0,2

− C4 (4.33)

is the projection onto the real −1-eigenspace of the involution �Ω .
The degree one cohomology ker(∂̄−A)/im(∂̄A) of the cochain complex (4.32)

describes the complex tangent bundle TMr,k −→ Mr,k over a fixed holomorphic
connection A of the form (4.10). The second cohomology coker(∂̄−A) defines the real
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self-dual obstruction bundle Ob−r,k −→Mr,k , which is orientable. We assume the
degree zero cohomology vanishes, i.e. ker(∂̄A) = 0, so that there are no infinitesimal
automorphisms.

The virtual tangent bundle T virMr,k is the two-term elliptic complex

T virMr,k :=
[
TMr,k −→ Ob−r,k

]
. (4.34)

When M4 = C4, it is easy to show using the ADHM parametrization that the complex
virtual dimension of the moduli space Mr,k vanishes:

vdimMr,k =
(
4 k2 +

∑
A∈ 4⊥

rA k

)
−
(
3 k2 +

∑
A∈ 4⊥

rA k

)
− k2 = 0 . (4.35)

The definition of the Euler class of T virMr,k is a bit more involved now because
the self-dual obstruction bundleOb−r,k is a real vector bundle. As explained in [18], we
identify its Euler class through a square root of the Euler class of the complexification
Obr,k := Ob−r,k ⊗R C:

e(Ob−r,k) =
√

e(Obr,k) . (4.36)

The square root is defined up to a sign determined by a choice of orientation of
Ob−r,k ; the virtual fundamental class [Mr,k]vir also depends on this choice, though it
is customary not to indicate the dependence explicitly. In the cohomological gauge
theory, the sign choice corresponds to a choice of lexicographic ordering of the real
antighosts in the path integral measure. We now define the Euler class

√
e(T virMr,k) := e

(
TMr,k

)
√

e
(
Obr,k

) . (4.37)

The tangent-obstruction theory can also be described in terms of ADHM data. For
this, we introduce vector bundles

V = μC−1(0)stable ×GL(V ) V and WA =Mr,k × WA (4.38)

on the moduli space Mr,k , whose fibres over a gauge orbit [A] are the complex
vector spaces V and WA, for A ∈ 4⊥, which are part of the generalized ADHM
parametrization of Mr,k discussed in Sect. 4.2.

Then there is a three-term cochain complex of vector bundles over Mr,k given by

End(V )
d1−−→

Hom(V ,V ⊗ Q4)

⊕⊕
A∈ 4⊥

Hom(WA,V )

d2−−→
Hom(V ,V ⊗∧2

− Q4)

⊕⊕
A∈ 4⊥

Hom(V ,WA ⊗∧3 Q A)

, (4.39)
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where the vector bundle homomorphisms d1 and d2 act fibrewise over a point[
(Ba, IA)a ∈ 4, A∈ 4⊥

]
of Mr,k as

d1(φ) =
([Ba, φ] , −φ IA

)
a ∈ 4 , A∈ 4⊥ ,

d2(ba, i A)a ∈ 4 , A∈ 4⊥ =
([ba, Bb] + [Ba, bb] , I †A b†

Ā
+ i†A B†

Ā

)
(a,b)∈ 3⊥ , A∈ 4⊥ .

(4.40)

Again the stability condition implies ker(d1) = 0.

4.4 Equivariant generating functions

Since the virtual dimension is zero, the tetrahedron instanton partition function is given
by

Z r,k
C4 =

∫
[Mr,k ]vir

1 , (4.41)

which again we interpret as the T-equivariant volume of the moduli space Mr,k with
respect to the action of some torus group T on Mr,k , i.e. as the pushforward of 1
to a point in T-equivariant cohomology. The T-action on the moduli space induces
T-equivariant structures on the vector bundles V andWA for A ∈ 4⊥. LetMT

r,k be the
subscheme of T-fixed points of Mr,k . As a set, it stratifies into T-invariant connected
components as

MT
r,k =

⊔
F∈π0(MT

r,k )

MF . (4.42)

In Appendix B, we prove that the moduli schemesMF for F ∈ π0
(
MT

r,k

)
are com-

pact in the complex analytic topology induced by the Frobenius norm on the affine
space of ADHMdata (Ba, IA)a ∈ 4, A∈ 4⊥ , for the torus actions considered in this paper.
Since the only fixed point of our toric actions is 0 ∈ C4, we believe that this is also
true in the Zariski topology, i.e. that MF are proper. This enables application of the
virtual localization formula from [27, 49] to evaluate the partition function (4.41) as
follows.

The T-fixed part of the pullback of the two-term complex (4.34) over MF is the
virtual tangent bundle T virMF = T virMr,k

∣∣fix
MF

, which defines a virtual fundamental
class [MF]vir. The equivariant virtual normal bundle to MF ⊂Mr,k is the T-moving
part

N vir
MF
= T virMr,k

∣∣mov
MF

= [TMr,k −→ Ob−r,k
]∣∣mov
MF

(4.43)

of the pullback of the virtual tangent bundle T virMr,k overMF. The partition function
(4.41) is then evaluated as a sum over the T-invariant connected components MF of
Mr,k given by [27, 49]
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Z r,k
C4 =

∑
F∈π0(MT

r,k )

∫
[MF]vir

1√
eT
(
N vir

MF

) . (4.44)

The equivariant square root Euler class
√

eT
(
N vir

MF

)
is defined up to a sign that

depends explicitly on the orientation of the pullback of the obstruction bundle Ob−r,k
to the connected component MF. It can be obtained from the square root of the
equivariant Chern character of the virtual tangent bundle T virMr,k , which is computed
from the index of the complex of vector bundles (4.39), regarded as an element in the
T-equivariant K-theory of the moduli space Mr,k . This index bundle is given by

Ind−r,k = −V ∗ ⊗ V ⊗ (C− Q4 +∧2
− Q4

)+ ∑
A∈ 4⊥

W ∗
A ⊗ V − V ∗ ⊗WA ⊗∧3 Q A ,

(4.45)

where here C denotes the trivial T-representation.
The T-equivariant Euler class is now extracted along the lines discussed in [42].

We expand the index bundle (4.45) as

Ind−r,k =
∑

i+∈I+
Ei+ −

∑
i−∈I−

Ei− , (4.46)

where Ei± are T-equivariant vector bundles on Mr,k labelled by two sets of indices
I±. After a gauge transformation, the character of the pullback of (4.45) to MF can
then be expressed in terms of ordinary Chern characters as

√
chT
(
T virMr,k

∣∣
MF

) := chT
(
Ind−r,k

∣∣
MF

) = ∑
i+∈I+

e
wF

i+ ch
(
E F

i+
)− ∑

i−∈I−
e
wF

i− ch
(
E F

i−
)
,

(4.47)

where wF
i± are the corresponding T-weights of E F

i± := Ei±
∣∣
MF

.

Since the virtual normal bundleN vir
MF

involves only nonzero T-weights, it follows by
computing the T-equivariant top Chern class from (4.47) that its T-equivariant square
root Euler class reads

√
eT
(
N vir

MF

) = ∏
i±∈I±
wF

i± �=0

c
(
E F

i+;wF
i+
)

c
(
E F

i−;wF
i−
) , (4.48)

where

c(E ;w) =
rk(E )∑
j=0

w j crk(E )− j (E ) (4.49)

is the usual Chern polynomial of the vector bundle E , with c j (E ) its j-th Chern class.
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The character (4.47) is a square root of the equivariant Chern character
chT
(
T virMr,k

)
of the virtual tangent bundle

T virMr,k = Ind−r,k + Ind+r,k = Ind−r,k + (Ind−r,k)
∗

= −V ∗ ⊗ V ⊗
(
C−

∑
a ∈ 4

(−1)a−1∧a−1 Q4

)

+
∑

A∈ 4⊥
W ∗

A ⊗ V ⊗ (C− Q( Ā )

)+ V ∗ ⊗WA ⊗
(
C−∧3 Q A

)
,

(4.50)

regarded as an element of the T-equivariant K-theory ofMr,k , where we used triviality
of the determinant representation ∧4 Q4 � C to identify ∧2

−Q∗4 � ∧2
+Q4 and

∧3 Q∗A � Q( Ā ). Every sign choice for the square root is equivalent to a choice of
local orientation on each T-invariant connected componentMF of the instantonmoduli
space, which produces a sign factor (−1)OF .

Finally, the partition function assumes the form

Z r,k
C4 =

∑
F∈π0(MT

r,k )

(−1)OF
∫
[MF]vir

∏
i±∈I±
wF

i± �=0

c
(
E F

i−;wF
i−
)

c
(
E F

i+;wF
i+
) . (4.51)

The full instanton partition function is given by a weighted sum over the instanton
number k as

Z r
C4(q) =

∞∑
k=0

qk Z r,k
C4 . (4.52)

Ä-background

As in Sect. 2.4, the natural choice for the torus group T comes from defining the
equivariant gauge theory on an �-deformation of the affine Calabi–Yau fourfold [50,
51]. The global symmetry group of the tetrahedron instanton moduli space is

G = PU(r) × Hr . (4.53)

It can be rotated to its maximal torus

T = T�a × T�ε , (4.54)
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where

T�a = ×
A∈ 4⊥

T�aA . (4.55)

The maximal torus of the unbroken holonomy group (4.14) is T�ε , which preserves
the stratification C3� and whose coordinates �ε = (ε1, ε2, ε3, ε4) are the equivariant
parameters of SU(4) obeying

ε1234 = ε1 + ε2 + ε3 + ε4 = 0 . (4.56)

The Coulomb moduli �a = (�aA)A∈ 4⊥ with �aA = (aA 1, . . . ,aA rA ) are the vacuum
expectation values of the complex Higgs field � = ⊕A∈ 4⊥ �A parametrizing the
positions of the rA D7A-branes; they are defined modulo the overall shifts aA l �−→
aA l + c for c ∈ C.

The T-fixed points �π of the instanton moduli spaceMr,k are all isolated and finite
in number [1]; hence, the fixed point loci are compact in this instance. It follows that
N vir
�π = T vir

�π Mr,k and the formula (4.48) for the equivariant square root Euler class
agrees with the top form operation (2.32). The localization formula for the instanton
partition function (4.51) then simplifies to

Z r,k
C4 (�a, �ε ) =

∑
�π ∈MT

r,k

(−1)O�π
∏

i±∈I±
w�πi± �=0

(
w�πi−
)dim(E �πi− )

(
w�πi+
)dim(E �πi+ ) . (4.57)

The sign (−1)O�π depends on the local orientation of the obstruction bundle Ob−r,k at
the fixed point �π , as in the case of non-commutative instantons on C4 [18, 35]. The
explicit form of the sign factor is evaluated in [3] for any choice of r . We discuss this
sign factor within our approach in Sect. 4.6, as well as the explicit evaluation of (4.57).

4.5 Quiver matrix model

The maximal torus (4.54) acts on the ADHM data as

(�t , h) · (Ba , IA
)

a ∈ 4 , A∈ 4⊥ =
(
t−1a Ba , IA h−1A

)
a ∈ 4 , A∈ 4⊥ , (4.58)

where �t = (ta)a ∈ 4 ∈ T�ε with ta = e i εa , and h = (h A)A∈ 4⊥ ∈ T�a. The cohomological
field theory on the�-background is equivariant with respect to this torus action and is
constructed using the BRST formalism, which produces a quiver matrix model based
on the framed quiver representation (4.18).
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TheBRST transformations are analogous to the ones forDonaldson–Thomas theory
on C4 [13, 18]. They read as

QBa = ψa , Qψa = [φ, Ba] − εa Ba ,

QIA = �A , Q�A = φ IA − IA aA ,

QχC
ab = HC

ab , QHC
ab = [φ, χC

ab] − εab χ
C
ab ,

QχR = HR , QHR = [φ, χR] ,
Qφ = 0 , Qφ̄ = η , Qη = [φ̄, φ] ,

(4.59)

for a ∈ 4, (a, b) ∈ 3⊥ and A ∈ 4⊥. Here φ is the generator of U(k) gauge transfor-
mations and aA = diag(aA 1, . . . ,aA rA ) is a background field which parametrizes an
element of the (complex) Cartan subalgebra of U(rA). The Fermi multiplets ( �χ, �H)
implement the equations μC

ab = 0 and μR = ζ 1V , where �χ = (χC
ab, χ

R)(a,b)∈ 3⊥
are antighost fields in EndC(V ) and �H = (HC

ab, HR)(a,b)∈ 3⊥ are the auxiliary fields.
The scalar multiplet (φ, φ̄, η) is needed to close the BRST algebra.

In addition to the BRST transformations (4.59), the equations σA = 0 for A ∈ 4⊥
are included by adding Fermi multiplets (ϒA, ξA)A∈4⊥ , with ϒA ∈ HomC(V ,WA).
These fields transform as

QϒA = ξA and QξA = aA ϒA − ϒA φ + ε Ā ϒA , (4.60)

for A ∈ 4⊥.
The action functional corresponding to this system of symmetries, fields and equa-

tions is

S = QTrV

( ∑
(a,b)∈ 3⊥

χ
C †
ab

(
HC

ab − μCab
)+ χR

(
HR − μR − ζ 1V

)+ ∑
A∈ 4⊥

ϒ
†
A (ξA − σA)

+
∑
a ∈ 4

ψa [φ̄, Ba ] +
∑

A∈ 4⊥
φ̄ IA �

†
A + η [φ, φ̄] + c.c.

)
,

(4.61)

where c.c.means complex conjugate. The evaluation of the corresponding path integral
is now a routine computation which follows by combining the calculations from [12,
67] (for the field theory on C3) with those of [18, Sect. 2.5] (for the field theory on
C4).
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The matrix model representation of the sum over equivariant Euler classes in (4.57)
is given by

Z r,k
C4 (�a , �ε ) = (−1)k

k!
( ε12 ε13 ε23

ε1 ε2 ε3 ε123

)k
∮
Γr,k

k∏
i=1

dφi

2π i

∏
A∈ 4⊥

PrA (−φi − ε Ā| − �aA)

PrA (φi |�aA)

×
k∏

i, j=1
i �= j

R−(φi − φ j |�ε ) ,

(4.62)

where φi for i = 1, . . . , k are the components of φ in a Cartan subalgebra of U(k),
and R−(x |�ε ) is the rational function from (2.34) evaluated with the opposite sign of
ε4 = −ε123. Similarly to [18, 43], the ADHM matrix model (4.62) is interpreted as a
contour integral. The closed contour Γr,k ⊂ Ck encircles all poles of the integrand,
which are located along the hyperplanes

φi − φ j − εa = 0 and φi − aA l = 0 (4.63)

inRk , for i, j = 1, . . . , k, a ∈ 4 , A ∈ 4⊥ and l = 1, . . . , r .

Fixed points and plane partitions

The intersections of the hyperplanes (4.63) are precisely the BRST fixed points of
the cohomological field theory, which by construction are the T-fixed points of the
ADHM moduli space. The residue formula then reproduces the sum over T-fixed
points in (4.57). The full instanton partition function Z r

C4(q; �a, �ε ) is given by the
sum (4.52) over all instanton numbers k.

The fixed points (4.63) are in one-to-one correspondence with collections of plane
partitions [1, 12]

�π = (�πA)A∈ 4⊥ = (πA 1, . . . , πA rA )A∈ 4⊥ , (4.64)

where the total size of �π is the instanton number

k = |�π | =
∑

A∈ 4⊥
| �πA| =

∑
A∈ 4

rA∑
l=1

|πA l | . (4.65)

As we will see in Sect. 4.6, the total number of boxes kA := |�πA| for each A ∈ 4⊥ is
the complex dimension of the vector space VA introduced in Remark 4.24 at the fixed
point �π .
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Dimensional reduction

The structure of (4.62) is very similar to that of the matrix integral Zr ,k
C4(�a, �ε, �m) for

the rank r Donaldson–Thomas invariants of C4 that was obtained in [18, eq. (2.68)],
where �a = (a1, . . . , ar ) are the Coulomb moduli and �m = (m1, . . . ,mr ) are the
masses of r fundamental matter fields. This similarity is made precise through

Proposition 4.66 There exist Coulomb parameter and mass specializations such that
the equivariant instanton partition functions of the U(r) cohomological field theory
with a massive fundamental hypermultiplet on C4 and the cohomological field theory
for tetrahedron instantons of rank |r| = r are related as

Zr
C4(q; �a, �ε, �m) = Z r

C4

(
(−1)r q; �a, �ε ) . (4.67)

Proof Choose a partition of the set of colour labels {1, . . . , r} =⊔A∈ 4⊥ ςA into dis-
joint subsets ςA of cardinalities #ςA = rA for A ∈ 4⊥. InZr ,k

C4(�a, �ε, �m) we substitute

(al ,ml) =
(
aA l , aA l + ε Ā

)
for l ∈ ςA . (4.68)

Using the Calabi–Yau condition ε4 = −ε123 on C4 one then finds that the matrix
integral from [18, eq. (2.68)] is exactly the integral (4.62), up to an overall sign
(−1)r k :

Zr ,k
C4(�a, �ε, �m) = (−1)r k Z r,k

C4 (�a, �ε ) , (4.69)

and the result follows by taking the weighted sum over k ∈ Z≥0 of (4.69). ��
Remark 4.70 From thematrixmodel representation (4.62) we deduce that the partition
function Z r

C4(q; �a, �ε ) for tetrahedron instantons is invariant under permutations of
the entries rA in r . It follows that the result of Proposition 4.66 is independent of the
choice of partition {ςA}A∈ 4⊥ .

Proposition 4.66 generalizes [18, Proposition 2.71]. In the T-dual type IIA picture
[2], the specializations can be interpreted as particular configurations ofD8-branes and
anti-D8-branes which decay via tachyon condensation into intersecting D6A-branes
for A ∈ 4⊥, whose bound states with D0-branes correspond to tetrahedron instantons.

4.6 Tetrahedron instanton partition function

We explicitly evaluate the equivariant partition function in the �-background from
the formula (4.57), elaborating on the calculation that appears in [1], which in par-
ticular does not incorporate the sign dependence on the choice of orientations. For
this, we regard the vector space Q4 as the four-dimensional T�ε -module with weight
decomposition

Q4 = t−11 + t−12 + t−13 + t−14 . (4.71)
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The weights ta = e i εa for a ∈ 4 satisfy the Calabi–Yau condition

t1 t2 t3 t4 = 1 . (4.72)

The fibre of the index bundle (4.45) over the fixed point �π ∈MT
r,k computes the

square root of the T-equivariant Chern character of the virtual tangent bundle T virMr,k
at �π . It is given by

√
chT
(
T vir
�π Mr,k

) = −V ∗�π ⊗ V�π
(
1−

∑
a ∈ 4

t−1a + t−11 t−12 + t−11 t−13 + t−12 t−13

)

+
∑

A∈ 4⊥
W ∗

A �π ⊗ V�π − V ∗�π ⊗WA �π tĀ ,

(4.73)

where

V�π =
∑

A=(a b c)∈ 4⊥

rA∑
l=1

eA l

∑
�pA ∈πA l

t pa−1
a t pb−1

b t pc−1
c and WA �π =

rA∑
l=1

eA l

(4.74)

as elements of the representation ring of T, with eA l = e iaA l for A ∈ 4⊥ and l =
1, . . . , r . We used the stability condition, see Remark 4.24, alongwith a suitable gauge
transformation.

Proposition 4.75 For the choice of square root (4.73), the sign factor (−1)O�π is given
by

O�π = rk
(
V ∗�π ⊗ V�π t−14

)fix mod 2 . (4.76)

Proof By Proposition 4.66, the Donaldson–Thomas partition function onC4 reduces
to the tetrahedron instanton partition function though specializations of the parameters
(�a, �m); by Remark 4.70 the reduction is independent of the choice of partitioning of
the index set {1, . . . , r}. By regarding the plane partitions πA l as solid partitions via
the natural embedding Z3≥0 ↪−→ Z4≥0, the sign factor is [18, Remark 2.103]

O�π =
∑

A∈ 4⊥

rA∑
l=1

#
{
(p, p, p, p′) ∈ πA l

∣∣ p < p′
}− rk

(
V ∗�π ⊗ V�π t−14

)fix mod 2 ,

(4.77)

where the summands in the first term correspond to the Nekrasov–Piazzalunga sign
prescription [13, 15]. Since πA l are true plane partitions, p′ = 0 and each summand
in the first term of (4.77) is zero modulo 2. ��
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Remark 4.78 The sign factor (4.76) is consistent with the sign factor evaluated by
Fasola and Monavari in [3]. It can be evaluated explicitly from (4.74) by counting
the zeroes of the combination aA l − aA′ l ′ + ( �pA l − �p ′A′ l ′) · �ε for A, A′ ∈ 4⊥,
l ∈ {1, . . . , rA}, l ′ ∈ {1, . . . , rA′ }, �pA l ∈ πA l and �p ′A′ l ′ ∈ πA′ l ′ , where �pA · �ε :=∑

a∈A pa εa . For generic equivariant parameters, the result is given by the sum of
cardinalities

O�π =
∑

A∈ 4⊥

rA∑
l=1

#
{
( �pA l , �p ′A l) ∈ πA l × πA l

∣∣ pa l = p′a l + 1 , a ∈ A
}
. (4.79)

Finally, the equivariant partition function for tetrahedron instantons can be easily
evaluated from the character (4.73). It is given by the combinatorial expression

Z r
C4(q; �a, �ε ) =

∞∑
k=0

∑
�π ∈MT

r,k

(−1)O�π q| �π | ê
[
−√chT(T

vir
�π Mr,k)

]
, (4.80)

where

ê
[
−√chT(T

vir
�π Mr,k)

]
=

∏
A,A′ ∈ 4⊥

rA∏
l=1

�=0∏
�pA l ∈πA l

PrA′ (−aA l − �pA l · �ε + ε Ā | − �aA′ )
PrA′ (aA l + �pA l · �ε |�aA′)

×
rA′∏

l ′=1

�=0∏
�p ′

A′,l′ ∈πA′,l′
R−
(
aA l − aA′,l ′ + ( �pA l − �p ′A′,l ′) · �ε

∣∣�ε ) .

(4.81)

Refined partition function

The structure (4.64) of the fixed points �π suggests a refinement of the counting param-
eter q in (4.80) with four independent fugacities qA weighing the contributions from
�πA for each face A ∈ 4⊥. We set q = (qA)A∈ 4⊥ and define

q�π :=
∏

A∈ 4⊥
q| �πA|

A . (4.82)

The refined partition function for tetrahedron instantons enumerates instantons on
each of the codimension one strata C3

A ⊂ C3� for A ∈ 4⊥ and is defined by

Z r
C4(q; �a, �ε ) =

∞∑
k=0

∑
�π ∈MT

r,k

(−1)O�π q�π ê
[
−√chT(T

vir
�π Mr,k)

]
. (4.83)

The generating function (4.80), in which qA = q for all A ∈ 4⊥, will sometimes be
referred to as the unrefined partition function.
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Instantons onC3
A

If only rA = r is nonzero for some A = (a b c) ∈ 4⊥, we write r A for the rank vector
and �π A for the fixed points. The character (4.73) is given by

√
chT
(
T vir
�π A

Mr A,k
) = W∗

A �π A
⊗ V�π A

−
V ∗�π A

⊗WA �π A

ta tb tc
+ V ∗�π A

⊗ V�π A

(1− ta) (1− tb) (1− tc)

ta tb tc

+ C �π A
− C∗�π A

,

(4.84)

where

C �π A := V ∗�π A
⊗ V�π A ta tb tc . (4.85)

The only contribution of the term C �π A − C∗�π A
to the partition function (4.57) is by

the sign factor (−1)rk C �π A , where

rk C �π A = |�πA| + rk
(
V ∗�π A

⊗ V�π A t−1
Ā

)fix mod 2 . (4.86)

Note that the second term of (4.86) coincides with the sign factor (4.76). Instead, the
remaining terms of (4.84) form the equivariant character of the instanton deformation
complex (2.28) for non-commutative instantons on C3

A.
By Theorem 2.36, it follows that the refined tetrahedron instanton partition function

sums to

Z r A
C4(qA; �ε ) = M

(
(−1)r+1 qA

)−r
εab εac εbc
εa εb εc , (4.87)

which after redefinition qA = −q coincides with the partition function for non-
commutative instantons onC3

A with holonomy group Hr A = U(3)A. This agrees with
the discussion of Sect. 4.5, and suggests that the partition function for tetrahedron
instantons is related to the partition functions for instantons on C3 and C4. These
expectations are borne out below.

Generic r

The previous considerations generalize to

Proposition 4.88 The unrefined equivariant partition function Z r
C4(q; �a, �ε ) for tetra-

hedron instantons is independent of the Coulomb moduli �a and can be expressed as

Z r
C4(q; �ε ) = M

(
(−1)|r|+1 q)

− ∑
A∈4⊥

rA ε Ā
ε12 ε13 ε23
ε1 ε2 ε3 ε4

. (4.89)

123



   11 Page 54 of 99 R. J. Szabo, M. Tirelli

Proof The equivariant instanton partition function of the cohomological gauge theory
with a massive fundamental hypermultiplet on C4 is given by [15, 18, 28]

Zr
C4(q; �a, �ε, �m) = M(−q)−r m

ε12 ε13 ε23
ε1 ε2 ε3 ε4 with m = 1

r

r∑
l=1

(ml − al) . (4.90)

The result now follows immediately from Proposition 4.66. ��

5 Tetrahedron instantons on local Calabi–Yau four-orbifolds

In this section, we extend our considerations of tetrahedron instantons from Sect. 4 to
twisted Calabi–Yau orbifold resolutions of quotient singularities C4/ Γτ , where τ :
Γ −→ Hr is a homomorphism from a finite group Γ to the unbroken holonomy group
(4.14)fixing the smooth strataC3

A ⊂ C3� of the singular threefold (4.16) supporting the

instanton type r . That is, as opposed to generic SU(4)-instantons onC4, for tetrahedron
instantons we consider only defect-preserving orbifold group actions, which generally
restricts the allowed dimension vectors r = (rA)A∈ 4⊥ in order to allow for non-trivial
groups Γτ inside Hr . In this construction both the singular threefold C3� ⊂ C4 and
its normal bundle may be subjected to the orbifold projection. We handle separately
the cases where Γ is an abelian and a non-abelian group, expanding the analysis and
results of Sect. 3.

5.1 Tetrahedron instantons on Abelian orbifolds

Let Γab be a finite abelian group. It is straightforward to define (non-effective) actions
of Γab onC4 analogously to what we did in Sect. 3.2, and compute orbifold instanton
partition functions similarly to Sect. 3.3.However, for clarity and to streamline notation
a bit, we will restrict our considerations of abelian orbifolds to the cases where τ is a
monomorphism. The McKay quivers in these instances have been described in detail
in [18].

Let Γab be a finite abelian subgroup of Hr ⊂ SU(4) which commutes with the
maximal torus T�ε ; it is of the form Γab = Zn1×Zn2×Zn3 with order n = n1 n2 n3 and
is diagonally embedded inSU(4). ThenC4/ Γab is a toricCalabi–Yau four-orbifold.Let
ρs denote the irreducible representation of Γab with weight s; the trivial representation
is ρ0. The restriction to Γab of the fundamental representation Q4 of SU(4) branches
into irreducible Γab-modules as

Q4 � ρs1 ⊕ ρs2 ⊕ ρs3 ⊕ ρs4 . (5.1)

By the Calabi–Yau condition, ρs1 ⊗ · · · ⊗ ρs4 � ρ0. Under the group isomorphism
Γ̂ab � Γab, this induces a corresponding colouring Z⊕4≥0 −→ Γab given by

(n1, n2, n3, n4) �−→ ρ⊗n1
s1 ⊗ ρ⊗n2

s2 ⊗ ρ⊗n3
s3 ⊗ ρ⊗n4

s4 . (5.2)
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The choice of an abelian orbifold group Γab leaves unbroken the maximal torus
T of the theory in the �-background, because we assume Γab commutes with T�ε ⊂
SU(4). In this case, there is no restriction on the type r labelling the solutions of
(4.10). Since the irreducible representations of Γab are all one-dimensional, the T-fixed
points of the tetrahedron instanton moduli space are all isolated and are in one-to-one
correspondence with plane partitions coloured via the map (5.2).

ADHM data

The Γab-action on C4 induces an equivariant decomposition of the vector spaces

V =
⊕

s∈Γ̂ab

Vs ⊗ ρ∗s and WA =
⊕

s∈Γ̂ab

WA s ⊗ ρ∗s (5.3)

for A ∈ 4⊥, where Vs and WA s are Hermitian vector spaces of complex dimensions ks
and rA s , respectively, each carrying a trivial Γab-action. We define dimension vectors�k = (ks)s∈Γ̂ab

and �r = (�rA)A∈ 4⊥ = (rA s)A∈ 4⊥ , s∈Γ̂ab
, with

k = |�k | :=
∑

s∈Γ̂ab

ks and r =
∑

A∈ 4⊥
rA = |�r | :=

∑
A∈ 4⊥

|�rA| =
∑

A∈ 4⊥

∑
s∈Γ̂ab

rA s .

(5.4)

By Schur’s Lemma, the decompositions (5.3) induce equivariant decompositions
of the ADHM variables as

B =
⊕

s∈Γ̂ab

(Bs
a)a ∈ 4 ∈ HomΓab

(V , V ⊗ Q4) with Bs
a : Vs −→ Vs+sa ,

IA =
⊕

s∈Γ̂ab

I s
A ∈ HomΓab

(WA, V ) with I s
A : WA s −→ Vs .

(5.5)

Consequently, the ADHM equations (4.17) for tetrahedron instantons decompose into

μCs
ab = Bs+sb

a Bs
b − Bs+sa

b Bs
a − 1

2 εabcd
(
Bs−scd†

c Bs−sd†
d − Bs−scd†

d Bs−sc†
c

) = 0 ,

μRs =
∑
a ∈ 4

(
Bs−sa

a Bs−sa†
a − Bs†

a Bs
a

)+ ∑
A∈ 4⊥

I s
A I s†

A = ζs 1Vs ,

σ s
A =

(
Bs

Ā
I s

A

)† = 0 ,
(5.6)

for s ∈ Γ̂ab, a, b ∈ 4 and A ∈ 4⊥.
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The symmetry group of the system of equations (5.6) is

U(�k ) × U(�r ) :=×
s∈Γ̂ab

U(ks) × ×
s∈Γ̂ab

×
A∈ 4⊥

U(rA s) , (5.7)

which acts on the ADHM variables as

(
gs , hs

A

)
s∈Γ̂ab
A∈ 4⊥

· (Bs
a , I s

A

)
s∈Γ̂ab

a ∈ 4 , A∈ 4⊥
= (gs+sa Bs

a g−1s , gs I s
A hs

A

)
s∈Γ̂ab

a ∈ 4 , A∈ 4⊥
,

(5.8)

for gs ∈ U(ks) and hs
A ∈ U(rA s). There is an additional Hr symmetry which acts in

the fundamental representation Q4 on (Bs
a)a ∈ 4 for all s ∈ Γ̂ab and trivially on all I s

A.

5.2 Abelian orbifold partition functions

The equivariant generating functions for tetrahedron instantons on abelian orbifolds of
C4 can be evaluated by equivariant decompositions of the theory in the�-background
from Sect. 4.

Cohomological field theory on [C4/ Γab]

By decomposing all fields as equivariant maps, the Γab-module structure splits the
BRST transformations (4.59) and (4.60) into irreducible representations labelled by
s ∈ Γ̂ab. They read as

QΓab
Bs

a = ψ s
a , QΓab

ψ s
a = φs+sa Bs

a − Bs
a φ

s − εa Bs
a ,

QΓab
I s

A = � s
A , QΓab

� s
A = φs I s

A − I s
A as

A ,

QΓab
χCs

ab = HCs
ab , QΓab

HCs
ab = φs+sab χCs

ab − χCs φs − εab χ
Cs
ab ,

QΓab
χRs = HRs , QΓab

HRs = [φs, χRs] ,
QΓab

ϒ s
A = ξ s

A , QΓab
ξ s

A = as
A ξ

s
A −ϒ s

A φ
s + ε Ā ϒ

s
A ,

QΓab
φs = 0 , QΓab

φ̄s = ηs , QΓab
ηs = [φ̄s, φs] ,

(5.9)

for a ∈ 4 , (a, b) ∈ 3⊥, A ∈ 4⊥ and s ∈ Γ̂ab. Here φs parametrizes infinitesimal U(ks)
gauge transformations, while as

A collects the rA s Coulomb moduli aA l all associated
with the irreducible representation ρs . This defines a map

l �−→ sA(l) ∈ Γ̂ab for l ∈ {1, . . . , rA} . (5.10)

TheBRST transformations (5.9) can be used to construct the abelian orbifoldmatrix
model with standard techniques, as we did in Sect. 4.5. This results in the partition
function
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Z �r,�k[C4/Γab]
(�a, �ε ) =

∮
Γ�r,�k

∏
s∈Γ̂ab

1

ks !
ks∏

i=1

dφs
i

2π i

∏
A∈ 4⊥

PrA s (−φs
i − ε Ā| − �a

s+sĀ
A )

PrA s (φ
s
i |�a s

A)

ks∏
i, j=1
i �= j

(
φs

i − φs
j
)

×
ks∏

i, j=1

∏
(a,b)∈ 3⊥

(
φ

s+sab
i − φs

j − εab
)

∏
a ∈ 4

(
φ

s+sa
i − φs

j − εa
) .

(5.11)

The contour Γ�r,�k ⊂ Ck encloses the poles of the integrand, which are situated
along the hyperplanes

φ
s+sa
i − φs

j − εa = 0 and φs
i − as

A l = 0 (5.12)

in Rk , for i, j = 1, . . . , k, s ∈ Γ̂ab, a ∈ 4, A ∈ 4⊥ and l = 1, . . . , r . Similarly
to the matrix model of Sect. 4.5, as well as that of [18], these are the fixed points of
the orbifold ADHM data (Bs

a, I s
A)a ∈ 4,A∈ 4⊥ , s∈Γ̂ab

under the equivariant action of the
symmetry group U(�k ) × U(�r ) × Hr . They reside on the locus of fixed points of the
BRST charge QΓab

of the cohomological gauge theory on [C4/Γab], and correspond
to Γab-coloured plane partitions �π as defined in Sect. 3.3.

In the notation of Sect. 3.3, the full partition function for orbifold tetrahedron instan-
tons is

Z �r[C4/Γab](�q ; �a, �ε ) =
∑

�k∈Z#Γab≥0

�q �k Z �r,�k[C4/Γab](�a, �ε ) , (5.13)

where

�q �k =
∏

s∈Γ̂ab

qks
s . (5.14)

Remark 5.15 (Broken Permutation Symmetry) From the matrix model representation
(5.11)we deduce that, in contrast to the cases of Sect. 4, the partition functions for tetra-
hedron instantons on abelian orbifoldsC4/ Γab are not invariant under all permutations
of the entries of the dimension vectors �r = (�rA)A∈ 4⊥ . In fact, such a permutation
generically generates a permutation of the Coulomb moduli �a = (�a s

A)A∈ 4⊥, s ∈ Γ̂ab
which is associated with different irreducible representations of Γab for different faces
A ∈ 4⊥.

Dimensional reduction

Similarly to Sect. 4.5, we can compare (5.11) with the matrix integral
Z �r ,�k
[C4/Γab](�a, �ε, �m) for the rank r orbifoldDonaldson–Thomas invariants of [C4/ Γab]

of type �r which was obtained in [18, eq. (3.62)]. In particular, the analogue of Propo-
sition 4.66 is given in the following way by restricting to solutions with at most two
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intersecting stacks of D7-branes. Prior to gauging, these types of tetrahedron instan-
tons generalize the folded instantons of [6] and are called generalized folded instantons
by [1].

For distinct fixed A1, A2 ∈ 4⊥, let C2
A1,A2

:= C3
A1
∩C3

A2
denote the inter-

section of the corresponding codimension one strata in C3� ⊂ C4; we write
C2 = C4\C2

A1,A2
= C Ā1

×C Ā2
for the remaining affine plane. We take as rank vec-

tor r = r A1,A2 := (rA1 , rA2 , 0, 0); then the unbroken holonomy group is

Hr A1,A2
= U(2)A1,A2 × U(1) . (5.16)

We restrict the holonomy to SU(2)A1,A2 ⊂ Hr A1,A2
. Its only finite abelian subgroups

are the cyclic groups Γab = Zn of order n, with generator

g =
(
ξn 0
0 ξ−1n

)
, (5.17)

where ξn = e 2π i/n is a primitive n-th root of unity. If A1 ∩ A2 = (a1 a2) with
a1, a2 ∈ 4 , then the weights of the fundamental representation Q4 are sa1 = 1,
sa2 = n − 1 and sĀ1

= sĀ2
= 0.

The McKay quiver assumes the form [18]

0

1 n−1

2 3

(5.18)

This is obtained from any orientation for the affine Dynkin diagram of type An−1, and
adding a pair of edge loops at each node (cf. Example 3.19).

Proposition 5.19 There exist Coulomb parameter and mass specializations such that
the equivariant instanton partition functions for the cohomological field theory with
a massive fundamental hypermultiplet on [C2

A1,A2
/Zn] ×C2 of type �r = �rA1 + �rA2

and the cohomological field theory for orbifold tetrahedron instantons of type

�r A1,A2 =
(
rA1,s , rA2,s , 0 , . . . , 0

)
s=0,1,...,n−1 (5.20)

are related as

Z �rA1+�rA2

[C2
A1,A2

/Zn ]×C2(�q ; �a, �ε, �m) = Z
�r A1,A2

[C2
A1,A2

/Zn ]×C2(�q ′ ; �a, �ε ) , (5.21)

where �q ′ = ((−1)rA1,s+rA2,s qs
)

s=0,1,...,n−1.
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Proof In Z �rA1+�rA2 ,
�k

[C2
A1,A2

/Zn ]×C2(�a, �ε, �m) we specialize the substitution (4.68) to

(as
l ,ms

l ) =
{ (

as
A1,l

, as
A1,l

+ ε Ā1

)
for l = 1, . . . , rA1 ,(

as
A2,l

, as
A2,l

+ ε Ā2

)
for l = rA1 + 1, . . . , rA1 + rA2 .

(5.22)

Using again ε4 = −ε123, together with sĀ1
= sĀ2

= 0, the matrix integral from
[18, eq. (3.62)] then coincides with the matrix integral (5.11), up to a sign factor∏n−1

s=0 (−1)(rA1,s+rA2,s ) ks :

Z �rA1+�rA2 ,
�k

[C2
A1,A2

/Zn ]×C2(�a, �ε, �m) = e

n−1∑
s=0

(rA1,s+rA2,s ) ks
Z
�r A1,A2 ,

�k
[C2

A1,A2
/Zn ]×C2(�a, �ε ) . (5.23)

The result now follows by taking the weighted sum over �k ∈ Zn≥0. ��

Remark 5.24 (Instantons on [C3
A/ Γab]) For fixed A = (a b c) ∈ 4⊥ with rank vector

taken to be r = r A := (rA, 0, 0, 0), the unbroken holonomy group is

Hr A = U(3)A . (5.25)

Proposition 5.19 can then be extended to orbifoldsC3
A/ Γab×C, where Γab is a finite

subgroup of SU(3)A ⊂ Hr A and C = C4 \C3
A = C Ā. This recovers the partition

function for orbifold tetrahedron instantons of type �r A = (rA s, 0, . . . , 0)s∈Γ̂ab
, which

by [18, Proposition 3.63] reduces to the generating function for non-commutative
Donaldson–Thomas invariants of type �rA on the toric Calabi–Yau three-orbifold
C3

A/ Γab with U(3)A holonomy:

Z�rA

[C3
A/Γab]×C(�q ; �a, �ε, �m) = Z �r A

[C3
A/Γab]×C(�q

′ ; �a, �ε ) = Z �rA

[C3
A/Γab](�q

′ ; �a, εa, εb, εc) ,

(5.26)

where �q ′ = (
(−1)rA s qs

)
s∈Γ̂ab

. The restriction of this orbifold theory to SU(3)A

holonomy is thoroughly discussed in [43].

Instanton partition functions

The partition function for orbifold tetrahedron instantons can be evaluated by con-
sidering the Γab-invariant part of the index (4.73). The natural inclusion Γab ↪−→ T�ε
defines the irreducible representations of Γab associated with the toric generators ta
for a ∈ 4 . Consequently, after a gauge transformation the vector spaces V and WA at
the fixed point �π ∈MT

�r,�k decompose into

V�π =
∑

A=(a b c)∈ 4⊥

rA∑
l=1

eA l

∑
�pA∈πA l

t pa−1
a t pb−1

b t pc−1
c ⊗ ρ∗l; �pA (5.27)
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and

WA �π =
rA∑

l=1
eA l ⊗ ρ∗sA(l) (5.28)

as elements of the representation ring of T × Γab, where

ρl; �pA := ρsA(l) ⊗ ρ
⊗(pa−1)
sa ⊗ ρ

⊗(pb−1)
sb ⊗ ρ

⊗(pc−1)
sc for A = (a b c) . (5.29)

Proceeding as in Sect. 3.3, we obtain the combinatorial formula

Z �r[C4/Γab](�q ; �a, �ε ) =
∑

�k∈Z#Γab≥0

�q �k
∑
�π∈MT

�r,�k

(−1)OΓab
�π ê

[
−
√
chΓab

T (T vir
�π M�r,�k)

]
,

(5.30)

where the superscript Γab stands for the Γab-invariant part and

ê
[
−
√
ch

Γab
T (T vir

�π M�r,�k )
]
=

∏
A,A′ ∈ 4⊥

rA∏
l=1

�=0∏
�pA l∈πA l

PrA′ ◦ δ
Γab
0 (−aA l − �pA l · �ε + ε Ā′ | − �aA′ )

PrA ◦ δ
Γab
0 (aA l + �pA l · �ε |�aA)

×
rA′∏

l′=1

�=0∏
�p ′

A′ l′ ∈πA′ l′
R− ◦ δΓab

0
(
aA l − aA′ l′ + ( �pA l − �p ′A′ l′ ) · �ε

∣∣�ε ) .

(5.31)

As in Sect. 4.6, wemay also introduce refined fugacities �q = (qA s)A∈ 4⊥ , s∈Γ̂ab
and

reorganize the dimension vector �k as �k = (�kA)A∈ 4⊥ = (kA s)A∈ 4⊥ , s∈Γ̂ab
, where kA s

is the total number of boxes of �πA of colour s, or equivalently the complex dimension
of the isotypical component of the vector space VA from Remark 4.24 labelled by
s ∈ Γ̂ab. A refined partition function, enumerating fractional instantons on each of the
strata C3

A ⊂ C3� for A ∈ 4 , may then be defined by replacing the counting weights
�q �k in (5.30) with

�q �k :=
∏

A∈ 4⊥

∏
s∈Γ̂ab

qkA s
A s , (5.32)

and writing

Z �r[C4/Γab](�q ; �a, �ε ) =
∑

�k∈Z4 #Γab≥0

�q �k
∑
�π∈MT

�r,�k

(−1)OΓab
�π ê

[
−
√
chΓab

T (T vir
�π M�r,�k)

]
.

(5.33)
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Remark 5.34 (Sign Factors) Since the character
√
chΓab

T (T vir
�π M�r,�k) is evaluated by

projecting onto the Γab-invariant part of the character (4.73), it seems reasonable to
assume that the sign factor does not depend on the Γab-colouring, i.e. O

Γab
�π = O�π is

also given by (4.79). This is the same assertion made in [18, 35] for instantons on toric
Calabi–Yau four-orbifolds.

Remark 5.35 (Permutation Symmetry) Looking at the combinatorial formula (5.30), it
is easy to see that given a framing vector rs = (rA s, 0, . . . , 0)A∈ 4⊥ for a fixed weight
s ∈ Γ̂ab, any other framing vector obtained from rs by varying s ∈ Γ̂ab yields an
equivalent partition function. The same result naturally descends fromProposition 5.19
for the orbifolds of typeC2/Zn ×C2. Indeed, the partition function of type �r for the
cohomological field theory with a massive fundamental hypermultiplet on [C4/ Γab]
is invariant under permutations of the entries of the dimension vector �r = (r , 0, . . . , 0)
[18, Remark 4.15].

Example 5.36 Consider the rank two cohomological gauge theory on the orbifold res-
olution [C2/Z2] ×C2 where Z2 acts on C4 with weights

s1 = s2 = 1 and s3 = s4 = 0 . (5.37)

For the framing vector �r , we take

r0 = (r123 0, r124 0, 0, 0, 0, 0, 0, 0) = (1, 1, 0, 0, 0, 0, 0, 0) . (5.38)

By Remark 5.35, this framing yields the same theory as the framing

r1 = (0, 0, r123 1, r124 1, 0, 0, 0, 0) = (0, 0, 1, 1, 0, 0, 0, 0) . (5.39)

The leading terms of the instanton partition function (5.30) are given by

Z r0
[C2/Z2]×C2(�q ; �a, �ε ) = ε12 ε34

ε3 ε4
q0 + ε12 ε34 (ε12 ε34 − ε3 ε4)

2 ε23 ε
2
4

q20

− ε12 ε34 (4 ε1 ε2 − ε3 ε4)

2 ε1 ε2 ε3 ε4
q0 q1 + · · · ,

(5.40)

independently of the Coulomb moduli �a.
On the other hand, after substituting (5.32), the refined partition function (5.33)

takes the more complicated form

Z
r0
[C2/Z2]×C2 (�q ; �a, �ε ) =

ε12 (a− ε3)

ε3 a
q123 0 + ε12 (a+ ε4)

ε4 a
q124 0

+ ε12 (ε12 − ε3) (a− ε3)

2 ε23 (a+ ε3)
q2123 0 +

ε12 (ε12 − ε4)(a+ ε4)

2 ε24 (a− ε4)
q2124 0

+ ε12 (4 ε1 ε2 − ε3 ε4)

2 ε1 ε2 a

(
ε3 − a

ε3
q123 0 q123 1 − ε4 + a

ε4
q124 0 q124 1

)

+ ε212
ε3 ε4

(a− ε12) (a+ ε12)

(a− ε4) (a+ ε3)
q123 0 q124 0 + · · · .

(5.41)
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In particular, it depends explicitly on the Coulomb moduli �a = (a1,a2) through the
combination a = a1 − a2.

5.3 The orbifoldsC2
A1,A2

/Zn ×C2 andC3
A/(Z2 × Z2) ×C

The finite subgroups of SU(2) ⊂ SU(3) and SO(3) ⊂ SU(3) play a special role
in the Donaldson–Thomas theory of Calabi–Yau orbifolds [35, 68]: these are the
only orbifold groups whose elements all have age ≤ 1 and for which the theory can
be subjected to a crepant resolution correspondence; we will return to this point in
Sect. 5.7. Of these the only abelian groups Γab are the cyclic groups Zn and the Klein
four-groupZ2×Z2. Proposition 5.19 andRemark5.24 allowus to compute the orbifold
partition functions for tetrahedron instantons based on the partition functions for the
cohomological gauge theorywith amassive fundamental hypermultiplet on [C4/ Γab].
Utilizing the explicit results for the latter presented in [18, Sects. 4 and 5], we can
immediately infer corresponding closed formulas for the unrefined partition functions
for tetrahedron instantons on the orbifoldsC2

A1,A2
/Zn×C2 andC3

A/(Z2×Z2)×C.

Tetrahedron instantons onC2
A1,A2

/Zn ×C2

Consider the quotient singularity C2
A1,A2

/Zn × C2 for distinct A1, A2 ∈ 4⊥ in the
notation of Proposition 5.19. Again we write A1 ∩ A2 = (a1 a2) with a1, a2 ∈ 4 .

Proposition 5.42 Assume [18, Conjecture 4.11] is true. Then the unrefined partition
function for tetrahedron instantons of type �r A1,A2 0 = (rA1 0, rA2 0, 0, . . . , 0) on the
orbifold C2

A1,A2
/Zn ×C2 with Hr A1,A2

holonomy is given by

Z
�r A1,A2 0

[C2
A1,A2

/Zn ]×C2(�q ; �ε )

= M
(
(−1)n+r Q

)−n
ε12 ε13 ε23 (rA1 0

ε Ā1
+rA2 0 ε Ā2

)

ε1 ε2 ε3ε4
− n2−1

n

εa1a2 (rA1 0
ε Ā1

+rA2 0 ε Ā2
)

εa1 εa2

×
∏

0<p≤s<n

M̃
(
(−1)p−s+1 q[p,s], (−1)n+r Q

) εa1a2 (rA1 0
ε Ā1

+rA2 0 ε Ā2
)

ε Ā1
ε Ā2 ,

(5.43)

where

Q = q0 q1 · · ·qn−1 and q[p,s] = qp qp+1 · · ·qs−1 qs , (5.44)

while r = rA1 0 + rA2 0.

Proof This follows straightforwardly from [18, Conjecture 4.11] and Proposition 5.19.
��

Remark 5.45 (Refined Partition Functions) The expansion of the formula (5.43) for
n = 2, A1 = (123), A2 = (124) and rA1 0 = rA2 0 = 1 reproduces the explicit
expansion (5.40) from Example 5.36. On the other hand, it is not clear if the refined
partition functions can also be expressed by a closed formula, see (5.41).
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Proposition 5.46 Assume [18, Conjecture 4.21] is true. Then the unrefined partition
function for tetrahedron instantons of type �r A1,A2=(rA1 0, rA2 0, rA1 1, rA2 1, 0, 0, 0, 0)
on the orbifold C2

A1,A2
/Z2 ×C2 with Hr A1,A2

holonomy is given by

Z
�r A1,A2
[C2

A1,A2
/Z2]×C2 (�q ; �ε ) = M

(
(−1)r q0 q1

)−2 ε12 ε13 ε23 (rA1
ε Ā1

+rA2
ε Ā2

)

ε1 ε2 ε3 ε4
− 3

2

εa1a2 (rA1
ε Ā1

+rA2
ε Ā2

)

εa1 εa2

× M̃(−q1, (−1)r q0 q1)
−
εa1a2 (rA1 0

ε Ā1
+rA2 0 ε Ā2

)

ε Ā1
ε Ā2

× M̃(−q0, (−1)r q0 q1)
−
εa1a2 (rA1 1

ε Ā1
+rA2 1 ε Ā2

)

ε Ā1
ε Ā2 ,

(5.47)

where rA = rA 0 + rA 1 for A ∈ {A1, A2} and r = rA1 + rA2 .

Proof This follows straightforwardly from [18, Conjecture 4.21] and Proposition 5.19.
��

Tetrahedron instantons onC3
A/(Z2 ×Z2) ×C

Consider the action of Z2 × Z2 on C3
A for fixed A = (a b c) ∈ 4⊥ given as in

Example 3.111. Using Remark 5.24we can recover the unrefined partition function for
tetrahedron instantons of type �r A = (r , 0, . . . , 0) on the orbifoldC3

A/(Z2 × Z2)×C
with holonomy group Hr A = U(3)A. It coincides, up to signs after taking the r -th
power, with the closed formula (3.113):

Z
�r A=(r ,0...,0)
[C3

A/Z2×Z2]×C
(�q ; �ε )

= M
(
(−1)r Q)r

εa εb εc−ε2a εb−ε2a εc−ε2b εc−εa ε2b−εa ε2c−εb ε2c
εa εb εc

M̃
(− q1, (−1)r Q

)r M̃
(− q2, (−1)r Q

)r M̃
(− q3, (−1)r Q

)r M̃
(− q1 q2 q3, (−1)r Q

)r

×
∏

p,s∈A
p<s

M̃
(
qp qs , (−1)r Q

)r ε
(ps)−−εps
2 ε
(ps)− ,

(5.48)

where (ps)− = A \ {p, s}.

5.4 Tetrahedron instantons on non-Abelian orbifolds

We now turn to the case where the orbifold group Γ ⊂ Hr ⊂ SU(4) is a finite non-
abelian group. In analogy with the discussion of Sect. 3.1, we can associate a McKay
quiver QΓ = (QΓ

0 ,Q
Γ
1

)
to the action of a finite subgroup Γ of the unbroken holonomy

group (4.14) onC4 in the fundamental representation Q4 of SU(4). Each vertex i ∈ QΓ
0

corresponds to an irreducible representation λi ∈ Γ̂, while the number aii′ of arrows
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from vertex i to vertex i′ is given by the decomposition of Γ-modules

Q4 ⊗ λi =
⊕
i′∈QΓ

0

aii′ λi′ =
⊕

e∈s−1(i)
λt(e) ⊕

⊕
e∈t−1(i)

λs(e) . (5.49)

The ADHM parametrization is constructed as a stable framed linear representa-
tion of the bounded McKay quiver. To each vertex i ∈ QΓ

0 we assign vector spaces
Vi and WA i, together with linear maps IA i ∈ HomC(WA i, Vi) for A ∈ 4⊥. We
introduce dimension vectors �k = (ki)

i∈QΓ
0

and �r = (�rA)A∈4⊥ = (rA i)
A∈4⊥ , i∈QΓ

0

, with

ki = dim Vi and rA i = dim WA i. With di = dim λi, we define rA =∑
i∈QΓ

0

di rA i for

any A ∈ 4⊥, and set

k = |�k | :=
∑
i∈QΓ

0

di ki and r =
∑

A∈ 4⊥
rA = |�r | :=

∑
A∈ 4⊥

|�rA| =
∑

A∈ 4⊥

∑
i∈QΓ

0

di rA i .

(5.50)

Finally, to each arrow e ∈ QΓ
1 we assign a linear map Be ∈ HomC(Vs(e), Vt(e)).

The linear maps (Be, IA i)
i∈QΓ

0 , e∈QΓ
1 , A∈4⊥ are required to satisfy relations for the

McKay quiver given by the orbifold ADHM equations, obtained as Γ-equivariant
decomposition of the tetrahedron instanton equations (4.17), similarly to Sect. 3.1.

Similarly to Sect. 3.2, we can also consider arbitrary finite non-abelian groups Γ
and define their actions on C4 via a homomorphism

τ : Γ −→ Hr . (5.51)

Generically, this leads to non-effective orbifolds of C4. In particular, for the choice
of framing vector r = r A, the cohomological gauge theory is BRST-localized on
non-commutative instantons in the twisted orbifold resolution [C3

A/ Γ] × BKτ of the
quotient singularity C3

A/ Γτ , with holonomy Hr A = U(3)A, that we discussed in
Sect. 3.2. Generally, the constraint that the image τ(Γ) lands in the defect-preserving
subgroup Hr ⊂ SU(4) of the holonomy group ensures that the strata C3

A ⊂ C3� for
A ∈ 4⊥ are invariant under the Γ-action and restricts our considerations to only two
admissible classes. We follow the terminology and notation of Sect. 3.2 throughout,
and call these SU(m)× abelian orbifolds for m = 2, 3.

SU(2) × Abelian orbifolds

For fixed distinct face labels A1, A2 ∈ 4⊥, we write A1∩ A2 = (a1 a2) for a1, a2 ∈ 4 .
We take as framing vector �r A1,A2 = (�rA1, �rA2 ,

�0, �0 ); then the unbroken holonomy
group (4.14) is given by Hr A1,A2

= U(2)A1,A2 × U(1). Let Γ2 = Υ2 × Γab, where
Υ2 is a finite non-abelian subgroup of SU(2) acting on C2

A1,A2
in the fundamental

representation Q2.
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Let Γ2 act on C4 via the homomorphism τ�s : Γ2 −→ Hr A1,A2
defined by

τ�s (Γ2) =
(
Υ2 × ρs1 (Γab)

) × ρ−s1+s2 (Γab) × ρ−s12 (Γab) ⊂ U(2)A1,A2 × U(1) ⊂ SU(4) ,
(5.52)

where �s = (s1, s2) and ρs : Γab −→ U(1) is the unitary irreducible representation of
Γab with weight s. This defines the action of Γ2 onC4 = C2

A1,A2
×C Ā1

×C Ā2
as the

four-dimensional Γ2-module

Q�s4 = (Q2 ⊗ ρs1) ⊕ (λ0 ⊗ ρ−s1+s2) ⊕ (λ0 ⊗ ρ−s12) . (5.53)

The kernel of τ�s is the normal subgroup

K�s := ker(τ�s ) =
{
(g, ξ) ∈Υ2 × Γab

∣∣ g = ρ−s1 (ξ)12 ∈Υ2 , ξ ∈ ker(ρ−s1+s2 ) ∩ ker(ρs12 )
}

(5.54)

of Γ2.
The centralizer of τ�s (Γ2) in T�ε is

C�s = U(1)×2�ε ⊂ T�ε , (5.55)

where �ε = (ε1, ε2) are the equivariant parameters. Thus, the unbroken maximal torus
of the equivariant gauge theory is

TA1,A2 := T�aA1
× T�aA2

× U(1)×2�ε . (5.56)

Let DynkΥ2
be the oriented affine Dynkin diagram associated with Υ2, with adja-

cency matrix AΥ2
= (aΥ2

ii′
)
. Each vertex of the McKay quiver Qτ�s (Γ2) is labelled by

a pair (i, s), where i is a vertex of DynkΥ2
and s ∈ Γ̂ab. Then, the number of arrows

a(i,s) (i′,s′) from vertex (i, s) to vertex (i′, s′) is given by

a(i,s) (i′,s′) = aΥ2
ii′ δs′,s+s1 + δi′,i

(
δs′,s−s1+s2 + δs′,s−s12

)
. (5.57)

In the notation of Example 3.19, with rA i,s = 0 unless A ∈ {A1, A2}, the ADHM
variables (B, IA) ∈ HomΓ2

(V , V ⊗ Q�s4 ) × HomΓ2
(WA, V ) decompose into linear

maps

Bs
e ∈ HomC(Vs(e),s , Vt(e),s+s1 ) , B̄s

e ∈ HomC(Vt(e),s , Vs(e),s+s1 ) ,

Ls
Ā1 i

∈ HomC(Vi,s , Vi,s−s12 ) , Ls
Ā2 i

∈ HomC(Vi,s , Vi,s−s1+s2 ) , I s
A i ∈ HomC(WA i,s , Vi,s )

(5.58)

for each arrow e and vertex i of DynkΥ2
, s ∈ Γ̂ab, and A ∈ {A1, A2}.
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The field content is required to satisfy the orbifold ADHM equations

μCs
i =

∑
e∈ s−1(i)

B̄s+s1
e Bs

e −
∑

e∈ t−1(i)
Bs+s1

e B̄s
e

+ Ls+2s1†
Ā2 i

Ls+s12†
Ā1 i

− Ls+2s1†
Ā1 i

Ls+s1−s2†
Ā2 i

= 0 ,

μCs
e = Ls+s1

Ā2 t(e)
Bs

e − Bs−s1+s2
e Ls

Ā2 s(e)
+ B̄s+s2†

e Ls+s12†
Ā1 s(e)

− Ls+s2†
Ā1 t(e)

B̄s−s1†
e = 0 ,

μ̄Cs
e = Ls+s1

Ā2 s(e)
B̄s

e − B̄s−s1+s2
e Ls

Ā2 t(e)
− Bs+s2†

e Ls+s12†
Ā1 t(e)

+ Ls+s2†
Ā1 s(e)

Bs−s1†
e = 0 ,

[4pt]μRs
i =

∑
e∈ t−1(i)

(
Bs−s1

e Bs−s1†
e − B̄s†

e B̄s
e
)− ∑

e∈ s−1(i)

(
Bs†

e Bs
e − B̄s−s1

e B̄s−s1†
e

)

+ Ls+s1−s2
Ā2 i

Ls+s1−s2†
Ā2 i

− Ls†
Ā2 i

Ls
Ā2 i
+ Ls+s12

Ā1 i
Ls+s12†

Ā1 i
− Ls†

Ā1 i
Ls

Ā1 i

+ I s
A1 i

I s†
A1 i
+ I s

A2 i
I s†

A2 i
= ζi,s 1Vi,s ,

σ s
A1 i

= I s+s12†
A1 i

Ls†
Ā1 i

= 0 , σ s
A2 i

= I s+s1−s2†
A2 i

Ls†
Ā2 i

= 0 ,

(5.59)

where ζi,s ∈ R>0.
The action of the torus C�s = U(1)×2�ε from (5.56) on the ADHM data is given by

(
B , B̄ , L Ā1

, L Ā2
, IA1 , IA2

) �−→ (
t−11 B , t−11 B̄ , t21 t2 L Ā1

, t−12 L Ā2
, IA1 , IA2

)
,

(5.60)

where ta = e i εa .

SU(3)×Abelian orbifolds

For a fixed face label A = (a b c) ∈ 4⊥, we take as framing vector �r A = (�rA, �0, �0, �0 );
then the unbroken holonomy group (4.14) is Hr A = U(3)A. Let Γ3 = Υ3 × Γab,
where Υ3 is a finite non-abelian subgroup of SU(3) acting on C3

A in the fundamental
representation Q3.

Let Γ3 act on C4 via the homomorphism τs̃ : Γ3 −→ Hr A defined by

τs̃ (Γ3) =
(
Υ3 × ρs̃(Γab)

) × ρ−3s̃(Γab) ⊂ U(3)A ⊂ SU(4) . (5.61)

This defines the action of Γ3 on C4 = C3
A ×C Ā as the four-dimensional Γ3-module

Qs̃
4 = (Q3 ⊗ ρs̃) ⊕ (λ0 ⊗ ρ−3s̃) . (5.62)

The kernel of τs̃ is the normal subgroup

Ks̃ := ker(τs̃) =
{
(g, ξ) ∈ Υ3 × Γab

∣∣ g = ρ−s̃(ξ)13 , ξ ∈ ker(ρ3s̃)
}

(5.63)
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of Γ3.
The centralizer of τs̃(Γ3) in T�ε is

Cs̃ = U(1)ε ⊂ T�ε , (5.64)

where ε is the equivariant parameter, and the unbrokenmaximal torus of the equivariant
gauge theory is

TA := T�aA × U(1)ε . (5.65)

The adjacency matrix of the McKay quiver Qτs̃ (Γ3) is given by

a(i,s) (i′,s′) = aΥ3
ii′ δs′,s+s̃ + δi,i′ δs′,s−3s̃ , (5.66)

where (i, s), (i′, s′) ∈ QΥ3
0 × Γ̂ab.

TheADHMfield content (B, IA) ∈ HomΓ3
(V , V⊗Qs̃

4)×HomΓ3
(WA, V ) decom-

poses into linear maps

Bs
e ∈ HomC(Vs(e),s , Vt(e),s+s̃ ), Ls

Ā i
∈ HomC(Vi,s , Vi,s−3s̃ ), I s

A i ∈ HomC(WA i,s , Vi,s ) ,

(5.67)

for e ∈ QΥ3
1 , s ∈ Γ̂ab, and i ∈ QΥ3

0 . They satisfy the orbifold ADHM equations

μC = B ∧ B − �Ω (B ∧ B) = 0 ,

μRs
i =

∑
e∈ t−1(i)

Bs−s̃
e Bs−s̃†

e −
∑

e∈ s−1(i)
Bs†

e Bs
e

+ Ls+3s̃
Ā i

Ls+3s̃†
Ā i

− Ls†
Ā i

Ls
Ā i
+ I s

A i I s†
A i = ζi,s 1Vi,s ,

σA i,s = I s+3s̃†
A i Ls†

Ā i
= 0 ,

(5.68)

where ζi,s ∈ R>0, and the complex equationμC ∈ HomΓ3
(V , V ⊗∧2

−Qs̃
4) is written

using the involution �Ω from (4.5).
The torus Cs̃ = U(1)ε from (5.64) transforms the ADHM data as

(
B , L Ā , IA

) �−→ (
t−1 B , t3 L Ā , IA

)
, (5.69)

where t = e i ε .

Stability and Quot schemes

As discussed in [42, 58] for the case ofNakajima quiver varieties, theD-term equations
μR
i = ζi 1Vi in (5.59) and (5.68), for i ∈ Qτ(Γm )

0 , are equivalent to the following
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stability condition: if there is a collection of subspaces Si ⊂ Vi for i ∈ Qτ(Γm )
0 such

that

IA i(WA i) ⊂ Si and Be(Ss(e)) ⊂ St(e) , (5.70)

for all i ∈ Qτ(Γm )
0 , A ∈ 4⊥ and e ∈ Qτ(Γm )

1 , then Si = Vi for all i ∈ Qτ(Γm )
0 . In the

present case, the proof is similar to the stability proof for spiked instantons given in
[5, Sect. 8].

Similarly to [42], let P j
i [Qτ(Γm )] denote the set of all paths along the McKay

quiver Qτ(Γm ) starting at vertex i ∈ Qτ(Γm )
0 and ending at vertex j ∈ Qτ(Γm )

0 . A path
γ = (eγ1 , . . . , eγn ) ∈ P j

i [Qτ(Γm )] of length l(γ ) = n is described by a sequence of n

arrows eγi ∈ Qτ(Γm )
1 , with s(eγ1) = i, t(eγn ) = j and s(eγi ) = t(eγi−1) for 2 ≤ i ≤ n.

We indicate by Bγ the composition of linear maps Be defined by the path γ :

Bγ = Beγn
Beγn−1 · · · Beγ1

. (5.71)

Then, the stability condition implies that

Vj =
∑

A∈ 4⊥
VA j :=

∑
A∈ 4⊥

∑
i∈Qτ (Γm )

0

∑
γ∈P j

i [Qτ (Γm )]
Bγ IA i

(
WA i

)
, (5.72)

for all j ∈ Qτ(Γm )
0 .

The same argument used in Sect. 3.1 shows that the equations μC = 0 in (5.59)
and (5.68) are equivalent to the EJ-term relations

μCs
i =

∑
e∈ s−1(i)

B̄s+s1
e Bs

e −
∑

e∈ t−1(i)
Bs+s1

e B̄s
e = 0 ,

μCs
e = Ls+s1

Ā2 t(e)
Bs

e − Bs−s1+s2
e Ls

Ā2 s(e)
= 0 ,

μ̄Cs
e = Ls+s1

Ā2 s(e)
B̄s

e − B̄s−s1+s2
e Ls

Ā2 t(e)
= 0 ,

(5.73)

for SU(2)× abelian orbifolds, and

μC = B ∧ B = 0 , (5.74)

for SU(3)× abelian orbifolds.
Using the stability condition, we can now express the instanton moduli spaceM�r,�k ,

regarded as a quiver variety in the ADHM parametrization, as a non-commutative Γm-
Quot scheme

M�r,�k � �μC−1
m (0)stable

/
G�k , (5.75)
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for the SU(m)× abelian orbifolds, where

�μC
m =

⎧⎪⎨
⎪⎩

(
μCs
i , μCs

e , μ̄Cs
e , σ s

A1 i
, σ s

A2 i

)
i∈QΥ2

0 , e∈QΥ2
1 , s∈Γ̂ab

for m = 2 ,
(
μC , σ s

A i

)
i∈QΥ3

0 , s∈Γ̂ab

for m = 3 .

(5.76)

The complex gauge group

G�k = ×
i∈Qτ (Γm )

0

GL(ki,C) (5.77)

acts on the ADHM data as

g · (Be , IA i
) = (gt(e) Be g−1s(e) , gi IA i

)
, (5.78)

with gi ∈ GL(ki,C).

5.5 Equivariant fixed points on quiver varieties

The quiver variety M�r,�k has a symmetry group

U(�r ) = ×
A∈ 4⊥
×

i∈Qτ (Γm )
0

U(rA i) , (5.79)

acting by framing rotations IA i �−→ IA i h
−1
A i with h A i ∈ U(rA i). Its maximal torus

can be expressed as

T�a = ×
A∈ 4⊥

T�aA = ×
A∈ 4⊥
×

i∈Qτ (Γm )
0

T�aA i ⊂ Tτ , (5.80)

where �aA i = (aA i 1, . . . , aA i rA i) are the equivariant parameters of the maximal torus
T�aA i ⊂ U(rA i).

With respect to the action of the maximal torus (5.80) on the moduli space, a
connected component of the fixed point locus labelled by F ∈ π0

(
MTτ

�r,�k
)
corresponds

to a set

F = (FA i l
)

A∈ 4⊥ , i∈Qτ (Γm )
0

l=1,...,rA i

. (5.81)
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The fixed point locus for the action of the maximal tours Tτ = T�a × Cτ is the disjoint
union

MTτ

�r,�k =
⊔

F∈π0(MTτ

�r,�k )
×
A∈ 4⊥
×

i∈Qτ (Γm )
0

rA i×
l=1

MFA i l . (5.82)

We describe these component sets explicitly below.

SU(2)×Abelian orbifolds: linear partitions

Consider the setup of the orbifold group Γ2 = Υ2 × Γab and the equivariant gauge
theory with maximal torus TA1,A2 = T�aA1

× T�aA2
× U(1)×2�ε . We may characterize

the equivariant fixed points of the torus action on the quiver variety by consider-
ing first the action of TA1,A2 on the ADHM data (Ba, IA)a∈4, A∈4⊥ of Sect. 4.2 with
r = r A1,A2 = (rA1, rA2 , 0, 0). The action of Γ2 decomposes the ADHM data into its
irreducible representations labelled by the vertices of the McKay quiver Qτ(Γ2)

0 . Since
the actions of the groupsΓ2 and TA1,A2 commute by construction, the degeneracy struc-
ture of the TA1,A2 -fixed point loci, whether they be isolated points or admit continuous
deformations, remain unchanged in the orbifold theory and are parametrized by the
same combinatorial data. For the same reason, the compactness results of Appendix B
descend to the orbifold projections.

The torus action is given by

(
Ba , IA

)
a ∈ 4 , A∈{A1,A2} �−→

(
t−11 Ba , t−12 BĀ2

, t21 t2 BĀ1
, IA h−1A

)
a∈{a1,a2} , A∈{A1,A2} ,

(5.83)

for h A ∈ T�aA . The equivariant TA1,A2 -fixed point equations are

g Ba g−1 = t−11 Ba , g BĀ2
g−1 = t−12 BĀ2

, g BĀ1
g−1 = t21 t2 BĀ1

, g IA = IA eA ,

(5.84)

for a ∈ {a1, a2} and A ∈ {A1, A2}, where g is the image of a homomorphism
TA1,A2 −→ GL(k,C) and eA = diag(eA 1, . . . , eA rA ) with eA l = e iaA l .

We use the complex version of the ADHMparametrization to determine the general
structure of the connected components of the tetrahedron instanton moduli space
labelled by F ∈ π0

(
M

TA1,A2
r A1,A2 ,k

)
. For this, we use Remark 4.24 to decompose V =

VA1 + VA2 , where VA = C[Ba, Bb, Bc] IA(WA) and BĀ(VA) = 0. For each A ∈
{A1, A2} there are weight decompositions for the T�aA -action given by

VA =
rA⊕

l=1
VA l and WA =

rA⊕
l=1

WA l , (5.85)

where WA l are one-dimensional T�aA -modules. We momentarily focus on the rank one
submodules VA l and WA l for fixed l ∈ {1, . . . , rA}.
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By the fixed point equations (5.84), the GL(k,C)-transformation g is unique and it
induces weight decompositions of the rank one T�aA -modules

VA l =
⊕

i, j∈Z
VA l(i, j) with VA l(i, j) = {v ∈ VA l

∣∣ g(v) = t i
1 t j

2 eA l v
}
.

(5.86)

From (5.84) it follows that Ba
(
VA l(i, j)

) ⊂ VA l(i − 1, j), BĀ2

(
VA1 l(i, j)

) ⊂
VA1 l(i, j − 1) and BĀ1

(
VA2 l(i, j)

) ⊂ VA2 l(i + 2, j + 1), for a ∈ {a1, a2} and A ∈
{A1, A2}, along with the vanishing images BĀ1

(
VA1 l(i, j)

) = BĀ2

(
VA2 l(i, j)

) = 0.
The images

IA(WA l) ⊂ VA l(0, 0) (5.87)

are all one-dimensional subspaces.
For each l ∈ {1, . . . , r}, a ∈ {a1, a2} and i, j ∈ Z, we can summarize this weight

data in a pair of diagrams: the A1-diagram

VA1 l (i − 1, j)

BĀ2

VA1 l (i, j)
Ba

BĀ2

VA1 l (i − 1, j − 1) VA1 l (i, j − 1)
Ba

(5.88)

and the A2-diagram

VA2 l (i + 1, j + 1)

VA2 l (i − 1, j)

BĀ1

VA2 l (i + 2, j + 1)

Ba

VA2 l (i, j)

Ba BĀ1

(5.89)

Both are commutative diagrams by the EJ-term relations [Ba, Bb] = 0.
For the A1-diagrams, we argue exactly as in [12, 69]. Since VA1 l is spanned by the

one-dimensional subspaces B p
a1 Bm

a2 Bn
Ā2

IA1(WA1 l) with p,m, n ∈ Z≥0, it follows
from (5.87) that VA1 l(i, j) = 0 if either i > 0 or j > 0, while each non-trivial
weight space is one-dimensional. The commutativity of the A1-diagrams implies that
VA1 l(i, j) � C is possible in only three instances: i = 0 and VA1 l(i, j + 1) � C, or
j = 0 and VA1 l(i + 1, j) � C, or both VA1 l(i + 1, j) � C and VA1 l(i, j + 1) � C.
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This yields the box stacking description of aYoung diagramλA1 l : we identify each pair
(i, j) for which VA1 l(i, j) � Cwith a box at the corresponding location (i, j) ∈ Z2≤0.

By reading off the numbers of boxes in each row, aYoung diagrammay be identified
with a linear partition, that is, a sequence λ = (λi )i≥1 of non-negative integers λi ∈
Z≥0 satisfying

λi ≥ λi+1 . (5.90)

The total number of boxes in the Young diagram is the size |λ| = ∑
i≥1 λi of the

linear partition. By considering the totality of Young diagrams for l ∈ {1, . . . , rA1},
we obtain an array �λA1 = (λA1 1, . . . , λA1 rA1

) of linear partitions of size

∣∣�λA1

∣∣ =
rA1∑
l=1

|λA1 l | = kA1 := dim VA1 . (5.91)

The argument for the A2-diagrams is analogous. In this case it follows from
(5.87) that VA2 l(i, j) = 0 if either j < 0 or i > 2 j , while commutativ-
ity of the A2-diagrams implies that VA2 l(i, j) � C is only possible when either
j = 0 and VA2 l(i − 2, j − 1) � C, or i = 2 j and VA2 l(i + 1, j) � C, or both
VA2 l(i − 2, j − 1) � C and VA2 l(i + 1, j) � C. By identifying each pair (i, j) for
which VA2 l(i, j) � C with a box at the location (2 j − i, j) ∈ Z2≥0, we obtain an
array of linear partitions �λA2 of size |�λA2 | = kA2 := dim VA2 .

For generic values of t1, t2 and eA l , the sets of weights for the actions of g on
VA1 and VA2 are disjoint and therefore VA1 ∩ VA2 = 0 at the fixed points, i.e. V =
VA1⊕VA2 . Altogether we have shown that a fixed point labelled byF ∈ π0

(
M

TA1,A2
r A1,A2 ,k

)
corresponds to an array of linear partitions �λ = (�λA1 ,

�λA2) whose total size is the
instanton number

k = ∣∣�λ ∣∣ = ∣∣�λA1

∣∣+ ∣∣�λA2

∣∣ = ∑
A∈{A1,A2}

rA∑
l=1

|λA l | . (5.92)

However, the correspondence is not bijective: the associations of the same Young
diagrams λA l can be reached through different combinations of the actions of the
linear maps Ba1 and Ba2 . Put differently, the virtual tangent space T vir

�λ Mr A1,A2 ,k
is

not movable, i.e. it contains the trivial TA1,A2 -representation. This generally allows
for continuous deformations, and the fixed points �λ are not isolated.

Example 5.93 Consider U(1) gauge theory with rA1 = 1 and rA2 = 0 in the sector of
instanton charge k = 2. A solution of the complex ADHM equations from (4.17) is
obtained by taking BĀ1

= BĀ2
= 0 and

Ba1 =
(

0 0
b1 0

)
, Ba2 =

(
0 0
b2 0

)
, IA1 =

(
I
0

)
, (5.94)
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with b1, b2, I ∈ C. Up to a U(1) phase rotation, and using scaling symmetry to set
ζ = 1, the D-term equation in (4.17) is then uniquely solved by taking I = √

2
and (b1, b2) ∈ C2 to parametrize the three-sphere |b1|2 + |b2|2 = 1, which after
quotienting by the U(1) phase leaves the complex projective line P1.

For these ADHM data, the fixed point equations (5.84) are uniquely solved by the
complex gauge transformation

g =
(

eA1 0
0 t−11 eA1

)
, (5.95)

for all (b1, b2) ∈ C2. The fixed point locus MF � P1 is thus compact and consists
of non-isolated points, parametrizing the centre of the TA1,A2 -invariant two-instanton
solution in C2

A1,A2
⊂ C3

A1
. It corresponds to the Young diagram

λ = (5.96)

SU(3)×Abelian orbifolds: integer points

Wecan similarly treat the setup of the orbifold groupΓ3 = Υ3×Γab and the equivariant
gauge theory with maximal torus TA = T�aA × U(1)ε . Let (Ba, IA)a∈4 be the ADHM
data of Sect. 4.2 with r = r A = (rA, 0, 0, 0). The torus action is given by

(
Ba , IA

)
a ∈ 4 �−→

(
t−1 Ba , , t3 BĀ , IA h−1A

)
a∈A , (5.97)

for h A ∈ T�aA . The same argument as given in Sect. 2.2 shows that BĀ = 0. Then the
equivariant TA-fixed point equations are

g Ba g−1 = t−1 Ba and g IA = IA eA , (5.98)

for a ∈ A, where g denotes the image of a homomorphism TA −→ GL(k,C).
By decomposing the vector spaces V = VA and WA into rank one T�aA modules as

in (5.85), the GL(k,C)-transformation g from (5.98) induces weight decompositions

Vl =
⊕
n∈Z

Vl(n) with Vl(n) =
{
v ∈ V

∣∣ g(v) = tn eA l v
}
, (5.99)

such that Ba
(
Vl(n)

) ⊂ Vl(n − 1) for a ∈ A, while IA(WA l) ⊂ Vl(0) are all one-
dimensional subspaces. For each l ∈ {1, . . . , rA}, a ∈ A and n ∈ Z, these data are
summarized by the diagram

Vl(n − 1)
Ba←−−− Vl(n) (5.100)

Since Vl is spanned by the one-dimensional subspaces Bi
a B j

b B p
c IA(WA) with

i, j, p ∈ Z≥0, it follows that Vl(n) = 0 if n > 0 and each non-trivial weight space is
one-dimensional. There, being no other conditions and no structure, we simply count
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the number of nonzero subspaces Vl(n) � C for n ∈ Z≤0 to obtain the non-negative
integer ηl = dim Vl .

The totality of integer points defines an array �η = (η1, . . . , ηrA ) of non-negative
integers ηl ∈ Z≥0 partitioning the instanton number

k = |�η | =
rA∑

l=1
ηl , (5.101)

and corresponding to a fixed point labelled by F ∈ π0
(
M

TA
r A,k

)
. As previously, one can

show that the correspondence is not bijective and the TA-fixed points are generally not
isolated, as the associations of the same integer points ηl can be reached by different
combinations of the actions of the linear maps Ba for a ∈ A.

5.6 Non-Abelian orbifold partition functions

We now focus on evaluating the equivariant partition functions for tetrahedron instan-
tons on non-abelian orbifolds. We have seen in Sect. 5.5 that, for the SU(m)× abelian
orbifolds, the torus-fixed points of the instanton moduli space are not isolated. More-
over, unlike the case of abelian orbifolds, the four-dimensional representation of Γm

defined by the homomorphism τ does not induce a Γ̂m-colouring of the combinatorial
data parametrizing the fixed points. Consequently, we do not refine the counting vari-
able �qwith respect to the irreducible representations of Γm when defining the partition
functions for SU(m)× abelian orbifolds.

SU(2)×Abelian orbifolds

We use the stability condition from Sect. 5.4 together with the parametrization of the
fixed point locus in terms of arrays �λ of linear partitions from Sect. 5.5 to decompose
the Γ2-module V , following the analogous treatment for spiked instantons from [42].
For each (i, s), (i′, s′) ∈ Qτ�s (Γ2)

0 and �n = (n1, n2) ∈ Z2≥0, we define the vector spaces

V i,s
A i′,s′(�n) =

∑
γ∈P(i′,s′)

(i,s) [Qτ�s (Γ2)]An2
l(γ )=n1+n2

Bγ I s
A i

(
WA i,s

)
(5.102)

for A ∈ {A1, A2}, where P(i′,s′)
(i,s) [Qτ�s (Γ2)]An2 indicates the set of paths along the quiver

Qτ�s (Γ2) from (i, s) to (i′, s′) formed by n2 applications of L Ā with respect to the
notation of (5.60). The complex gauge group G�k acts on V i′,s′

A i,s(�n) as GL(ki,s,C).
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Next we introduce corresponding Γ2-equivariant vector bundles

V =
⊕

(i,s)∈Qτ�s (Γ2)
0

Vi,s ⊗R∗(i,s)

[4pt] :=
⊕

(i,s)∈Qτ�s (Γ2)
0

⎛
⎜⎜⎝
⊕
�n∈Z2≥0

∑
A∈{A1,A2}

∑

(i′,s′)∈Qτ�s (Γ2)
0

V i′,s′
A i,s (�n)

⎞
⎟⎟⎠⊗R∗(i,s) ,

(5.103)

where R(i,s) = λi ⊗ ρs for i ∈ QΥ2
0 and s ∈ Γ̂ab while

V i′,s′
A i,s (�n) = �μC−1

2 (0)stable ×G�k V i′,s′
A i,s(�n) , (5.104)

together with

WA =
⊕

(i,s)∈Qτ�s (Γ2)
0

WA i,s ⊗R∗(i,s) with WA i,s =M�r A1,A2 ,
�k × WA i,s ,

(5.105)

for A ∈ {A1, A2}. The TA1,A2 -action on the moduli space M�r A1,A2 ,
�k lifts to TA1,A2 -

equivariant structures on the bundles V and WA.
Similarly to the case of abelian orbifolds, we need to consider the equivariant

version of the cochain complex of vector bundles (4.39). Since the subgroups Γ
τ�s
2 and

C�s commute, we can consider the equivariant index bundle as the Γ2-invariant part
of the index bundle (4.45), regarded as an element of the equivariant K-theory of the
moduli space M�r A1,A2 ,

�k , by replacing the vector space Q4 with

Q�s4 = t−11 (Q2 ⊗ ρs1)+ t−12 (λ0 ⊗ ρ−s1+s2)+ t21 t2 (λ0 ⊗ ρ−s12) , (5.106)

as an element of the representation ring of the group TA1,A2×Υ2×Γab, where ta = e i εa

for a = 1, 2.
We express the pullback of the index to the connected component parametrized by

the array of Young diagrams �λ as

√
ch

Υ2×Γab
TA1,A2

(
T virM�r A1,A2 ,

�k
∣∣
M�λ
)

:= chTA1,A2

[
W ∗

A1 �λ ⊗ V�λ +W ∗
A2 �λ ⊗ V�λ − V ∗�λ ⊗ V�λ

+ V ∗�λ ⊗ V�λ
(
t−11 (Q2 ⊗ ρs1 )+ t−12 (λ0 ⊗ ρs2−s1 )+ t21 t2 (λ0 ⊗ ρ−s12 )

)

− V ∗�λ ⊗ V�λ
(
t−21 (λ0 ⊗ ρ2s1 )+ t−11 t−12 (Q2 ⊗ ρs2 )

)

− V ∗�λ ⊗WA1 �λ t−21 t−12 (λ0 ⊗ ρs12 )− V ∗�λ ⊗WA2 �λ t2 (λ0 ⊗ ρs1−s2 )
]Υ2×Γab

,

(5.107)
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where V�λ := V
∣∣
M�λ

and WA �λ := WA
∣∣
M�λ

. From (5.49) it follows that

chTA1,A2

[
V ∗ ⊗ V (Q2 ⊗ ρs′)

]Υ2×Γab

=
∑

e∈QΥ2
1

∑
s∈Γ̂ab

(
chTA1,A2

(
V ∗
t(e),s+s′

)
chTA1,A2

(
Vs(e),s

)

+ chTA1,A2

(
V ∗
s(e),s+s′

)
chTA1,A2

(
Vt(e),s

))
,

(5.108)

and similarly for the other types of contributions to (5.107).
The pullbacks of the equivariant characteristic classes chTA1,A2

(V ) and chTA1,A2
(W )

to the connected component M�λ decompose into

chTA1,A2

(
V�λ
)

=
∑

(i,s) , (i′,s′)∈Qτ�s (Γ2)
0

( rA1 i
′,s′∑

l=1
eA1 i′,s′ l

∑
�p ∈λA1 i

′,s′ l

t p1−1
1 t p2−1

2

× ch
(
V i′,s′

A1 i,s
(p1 − 1, p2 − 1)

∣∣
MλA1 i

′,s′ l

)⊗R∗(i,s)

+
rA2 i′,s′∑

l ′=1
eA2 i′,s′ l ′

∑
�p ′∈λA2 i,s′ l′

t
p′1−2p′2−3
1 t

1−p′2
2

× ch
(
V i′,s′

A2 i,s
(p′1 − 1, p′2 − 1)

∣∣
MλA2 i′,s′ l′

)⊗R∗(i,s)
)

(5.109)

and

chTA1,A2

(
WA �λ

) = ∑

(i,s)∈Qτ�s (Γ2)
0

rA i,s∑
l=1

eA i,s l ⊗R∗(i,s) . (5.110)

From these formulas one may now extract the equivariant top Chern classes and
compute the equivariant square root Euler class

√
eΓ2
TA1,A2

(
N vir

M�λ

)
of the virtual normal

bundle, as described in (4.48).
Then, the full twisted partition function for tetrahedron instantons on C4/ Γ

τ�s
2 ,

for Γ2 = Υ2 × Γab with Υ2 a finite non-abelian subgroup of SU(2) and �r A1,A2 =
(�rA1, �rA2 ,

�0, �0 ), is given by
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Z
�r A1,A2

[C4 /Γ2]×BK�s (�q ; �a, ε1, ε2) =
∑

�k∈Z#Γ̂2≥0

�q �k
∑

�λ∈π0(M
TA1,A2
�rA1,A2

,�k )

(−1)O
Γ2
�λ

∫
[M�λ]vir

1√
e
Γ2
TA1,A2

(
N vir

M�λ
) ,

(5.111)

where

�q �k =
∏

i∈QΥ2
0

∏
s∈Γ̂ab

q
ki,s
i,s . (5.112)

Remark 5.113 (Sign Factors) Comparing the actions of the tori U(1)×2�ε and T�ε onC4,
we see they are related through

ε1 = ε1 , ε2 = ε1 , ε3 = ε2 , ε4 = −ε1 − ε2 − ε3 = −2 ε1 − ε2 , (5.114)

where �ε = (ε1, ε2, ε3, ε4) are the generators of the maximal torus T�ε of SU(4) and
�ε = (ε1, ε2) are the generators of the centralizer U(1)

×2
�ε of τ�s (Γ2). From this relation

we believe that the sign factor can be evaluated by generalizing the sign factor in (4.76)
as

OΓ2
�λ = rk

(
V ∗
�λ ⊗ V�λ t−21 t−12

)fix mod 2 . (5.115)

Example 5.116 Consider the orbifold C2/Υ2 × C2 where Υ2 = T∗ is the binary
tetrahedral group of order 24. It has three one-dimensional irreducible representations,
λ0, λ3 and λ6, three two-dimensional irreducible representations, λ1 = Q2, λ4 and
λ5, and one three-dimensional irreducible representation λ3. Given an orientation for
the affine Dynkin diagram of type E6, the McKay quiver QT∗

is

3 4 2 5 6

1

0

(5.117)

Let �r 0A1,A2
= (r0A i

)
A∈{A1,A2} , i∈QT∗

0
and �r 1A1,A2

= (r1A i

)
A∈{A1,A2} , i∈QT∗

0
be two

choices of the framing vector �r A1,A2 whose only nonzero entries are r i
A i = r i

A1 i = 1
for i = 0, 1. For these framing vectors the ADHM equations (5.59) are different and
inequivalent for any �k ∈ Z7≥0. This implies

M�r 0A1,A2 ,�k
�� M�r 1A1,A2 ,�k

. (5.118)
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This example serves to illustrate that, unlike the cases of SU(4)-instantons on orb-
ifolds studied in [18], the partition functions for tetrahedron instantons on non-abelian
orbifolds of type �r = (rA i)

A∈4⊥ , i∈QΓ
0

are, in general, not invariant under permutations

of the quiver vertices i ∈ QΓ
0 .

SU(3)×Abelian orbifolds

Following our stability analysis from Sect. 5.4 and the parametrization of the fixed
point subschemes in terms of arrays of integer points �η from Sect. 5.5, let us introduce
vector spaces

V i,s
A i′,s′(n) =

∑
γ∈P(i′,s′)

(i,s) [Qτs̃ (Γ3)]
l(γ )=n

Bγ IA i,s
(
WA i,s

)
(5.119)

for (i, s), (i′, s′) ∈ Qτs̃ (Γ3)

0 and n ∈ Z≥0, where P(i′,s′)
(i,s) [Qτs̃ (Γ3)] is the set of paths

along the quiver Qτs̃ (Γ3) from (i, s) to (i′, s′). Again the complex gauge group G�k acts
on V i′,s′

A i,s(n) as GL(ki,s,C).
We define the Γ3-equivariant vector bundles

V =
⊕

(i,s)∈Qτs̃ (Γ3)
0

Vi,s ⊗R∗(i,s) :=
⊕

(i,s)∈Qτs̃ (Γ3)
0

⎛
⎜⎜⎜⎝
⊕

n∈Z≥0

∑

(i′,s′)∈Qτs̃ (Γ3)
0

V i′,s′
i,s (n)

⎞
⎟⎟⎟⎠⊗R∗(i,s) ,

(5.120)

where R(i,s) = λi ⊗ ρs for i ∈ QΥ3
0 and s ∈ Γ̂ab while

V i′,s′
i,s (n) = �μC−1

3 (0)stable ×G�k V i′,s′
A i,s(n) , (5.121)

along with

W =
⊕

(i,s)∈Qτs̃ (Γ3)
0

Wi,s ⊗R∗(i,s) with Wi,s =M�r A,�k × WA i,s . (5.122)

Similarly to the SU(2)× abelian orbifolds, the TA-action on the moduli space M�r A,�k
lifts to TA-equivariant structures on the bundles V and W .

Since Γ
τs̃
3 and Cs̃ commute, the equivariant index bundle is given by the Γ3-invariant

part of the index (4.45) of the cochain complex of vector bundles (4.39), by replacing
the vector space Q4 with

Qs̃
4 = t−1 (Q3 ⊗ ρs̃)+ t3 (λ0 ⊗ ρ−3s̃) , (5.123)
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as an element in the representation ring of TA ×Υ3 × Γab, where t = e i ε .
The pullback of the index to the connected component parametrized by the array

of integer points �η reads

√
ch

Υ3×Γab
TA

(
T virM�r A,�k

∣∣
M�η
)

= chTA

[
W ∗
�η ⊗ V�η − V ∗�η ⊗ V�η + V ∗�η ⊗ V�η t−1 (Q3 ⊗ ρs̃ )+ V ∗�η ⊗ V�η t3 (λ0 ⊗ ρ−3s̃ )

− V ∗�η ⊗ V�η t−2 (Q∗3 ⊗ ρ2s̃ )− V ∗�η ⊗W�η t−3 (λ0 ⊗ ρ3s̃ )
]Υ3×Γab

,

(5.124)

where V�η := V
∣∣
M�η and W�η := W

∣∣
M�η . From (5.49) it follows that

chTA

[
V ∗ ⊗ V (Q3 ⊗ ρs′)

]Υ3×Γab =
∑

e∈QΥ3
1

∑
s∈Γ̂ab

chTA

(
V ∗
t(e),s+s′

)
chTA

(
Vs(e),s

)
,

(5.125)

and similarly for the other types of contributions to (5.124).
The pullbacks of the equivariant Chern characters chTA(V ) and chTA (W ) to the

connected component M�η decompose into

chTA

(
V�η
) = ∑

(i,s) , (i′,s′)∈Qτs̃ (Γ3)
0

rA i,s∑
l=1

eA i′,s′ l

ηi′,s′ l∑
p=1

t p−1 ch
(
V i′,s′
i,s (p − 1)

∣∣
MηA i′,s′ l

)⊗R∗(i,s)

(5.126)

and

chTA

(
W�η
) = ∑

(i,s)∈Qτs̃ (Γ3)
0

rA i,s∑
l=1

eA i,s l ⊗R∗(i,s) . (5.127)

These formulas may be used to extract the equivariant square root Euler class√
eΓ3
TA

(
N vir

M�η
)
of the virtual normal bundle using (4.48), and the full twisted instanton

partition function is

Z �r A

[C4 /Γ3]×BKs̃ (�q ; �aA, ε) =
∑

�k∈Z#Γ̂3≥0

�q �k
∑

�η∈π0(MTA
�rA ,�k

)

(−1)O
Γ3
�η
∫
[M�η]vir

1√
eΓ3
TA

(
N vir

M�η
) ,

(5.128)
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where

�q �k =
∏

i∈QΥ3
0

∏
s∈Γ̂ab

q
ki,s
i,s . (5.129)

Remark 5.130 (Sign Factors) The orbifold by the group Γ3 = Υ3 × Γab is equivalent
to the description of instantons on the generally non-effective orbifold C3/ Γ3 from
Sect. 3.2. By comparing the index in that case with the index (5.124), we find that the
sign factor is given by

OΓ3
�η = rk

(
V ∗
�η ⊗ V�η t−3

)fix mod 2 . (5.131)

5.7 Orbifold partition functions from geometric crepant resolutions

While our constructions from Sect. 5.6 formally solve the problem of computing the
partition functions for tetrahedron instantons on non-abelian orbifolds, in practice
making the formulas (5.111) and (5.128)more explicit like the abelian case is generally
still a complicated task due to the remaining integrals over [MF]vir required. We
conclude bydiscussing some classes of non-abelian orbifoldswhereby closed formulas
for the instanton partition functions can be obtained.

Although our construction of orbifold partition functions for tetrahedron instantons
holds generally for any Calabi–Yau four-orbifold of the types we have discussed, a
special role is played by orbifolds admitting a geometric crepant resolution, which
provides a regularization of the orbifold singularities [70]. For a finite group Γ acting
linearly on Cd , recall that a proper algebraic map πΓ : XΓ −→ Cd/ Γ is a crepant
resolution if XΓ is smooth and πΓ is a birational morphism which preserves the
canonical bundles. A necessary but not sufficient condition for the existence of a
crepant resolution is that Γ is a proper subgroup of SL(d,C). Crepant resolutions
appear in the stringy Kähler moduli space of supersymmetric Calabi–Yau orbifolds
which have marginal operators that can be used to resolve the singularity.

Resolutions of non-effective orbifolds are discussed in [63]. While these theories
lead to richer BPS spectra at the quotient singularity Cd/ Γτ , it is not possible to
smoothly resolve or deform all singularities within the moduli space of supersym-
metric vacua. Henceforth we restrict our considerations to effectively acting orbifold
groups, i.e. to subgroups where Γ = Γτ ⊂ SL(d,C). However, it should be stressed
that the absence of a geometric crepant resolution is not a deficiency of the theory: both
the twisted orbifold and non-commutative resolutions always exist, and are ‘desingu-
larizations’ in their own contexts.

For d = 2, 3, a crepant resolution is provided by the Hilbert-Chow morphism πΓ
from the Nakamura Γ-Hilbert scheme XΓ = HilbΓ(Cd) ⊂ Hilb#Γ(Cd) of Γ-invariant
zero-dimensional subschemes Z ⊂ Cd of length #Γwhose global sections H0(Z ,OZ )

form the regular representationC[Γ] of Γ; this is themoduli space of regular instantons
of the rank one orbifold gauge theory. For d = 2, this crepant resolution is unique and
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related to an ALE space of type ADE. For d = 4, the existence of crepant resolutions
for orbifolds of the types C2/ Γ×C2 and C3/ Γ×C is discussed in [18, 35, 71].

Given a geometric crepant resolution πΓ : XΓ −→ C4/ Γ, we now consider its
interaction with the orbifold crepant resolution

[
C4
/

Γ
]

πorb

XΓ

πΓ

C4
/

Γ

(5.132)

We are interested in those orbifold theories whose partition function on the quotient
stack [C4/ Γ] is equivalent to the partition function of the cohomological gauge theory
on the crepant resolution XΓ through changes of variables andwall-crossing formulas.
This amounts to associating SU(4)-instantons onC4/ Γ to torsion free sheaves on XΓ
along the lines of [43], or equivalently fractional D-branes at the orbifold singularity
to D-branes wrapping cycles of the exceptional locus of XΓ, which underlies an
equivalence between the derived categories of coherent sheaves on [C4/ Γ] and XΓ.
This further restricts the allowed orbifold groups Γ, and is the physical incarnation
of the Donaldson–Thomas crepant resolution correspondence in algebraic geometry
[72].

Tetrahedron instantons onC2
A1,A2

/ Γ ×C2

We start by pointing out that one can always construct a crepant resolution for tetrahe-
dron instantons on orbifolds of the typeC4/ Γ � C2

A1,A2
/ Γ×C2, where Γ is a finite

subgroup of SL(2,C). As previously, this choice of orbifold forces us to consider
tetrahedron instantons of type

�r = �r A1,A2 =
(�rA1 i, �rA2 i,

�0, �0 )
i∈Γ̂ . (5.133)

The construction is simple. The ADE singularity C2
A1,A2

/ Γ has a unique minimal
crepant resolution given by the Nakamura Γ-Hilbert scheme [73]

πA1,A2 : X A1,A2 := HilbΓ(C2
A1,A2

) −→ C2
A1,A2

/
Γ . (5.134)

By regarding Γ as a subgroup of SL(3,C) through the natural embedding
SL(2,C) ⊂ SL(3,C), for each stratum C3

A ⊂ C3� with A ∈ {A1, A2} a crepant
resolution of the quotient singularity C3

A/ Γ � C2
A1,A2

/ Γ×C Ā is given by letting

X A = X A1,A2 ×C Ā � HilbΓ(C3
A) and defining the two crepant resolutions

πA := πA1,A2 × idC Ā
: X A −→ C3

A

/
Γ , (5.135)

for A ∈ {A1, A2}. Note that X A1,A2 � X A1 ∩ X A2 .
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Finally, letting XΓ = X A1,A2 ×C Ā1
×C Ā2

� HilbΓ(C4), we define

πΓ := πA1,A2 × idC Ā1
×C Ā2

: XΓ −→ C4 / Γ , (5.136)

which by construction is a crepant resolution. The cohomological gauge theory for
tetrahedron instantons on the smooth Calabi–Yau fourfold XΓ is now defined by
solutions (4.10) of the SU(4)-instanton equations (4.8) on the singular Calabi–Yau
threefold

X� = X A1 ∪ X A2 ⊂ XΓ . (5.137)

On general grounds, the tetrahedron instanton partition function Z �rXΓ
should follow

from a dimensional reduction of the Donaldson–Thomas partition function Zr
XΓ

,
similarly to Proposition 4.66, though we do not yet have available a computation of the
latter. For the An−1 singularityC4/Zn , the crepant resolution correspondence of [35,
Conjecture 5.16] relates the U(1) orbifold Donaldson–Thomas partition function to
Zr=1

XZn
, where the latter can be computed from the vertex formalism of [20]. Extending

this correspondence to higher rank and to generic ADE singularities would then enable
explicit computation of (5.111) for any finite subgroup Γ ⊂ SU(2). These tasks are
beyond the scope of the present paper.

Tetrahedron instantons onC3
A/ Γ ×C

A similar construction is available for tetrahedron instantons on orbifolds of the type
C4/ Γ � C3

A/ Γ × C, where Γ is a finite subgroup of SL(3,C). This restricts to
tetrahedron instantons of type

�r = �r A =
(�rA i, �0, �0, �0

)
i∈Γ̂ . (5.138)

When Γ is a finite subgroup of SO(3) ⊂ SU(3), the polyhedral singularity C3
A/ Γ has

an irreducible crepant resolution realized by the Nakamura Γ-Hilbert scheme [74]

πA : X A := HilbΓ(C3
A

) −→ C3
A

/
Γ , (5.139)

which contracts curves of the exceptional locus of X A to points in the singular locus

of C3
A/ Γ. The Calabi–Yau fourfold XΓ := X A × C Ā � HilbΓ(C4) then defines a

crepant resolution

πΓ := πA × idC Ā
: XΓ −→ C4 / Γ . (5.140)

We use the crepant resolution (5.139) to derive a closed formula for the rank one
Donaldson–Thomas partition function of the polyhedral singularity in the following
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way. Let Γ∗ ⊂ SU(2) be the binary polyhedral group which is the pullback of Γ ⊂
SO(3) under the double covering

Γ∗ ↪ SU(2)

Γ ↪ SO(3)

(5.141)

A representation of Γ∗ which does not descend to a representation of Γ is called a
binary representation [75]. Removing the vertices corresponding to binary irreducible

representations from the McKay quiver QΓ∗ leaves the McKay quiver QΓ.
In addition to the semi-small crepant resolution (5.139), for any complex plane

C2 ⊂ C3
A there is the minimal resolution of the ADE singularity

πΓ∗ : XΓ∗ := HilbΓ∗(C2) −→ C2 / Γ∗ . (5.142)

By the classical McKay correspondence, there are bijections between the nodes i �=
0 of the McKay quiver QΓ∗ , the simple roots of the simply laced Lie algebra gΓ∗
associated with Γ∗, and the smooth rational curves of the exceptional divisor of XΓ∗ .
In particular, denoting by R+ the set of positive roots of gΓ∗ , each α ∈ R+ can be
associated with a curve class in XΓ∗ and there is an injective map

�cΓ∗ : R+ −→ H2(XΓ∗ ,Z) � Z#Γ̂
∗−1 . (5.143)

The node i = 0 of QΓ∗ corresponds to classes in H0(XΓ∗ ,Z) � Z.
We now construct the map

�cΓ := f∗ ◦ �cΓ∗ : R+ −→ H2(X A,Z) � Z#Γ̂−1 , (5.144)

where the morphism f : XΓ∗ −→ X A contracts the curves corresponding to binary
irreducible representations ofΓ∗, leaving the exceptional curves of X A [75]. The binary
irreducible representations of Γ∗ correspond to the simple roots in ker(�cΓ), and we
obtain

Proposition 5.145 For any finite subgroup Γ ⊂ SO(3), the partition function for tetra-
hedron instantons of type �r A = (1, 0, . . . , 0) on the orbifoldC3

A/ Γ×Cwith holonomy
group SU(3)A is given by

Z �r A=(1,0,...,0)
[C3

A/Γ]×C
(�q ) = M(−Q)#Γ̂

∏
α∈R+
�cΓ(α) �=�0

M̃
(�q �cΓ(α),−Q)−1/2 , (5.146)
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where

�q �cΓ(α) =
#Γ̂−1∏
i=1

q
cΓ(α)i
i and Q = q0 q1 · · ·q#Γ̂−1 . (5.147)

Proof The reduced A-model closed topological string partition function on
X A = HilbΓ(C3

A) is evaluated by Bryan and Gholampour in [76] using a localization
formula similar to (5.128) and calculating the integrals over the connected components
[MF]vir by decomposition. The all-genus result is given by

Z top
X A
(gs, �v ) =

∏
α∈R+
�cΓ(α) �=�0

∞∏
n=1

(
1− �v �cΓ(α) (−e−gs )n

)n/2
, (5.148)

where gs is the string coupling constant and �v = (vi)i=1,...,#Γ̂−1 are the exponentiated
Kähler parameters of X A.

By the Gromov–Witten/Donaldson–Thomas correspondence for Calabi–Yau three-
folds [77], this is related to the instanton partition function of the U(1) cohomological
gauge theory on X A with SU(3)A holonomy through

M(−q)−χ(X A) Zr=1
X A

(q, �v ) ∣∣q=e−gs = Z top
X A
(gs, �v ) . (5.149)

Here the variables �v correspond to the basis of curve classes in X A andq to the topolog-
ical Euler characteristic χ(X A) = 1+ (#Γ̂− 1

) = #Γ̂ of X A. The former enumerates
fractional instantons orD0–D2–D6 states in the type IIA setting, while the latter counts
regular instantons or pure D0–D6 states. There are no compact four-cycles, and hence
no D0–D2–D4–D6 states, because X A is a semi-small resolution, consistently with
our assumption of vanishing first Chern class in the cohomological gauge theory on
X A.

Finally, theDonaldson–Thomas crepant resolution conjecture forCalabi–Yau three-
orbifolds of [68, 78] relates the rank one instanton partition functions of X A and
[C3

A/ Γ] through the wall-crossing formula

Z �r=(1,0,...0)[C3/Γ] (�q ) = M(−Q)−χ(X A) Zr=1
X A

(Q, �v ) Zr=1
X A

(Q, �v−1) , (5.150)

with the changes of variables vi = qi for i = 1, . . . , #Γ̂− 1 and Q = q0 q1 · · ·q#Γ̂−1,
where we defined �v−1 = (v−1i

)
i=1,...,#Γ̂−1. Putting everything together we arrive at

the formula (5.146). ��
Example 5.151 Let Γ = S3 ⊂ SO(3) be the group of permutations of three elements
(cf. Example 3.73). TheD5 root system has 20 positive roots (described in [76]) and the
U(1) tetrahedron instanton partition function (5.146) on the Calabi–Yau four-orbifold
C3

A/S3 ×C is given by
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Z
�r A=(1,0,...,0)
[C3

A/S3]×C
(�q ) = M(−Q)3

M̃(q1,−Q) M̃(q1 q2,−Q)2 M̃(q2,−Q)4 M̃(q22,−Q)
1
2 M̃(q1 q

2
2,−Q)

,

(5.152)

where Q = q0 q1 q2.

6 Discussion

In this paper, we generalized the construction of tetrahedron instantons on flat space
C4 to backgrounds which are Calabi–Yau orbifolds by a (possibly non-effective)
action of a finite group Γ on C4. Tetrahedron instantons arise as bound states of D1-
branes probing stacks of intersecting D7-branes in the presence of a B-field in the
low energy limit of type IIB string theory. They can be regarded as a generalization
of non-commutative instantons onC3, with which they coincide in the rank one case.

To this end we started in Sect. 3 by defining and developing a theory on threefolds
that we interpreted it as the orbifold Donaldson–Thomas theory twisted by a flat gerbe.
This leads to a new class of Donaldson–Thomas invariants for both abelian and non-
abelian three-orbifolds, even beyond the standard Calabi–Yau case, i.e. for general
holonomy U(3). As far as we are aware, these more general invariants have not yet
been discussed in the algebraic geometry literature, and it would be interesting to
confirm our results through rigorous mathematical constructions, which could shed
light on novel geometric structures underpinning virtual cycle constructions in these
instances.

More generally, it would be interesting to rigorously derive our constructions of
orbifold tetrahedron instanton partition functions from Sect. 5, by combining the con-
siderations of [3, 35]. As a first step, this should be possible for the abelian orbifolds
considered in Sect. 5.3, forwhichwehave obtained closed formexpressions for the cor-
responding partition functions. This would nicely extend the harmonious agreement
between instanton computations in physics and algebraic geometry considerations,
elaborated previously for orbifolds of the magnificent four model in [18] and [35],
respectively.

In Sect. 5.7, we explicitly calculated rank one partition functions for tetrahedron
instantons on local polyhedral singularities C3/ Γ × C. This was done by calcu-
lating the A-model closed topological string partition on the Calabi–Yau threefold

HilbΓ(C3), applying the Gromov–Witten/Donaldson–Thomas correspondence, and
finally linking the result at large radius to the one on the singularity by a wall-crossing
formula. The generalizations of this procedure for general rank, as well as establishing
a wall-crossing formula for such configurations, are open questions worthy of future
investigation.

From a physics perspective, our results can be used to enlarge the dictionary of the
BPS/CFT correspondence [5], whereby the gauge origami partition function of tetra-
hedron instantons is reproduced by qq-characters associatedwithD6-braneswrapping
C3 ⊂ C4 [4]. The considerations of this paper allow for a concrete investigation, for
the first time, of the correspondence beyond the case of the flat Calabi–Yau four-
fold C4 to Calabi–Yau orbifolds of C4. This generalizes the gauge origami partition
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function of spiked instantons [42], whereby the orbifold version of the theory defines
qq-character operators with and without defects in quiver gauge theories of affine
ADE-type.

It would be interesting to understand the quantum algebraic structures underlying
the orbifold theories we have constructed in this paper. As a first step one could derive
the free field representations of the abelian orbifold tetrahedron instanton partition
functions, expressing our contour integral formula (5.11) as a vertex operator correla-
tion function after analytic continuation, and thereby generalizing the representations
of [1, 4] in the case of flat space. Particularly our abelian orbifold results of Sect. 5.3,
wherein we have obtained closed formulas for the partition functions, should be useful
for elucidating aspects of this correspondence.

Acknowledgements We thank Michele Cirafici, Thomas Grimm, Martijn Kool, Sergej Monavari, Erik
Plauschinn and Nicolò Piazzalunga for helpful discussions and correspondence. This article is based upon
work from COST Actions CaLISTA CA21109 and THEORY-CHALLENGES CA22113 supported by
COST (European Cooperation in Science and Technology). The work of M.T. is supported by an EPSRC
Doctoral Training Partnership grant.

Data availability No additional research data beyond the data presented and cited in this work are needed
to validate the research findings in this work.

Declarations

Conflict of interest All authors have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Finite subgroups of SU(3)

The classification of the finite subgroups of SU(3) began with the work of Blichfeldt
over a century ago [79]. These groups can be divided into five classes, which we
describe in this appendix following [80].

Notation A.1 Wewrite #g for the multiplicative order of an element g of a finite group
Γ, that is, the smallest positive integer k such that gk = 1. The order of Γ is defined to
be its cardinality, denoted #Γ. Then #g = #〈g〉, where 〈g〉 ⊂ Γ is the cyclic subgroup
generated by g ∈ Γ.

Let ξn = e 2π i /n be a primitive n-th root unity, which generates the cyclic group
Zn of order n.

We write Sn for the symmetric group of degree n with order n! , and An ⊂ Sn for
the alternating group of degree n with order 1

2 n! .
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Abelian groups

Thepossible structures of thefinite abelian subgroups ofSU(3) are strongly constrained
by the simple and powerful

Theorem A.2 Every finite abelian subgroup Γab of SU(3) is isomorphic to a direct
product of cyclic groups,

Γab � Zm × Zn , (A.3)

where

m = max
g∈Γab

#g (A.4)

and n is a divisor of m.

Similarly to the generator (5.17) ofZn ⊂ SU(2), the generators ofZm×Zn ⊂ SU(3)
are

g1 =
(
ξm 0 0
0 ξ−1m 0
0 0 1

)
and g2 =

(
ξn 0 0
0 1 0
0 0 ξ−1n

)
. (A.5)

Groups with two-dimensional faithful representations

For every finite subgroup of SU(2) there is an isomorphic finite subgroup of SU(3)
given by the embedding SU(2) ↪−→ SU(3) defined as

g ∈ SU(2) �−→
(

g 0
0 1

)
∈ SU(3) . (A.6)

The finite subgroups of SU(2) admit an ADE classification and are preimages of
the finite subgroups of SO(3) ⊂ SU(3) under the double covering

SU(2) −→ SO(3) , (A.7)

corresponding to the cyclic groups, the dihedral groups, and the platonic groups. The
cyclic groups Zn (which correspond to An−1 in the ADE classification) and the Klein
four-groupD2 = Z2 ×Z2 (which corresponds to D4 in the ADE classification) have
already appeared in the first class. Of the non-abelian finite SO(3)-subgroups, only the
dihedral groupsDn = Zn �Z2 of a regular n-gon (which corresponds to Dn+2 in the
ADE classification) possess a two-dimensional faithful representation.

More generally, for everyfinite subgroupofU(2) there corresponds afinite subgroup
of SU(3) under the faithful embedding U(2) ↪−→ SU(3) given by

g ∈ U(2) �−→
(

g 0
0 (det g)∗

)
∈ SU(3) . (A.8)
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Under the isomorphism

U(2) � (
SU(2)× U(1)

) /
Z2 , (A.9)

the finite subgroups ofU(2) are given by theZ2-invariant finite subgroups of the direct
product SU(2)× U(1). The complete list can be found in [81, Theorem 2.2].

Groups of type C

The groups Cn(a, b) of type C are generated by the matrices

C :=
(
0 1 0
0 0 1
1 0 0

)
and Ca,b :=

(
ξa

n 0 0
0 ξb

n 0
0 0 ξ−a−b

n

)
, (A.10)

where a, b ∈ {0, 1, . . . , n − 1}. If we define

Ča,b := Cb,−a−b (A.11)

then any element of Cn(a, b) can be written uniquely as

Ci C j
a,b Čk

a,b , (A.12)

for some i, j, k ∈ Z≥0.
It follows from Theorem A.2 that

Cn(a, b) � (Zm × Zp)� Z3 , (A.13)

where the Z3-subgroup is generated by the permutation matrix C , while

m = lcm
(
#ξa

n , #ξ
b
n

)
and p = min

{
k ∈ {1, . . . ,m} ∣∣ Čk

a,b ∈ 〈Ca,b〉
}
. (A.14)

This class contains the tetrahedral groupT (which corresponds to E6 in theADEclassi-
fication) isomorphic toA4 � C2(0, 1). The dimension of an irreducible representation
of a group of type C is either one or three [82].

Groups of type D

The groups Dn,d(a, b; r , s) of type D are generated by the matrices (A.10) together
with

Dr ,s :=
(
ξr

d 0 0
0 0 ξ s

d
0 −ξ−r−s

d 0

)
, (A.15)
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wherea, b ∈ {0, 1, . . . , n−1} and r , s ∈ {0, 1, . . . , d−1}. A different set of generators
consists of three diagonal matrices, the matrix C from (A.10), and the matrix

D =
(−1 0 0

0 0 −1
0 −1 0

)
. (A.16)

Theorem A.2 in this case implies that the groups of type D have the structure [82]

Dn,d(a, b ; r , s) � (Zm × Zp)� S3 , (A.17)

where m and p are functions of (n, d) as well as of (a, b; r , s), while S3 ⊂ SO(3) is
generated byC and D. This class contains the octahedral groupO (which corresponds
to E7 in the ADE classification) isomorphic to S4 � D2,2(0, 1; 1, 1). The dimension
of an irreducible representation of a group of type D is either one, two, three or six.

Exceptional groups

They are eight exceptional finite subgroups of SU(3) which do not fit into any of the
four previous classes:

Σ(60) , Σ(60)× Z3 , Σ(168) , Σ(168)× Z3 ,

Σ(36×3) , Σ(72×3) , Σ(216×3) , Σ(360×3) .
(A.18)

The groups Σ(n) in the first line have order n and contain the two simple groups: the
icosahedral group I (which corresponds to E8 in the ADE classification) isomorphic
toA5 � Σ(60), and the Klein group PSL(2, 7) � Σ(168). The groups Σ(n×3) in the
second line have order 3n and contain the centre Z3 of SU(3) (generated by ξ3 13),
whereas the factor groups Σ(n) = Σ(n×3)/Z3 for n ∈ {36, 72, 216, 360} are not
subgroups of SU(3).

To write the groups in terms of generators, we introduce the matrices

E1 :=
(
1 0 0
0 ξ3 0
0 0 ξ23

)
, E2 :=

(
ξ29 0 0
0 ξ29 0
0 0 ξ29 ξ3

)
, E3 :=

(−1 0 0
0 0 −ξ3
0 −ξ23 0

)
,

E4 := 1√
3 i

(
1 1 1
1 ξ3 ξ23
1 ξ23 ξ3

)
, E5 := 1

2

(−1 μ− μ+
μ− μ+ −1
μ+ −1 μ−

)
, E6 := 1√

3 i

(
1 1 ξ23
1 ξ3 ξ3
ξ3 1 ξ3

)
,

E7 :=
(
ξ7 0 0
0 ξ27 0
0 0 ξ47

)
, Ě7 := i√

7

(
ξ47 − ξ37 ξ27 − ξ57 ξ7 − ξ67
ξ27 − ξ57 ξ7 − ξ67 ξ47 − ξ37
ξ7 − ξ67 ξ47 − ξ37 ξ27 − ξ57

)
,

(A.19)
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whereμ± are the roots of the quadratic equationμ2+μ+1 = 0. Using the generators
(A.10) of the group C2(0, 1) � A4, they are then generated as

Σ(60) = 〈C0,1,C, E5〉 , Σ(168) = 〈E7,C, Ě7〉 , Σ(36×3) = 〈E1,C, E4〉 ,
Σ(72×3) = 〈E1,C, E4, E6〉 , Σ(216×3) = 〈E1,C, E4, E2〉 , Σ(360×3) = 〈C0,1,C, E5, E3〉 .

(A.20)

We recommend [83, 84] for exhaustive discussions of their properties, group structures
and representations.

B Moduli spaces of torus-invariant instantons are compact

In this appendix, we adapt the proof given in [6, Sect. 8] to show that, for the non-
maximal torus actions appearing in this paper, the T-fixed components of the moduli
spaces MT

r,k are compact with respect to the complex analytic topology inherited
from the Frobenius norm on the affine space of ADHM data (Ba, IA)a∈4, A∈4⊥ for
tetrahedron instantons. We use the real description of the ADHM parametrization for
this purpose.

Instantons onC3
A

Consider tetrahedron instantons of type r A = (rA, 0, 0, 0), for some fixed A ∈ 4⊥.
Let

TA = U(1)rA × U(1) (B.1)

be the torus group whose action on the ADHM data for instantons onC3
A is given by

(Ba, IA)a∈4 �−→
(
t−1 Ba , t3 BĀ , IA exp iaA

)
a∈A , (B.2)

where aA = diag(aA 1, . . . ,aA rA ) is the generator of U(1)
rA ⊂ U(rA), and t = e i ε

where ε is the generator ofU(1) ⊂ SU(4). The infinitesimal equivariant TA-fixed point
equations are

[Ba, φ] = ε Ba , [BĀ, φ] = −3 ε BĀ and φ IA = IA aA , (B.3)

for a ∈ A, where φ generates a U(k) gauge transformation.
Similarly to Sect. 5.5, under this torus action the vector space V = VA decomposes

into weight spaces

VA =
⊕
n∈Z

V n
A =

⊕
n∈Z

rA⊕
l=1

V n
A l (B.4)

123



Tetrahedron instantons on orbifolds Page 91 of 99    11 

for the action of φ ∈ U(VA), whose eigenvalues are given by

φ
∣∣
V n

A l
= (n ε + aA l) 1V n

A l
. (B.5)

By (B.3) the operators Ba raise or lower the U(1) charge n ∈ Z according to

Ba : V n
A −→ V n−1

A and BĀ : V n
A −→ V n+3

A , (B.6)

for a ∈ A.
We write

k = dim VA =
∑
n∈Z

kn :=
∑
n∈Z

dim V n
A . (B.7)

Since VA has finite dimension k, there exists N ∈ N such that kn = 0 for all |n| > N .

Proposition B.8 The closure of the moduli space M
TA
rA,k

of TA-invariant non-
commutative instantons of rank rA and charge k on C3

A is compact.

Proof We prove that the ADHM data (Ba, IA)a∈4, obeying the ADHM equations
(4.17) and the TA-fixed point equations (B.3), are bounded in the Frobenius norm.
From the D-term equation in (4.17), it is easy to see that the norm of the operator IA

is fixed to

‖IA‖2F = TrVA

(
IA I †A

) = ζ k . (B.9)

Let us move on to bound
∑

a∈4 ‖Ba‖2F . By using the decomposition (B.4), together
with (4.26) and cyclicity of the trace, we find

∑
a ∈ 4

TrV n
A

(
B†

a Ba
) =∑

a∈A

TrV n
A

(
B†

a Ba
)
, (B.10)

and
∑
a ∈ 4

TrV n
A

(
Ba B†

a

) =∑
a∈A

TrV n+1
A

(
B†

a Ba
)+ TrV n−3

A

(
B†

Ā
BĀ

)

=
∑
a∈A

TrV n+1
A

(
B†

a Ba
) = ∑

a∈A

TrV n
A

(
Ba B†

a

)
.

(B.11)

Then the D-term equation in (4.17) and the decomposition (B.4) imply

∑
a∈A

TrV n
A

(
Ba B†

a

)+ TrV n
A

(
IA I †A

) = ζ kn +
∑
a∈A

TrV n
A

(
B†

a Ba
)

= ζ kn +
∑
a∈A

TrV n−1
A

(
Ba B†

a

)
,

(B.12)
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where in the last equality we used cyclicity of the trace.
We now introduce

Δn := 1

ζ
TrV n

A

(∑
a∈A

Ba B†
a + IA I †A

)
(B.13)

and

Δ := 1

ζ
TrVA

(∑
a∈A

Ba B†
a + IA I †A

)
=
∑
n∈Z

Δn . (B.14)

Using (B.12) we can write

Δn = kn + 1

ζ

∑
a∈A

TrV n−1
A

(
Ba B†

a

) ≤ kn +Δn−1 . (B.15)

By iteration we get

Δn ≤ kn + kn−1 + · · · + k−N ≤ k2 , (B.16)

where we used N ≤ k−1
2 and kn ≤ k for any n ∈ Z.

Therefore, since Δ is a sum of at most 2N + 1 ≤ k terms, we arrive at the bound

∑
a∈4

‖Ba‖2F =
∑
a∈4

TrVA

(
Ba B†

a

) =∑
a∈A

TrVA

(
Ba B†

a

) ≤ ζ Δ ≤ ζ k3 , (B.17)

hence Ba for a ∈ 4 are also bounded in the Frobenius norm. ��
Remark B.18 To prove that MTA

rA,k
is closed, and hence is itself compact, one would

need to find sharper bounds than those given in the proof of Proposition B.8 which
are saturated by the ADHM variables. While we believe this is possible to do, we do
not pursue it in the present paper.

Generalized folded instantons

We now turn our attention to tetrahedron instantons of type r A1,A2 = (rA1 , rA2 , 0, 0),
for fixed distinct A1, A2 ∈ 4⊥. We write A1 ∩ A2 = (a1 a2), with a1, a2 ∈ 4 . With
notation as above, consider the action of the torus group

TA1,A2 = U(1)rA1 × U(1)rA2 × U(1)×2 (B.19)

on the ADHM data (Ba, IA1 , IA2)a∈4 given by

(Ba, IA1 , IA2)a∈4 �−→
(
t−11 Ba1 , t−11 Ba2 , t−12 BĀ2

, t21 t2 BĀ1
,

IA1 exp iaA1
, IA2 exp iaA2

)
,

(B.20)
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where (aA1
,aA2

) are the generators of U(1)rA1 ×U(1)rA2 ⊂ U(r A1,A2), and (t1, t2) =
(e i ε1, e i ε2) where (ε1, ε2) are the generators of U(1)×2 ⊂ SU(4). The infinitesimal
equivariant TA1,A2 -fixed point equations are

[Ba1, φ] = ε1 Ba1 , [Ba2 , φ] = ε1 Ba2 , [BĀ2
, φ] = ε2 BĀ2

,

[BĀ1
, φ] = −(2 ε1 + ε2) BĀ1

, φ IA1 = IA1 aA1
, φ IA2 = IA2 aA2

,

(B.21)

where φ generates a U(k) gauge transformation.
WithV = VA1+VA2 , from (B.21) it follows thatφ(VA1) ⊆ VA1 andφ(VA2) ⊆ VA2 .

Hence the vector spaces VA1 and VA2 decompose under this torus action into weight
spaces as

VA =
⊕

i, j∈Z
V i, j

A =
⊕

i, j∈Z

rA⊕
l=1

V i, j
A l for A ∈ {A1, A2} , (B.22)

with respective eigenvalues of φ given by

φ
∣∣
V i, j

A l
= (i ε1 + j ε2 + aA l) 1V i, j

A l
. (B.23)

By (B.21) the operators Ba raise/lower the U(1) charges i and j according to

Ba1, Ba2 : V i, j
A −→ V i−1, j

A , BĀ2
: V i, j

A −→ V i, j−1
A , BĀ1

: V i, j
A −→ V i+2, j+1

A .

(B.24)

For generic values of the equivariant parameters ε1, ε2 and aA l , the sets of eigenval-
ues ofφ on VA1 and VA2 are disjoint, so the spaces VA1 and VA2 have trivial intersection
and V = VA1 ⊕ VA2 at the fixed points. We write

kA = dim VA =
∑

i, j∈Z
kA i, j :=

∑
i, j∈Z

dim V i, j
A . (B.25)

Then,

k = dim V = kA1 + kA2 . (B.26)

As before, since VA is finite-dimensional, there exists NA ∈ N such that kA i, j = 0
for all i, j ∈ Z satisfying |i | + | j | > NA.

Proposition B.27 The closure of the moduli space M
TA1,A2
r A1,A2 ,k

of TA1,A2 -invariant tetra-
hedron instantons of type r A1,A2 and charge k is compact.
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Proof The proof is similar to the proof of Proposition B.8, so we will be relatively
brief. From the D-term equation in (4.17) it follows that

‖IA1‖2F + ‖IA2‖2F = TrV
(
IA1 I †A1

)+ TrV
(
IA2 I †A2

) = ζ k , (B.28)

hence IA for A ∈ {A1, A2} are bounded.
From (4.26), we obtain

∑
a ∈ 4

Tr
V i, j

A

(
Ba B†

a

) = Tr
V i+1, j

A

(
B†

a1 Ba1

)+ Tr
V i+1, j

A

(
B†

a2 Ba2

)

+ Tr
V i, j+1

A

(
B†

Ā2
BĀ2

)+ Tr
V i−2, j−1

A

(
B†

Ā1
BĀ1

)

=
∑
a∈A

Tr
V i, j

A

(
Ba B†

a

)
,

(B.29)

and

∑
a ∈ 4

Tr
V i, j

A

(
B†

a Ba
) = ∑

a∈A

Tr
V i, j

A

(
B†

a Ba
)
, (B.30)

for A ∈ {A1, A2}. We can then use the D-term equation of (4.17) to write

∑
a∈A

Tr
V i, j

A

(
Ba B†

a
)+ Tr

V i, j
A

(
IA1 I †A1

)+ Tr
V i, j

A

(
IA2 I †A2

) = ζ kA i, j +
∑
a∈A

Tr
V i, j

A

(
B†

a Ba
)
.

(B.31)

We now introduce

ΔA1,n :=
1

ζ

∑
i−3 j=n

Tr
V i, j

A1

( ∑
a∈A1

Ba B†
a + IA1 I †A1

+ IA2 I †A2

)
,

ΔA2,n :=
1

ζ

∑
i+ j=n

Tr
V i, j

A2

( ∑
a∈A2

Ba B†
a + IA1 I †A1

+ IA2 I †A2

)
,

(B.32)

along with

ΔA := 1

ζ
TrVA

(∑
a∈A

Ba B†
a + IA1 I †A1

+ IA2 I †A2

)
=
∑
n∈Z

ΔA n (B.33)

for A ∈ {A1, A2}.
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Using (B.31) and cyclicity of the trace we generate the inequalities

ΔA1,n =
∑

i−3 j=n

kA1,i, j + 1

ζ

∑
i−3 j=n

∑
a∈A1

Tr
V i, j

A1

(
B†

a Ba
)

=
∑

i−3 j=n

kA1,i, j + 1

ζ

∑
i−3 j=n−1

∑
a∈A1

Tr
V i, j

A1

(
Ba B†

a

)

≤
∑

i−3 j=n

kA1,i, j +ΔA1,n−1 ,

(B.34)

and

ΔA2,n =
∑

i+ j=n

kA2,i, j + 1

ζ

∑
i+ j=n

∑
a∈A2

Tr
V i, j

A2

(
B†

a Ba
)

=
∑

i+ j=n

kA2,i, j + 1

ζ

∑
i+ j=n−1

∑
a∈A2

Tr
V i, j

A2

(
Ba B†

a

)

≤
∑

i+ j=n

kA2,i, j +ΔA2,n−1 .

(B.35)

By iterating these inequalities and using the bounds

∑
i−3 j=n

kA1,i, j ≤ kA1 and
∑

i+ j=n

kA2,i, j ≤ kA2 , (B.36)

we get

ΔA n ≤ k2A (B.37)

for A ∈ {A1, A2}. Therefore
∑
a ∈ 4

‖Ba‖2F =
∑
a ∈ 4

TrV
(
Ba B†

a

)

=
∑

A∈{A1,A2}

∑
a∈A

TrVA

(
Ba B†

a

) ≤ ζ
(
ΔA1 +ΔA2

) ≤ ζ
(
k3A1

+ k3A2

)
,

(B.38)

which establishes the required boundedness of the ADHM variables. ��
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