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A multi-spectral and hyperspectral 
image dataset for evaluating 
chemical traits and the water 
status of avocado, olive and grape 
through leaf dehydration under 
laboratory conditions
Juan Sebastian Estrada1,5, Rodrigo Demarco2,5, Ciarán Miceal Johnson3,5, 
Matias Zañartu1,5, Andres Fuentes2,5 & Fernando Auat Cheein1,4,5

Assessing the health status of vegetation is of vital importance for all stakeholders. Multi-spectral and 
hyper-spectral imaging systems are tools for evaluating the health of vegetation in laboratory settings, 
and also hold the potential of assessing vegetation of large portions of land. However, the literature 
lacks benchmark datasets to test algorithms for predicting plant health status, with most researchers 
creating tailored datasets. This work presents a dataset composed of multi-spectral images, hyper-
spectral reflectance values, and measurements of weight, chlorophyll, and nitrogen content of leaves 
at five different drying stages, from avocado, olive, and grape trees, which are common crops in the 
Valparaíso region of Chile. This dataset is a valuable asset for developing tools in the field of precision 
agriculture and assessing the general health status of vegetation.

Agriculture in Chile is currently being affected by various factors such as climate change, the reduction in 
annual total rainfall, increasing maximum and minimum temperatures in interior regions, the high frequency 
of high temperatures during summer, polar frosts during winter, and changes in seasonal rainfall patterns. These 
symptoms contribute to a more challenging climate for agriculture, leading to increased instability and higher 
stress1. Additionally, water sources have shown signs of exhaustion. The farming industry, alongside others such 
as mining and power generation, has excessive water demands, resulting in a deficit of this resource2. Improving 
the management of orchards and crops will help address the water deficit and maintain the quality of crops3.

The use of robotic platforms combined with multi-spectral and hyperspectral imaging systems has become 
a common technique for quickly assessing the health status of vegetation across relatively large areas of land3,4. 
Spectral information from vegetation is used to compute vegetation indices, which are sensitive to both physical 
and chemical properties of the vegetation. By integrating vegetation indices derived from spectral information 
and in-situ measurements, it is possible to train machine-learning models to predict important agronomic 
indicators, such as chlorophyll and nitrogen content, biomass, and yield, across a range of cultivars, including 
maize5,6, rice7,8, ratoon rice9, cotton10,11, onion12, potato13, wheat14, sugarcane15, soybean16, and sweet potato17.

There are numerous datasets in the literature containing spectral information about leaves. One notable 
example is the ANGERS Leaf Optical Properties Database (2003)18, which includes reflectance and transmittance 
measurements for 276 leaf samples from 39 different tree species in the Angers region of France. The reflectance 
values range from 400 to 2400 nm. Data collection occurred in June 2003, and the dataset also includes 
information on pigment content and physical parameters such as leaf mass and area.
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A similar dataset is the Leaf Optical Properties Experiment Database (LOPEX93)19, which includes reflectance 
and transmittance values for 330 leaf samples from 45 different species in the Ispra region, Italy. The experiments 
were conducted in 1993. The dataset also provides information on the biochemical and physical parameters 
of the leaves, similar to the ANGERS dataset. Both datasets are highly relevant as they were used to calibrate 
the PROSPECT-4 and PROSPECT-5 models20, which are employed to predict the contribution of biochemical 
parameters (chlorophyll a, chlorophyll b, carotenoids, water, and dry matter) to the optical properties of leaves.

Both the LOPEX93 and ANGERS datasetd contain information from trees in the Mediterranean region, 
in contrast, the dataset presented in21,22, contains leaf spectral data from tropical trees in the Tapajos national 
forest, Brazil. Besides the spectral information, the authors also provide leaf area, leaf mass, leaf relative water 
content, and relative canopy environment for each leaf.

The dataset presented in23 shows the leaf spectra and biochemical traits of agricultural species. The crops 
included are common sunflower, cotton, pumpkin, cucumber, tomato, kidney bean, soybean, and sweet basil. 
The dataset comprises 184 reflectance values along with the corresponding biochemical parameters. A similar 
dataset is detailed in24, which includes information on watered and drought-stressed crops. This dataset features 
crop species such as Carolina poplar, cayenne pepper, common sunflower, radish, field pumpkin, foxtail millet, 
and sorghum.

As seen, there are numerous datasets with spectral information from leaves of various species. However, 
these datasets typically provide only a single spectrum per leaf, which corresponds to a unique area within the 
leaf. In contrast, a multi-spectral camera can record multiple pixels from a single leaf, making it preferable for 
covering larger areas of land4. In this context, a few datasets in the literature address this need. For example, 
Ryckewaert et al.25 proposed a dataset of hyperspectral images of grapevine leaves, both healthy and exhibiting 
disease symptoms. This dataset includes 204 hyperspectral images of grapevine fields, covering the range of 
400–900 nm. In addition to the hyperspectral images, the dataset provides information on chlorophyll content, 
flavonoid content, and nitrogen crop status. Another relevant dataset, presented by Vayssade26, consists of multi-
spectral images in 6 bands and is used for the identification of crops and weeds.

More recent datasets concerned with chemical and biological traits of vegetation are the one presented by 
Przybylska et al.27, where hyperspectral reflectance and functional traits of Arabidopsis thaliana are shown. 
This dataset is still only concerned with hyperspectral reflectance and does not provide images. Other dataset 
with similar features is the one presented in28, where reflectance and measurements from tundra vegetation are 
shared to the scientific community.

Other datasets such as the one presented in29, show multi-spectral images of tomato leaves for the assessment 
of pests and diseases. One disadvantage of this dataset is that it does not include information about chemical of 
biological traits of vegetation, and it does not include hyperspectral reflectance.

Most datasets in the literature focus on a single type of information, whether it be full spectral data or images. 
Each approach has its limitations: images may lack spectral resolution, while hyperspectral data collected with a 
spectrometer may lack spatial resolution. Combining these types of information could leverage the advantages 
of both approaches-offering the cost-effectiveness, portability, and ability to survey large areas provided by 
multi-spectral cameras, alongside the rich, detailed information obtained from hyperspectral imaging systems.

Thus, we propose a dataset composed of spectral reflectance ranging from 350 to 2500 nm, multi-spectral 
images with five bands (blue, green, red, red-edge, and near-infrared), as well as data on chlorophyll content (in 
SPAD values), leaf nitrogen content, and leaf water content. The samples include leaves from common cultivars 
in the Valparaíso region of Chile, specifically avocado, olive, and grape. To analyze the water content of the 
leaves, the samples were subjected to a drying process, resulting in five dehydration stages. The final dataset is 
composed of 106 leaves of avocado, 111 leaves of olive, and 106 leaves of grape.

Methods
This section describes the methodology used to collect the samples for the database, including the equipment 
utilized, the dehydration process of the leaves, and the post-processing applied to both the images and numerical 
data.

Equipment
The equipment consists of:

•	 Micasense Red-Edge Camera Captures multi-spectral images in five bands: blue, green, red, red-edge, and 
near-infrared.

•	 ASD TerraSpec Hi-Res Spectrometer Measures the spectral reflectance of leaves in the range of 350–2500 nm.
•	 TYS-4N Plant Nutrition Meter Measures chlorophyll and nitrogen content in each leaf.
•	 Kern PFB 120-3 Balance Used to weigh the leaves.
•	 Memmert UN30 Universal Oven Used to dry the leaves, producing five different drying stages.Table 1 provides 

the main features of the equipment, and Fig. 1 displays images of the instruments used to gather the dataset.

Sample recollection process
Three different trees were chosen for this study: avocado, olive, and grape which are some of the most 
representative cultivars in the region of Valparaiso, Chile.

For all the trees, the leaf collection process was as follows: Individual branches were cut directly from the trees, 
and healthy leaves were selected through visual inspection. We considered a healthy leaf to be one with no holes 
or internal ruptures in the leaf area and, if possible, with no visible symptoms of deterioration, such as brown 
spots. If a leaf showed any of these symptoms, we ensured that the majority of the leaf area remained unaffected. 
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These leaves were then placed in bags and transported to the laboratory for analysis and measurement within 
the first hour of collection30,31.

For the avocado trees, leaf collection occurred during April and May of 2023, with a total of 106 leaves 
collected. Olive leaf collection took place in July and August of 2023, resulting in a total of 111 leaves collected. 
Finally, for the grapes, the collection process was carried out between December 2023 and January 2024, with a 
total of 106 leaves collected. A summary of the total number of leaves and the collection process is provided in 
Table 2.

Measurement process
The dataset includes the following measurements: leaf weight, spectral reflectance ranging from 350 to 2500 
nm, multi-spectral images from the blue, green, red, red-edge, and near-infrared bands, and chlorophyll and 
nitrogen content. Each measurement was recorded at five different dehydration stages of the leaves.

Fig. 1.  Instruments used to create the dataset: (a) Spectrometer, (b) multi-spectral camera, (c) plant nutrition 
analyzer, (d) balance, (e) oven.

 

Instrument Technical speci�cation

Multi-Spectral camera
Micasense Red-Edge M

Bands: blue (B), green (G), red (R)
red-edge (RE), near-infrared (NIR)

Spectrometer
ASD Terraspec 4 Hi-Res

Range: 350 to 2500 nm

Resolution: 3 nm at VNIR (350 to 1000 nm)
6 nm at SWIR (1001 to 2500 nm)

Reproducibility: 0.1 nm

Accuracy: 0.5 nm

Oven
Memmert UN30

Temperature: − 5 to 100 °C with respect
to room temperature

Digital PID control

Balance
Kern PFB 120.3

Maximum capacity: 120 g

Readability: 0.001 g

Reproducibility: 0.002 g

Plant nutrition analyzer
TYS-4N

Chlorophyll range: 00.0 to 99.9 SPAD

Chlorophyll accuracy: 1.00 SPAD

Nitrogen range: 00.0 to 99.9 mg/g

Nitrogen accuracy: 5%

Table 1.  Equipment used to create the dataset.
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The drying process follows the guidelines provided by the authors in30, which are standard practices for 
analyzing fuel moisture content in leaves. The process begins with fresh leaves plucked from the branches. 
First, the spectral reflectance was recorded using the ASD TerraSpec Hi-Res spectrometer. The probe and light 
source were turned on for at least 15 minutes to warm up, as per the vendor’s instructions. Next, the instrument 
parameters were optimized, and the measurements were calibrated using a white Spectralon reflectance panel.

Once the calibration and warming up of the instrument were completed, measurements of each leaf were 
taken. The contact probe was placed flush against each sample, which was positioned on a white background 
(Spectralon surface). Three individual measurements were collected from different zones of the leaf: one at the 
bottom, one in the middle, and one at the top. The approximate positions where the probe was placed to collect 
the measurements are shown in Fig. 2. The final spectral reflectance for each leaf was calculated as the average 
of these three measurements.

Next, the chlorophyll and nitrogen content were measured using the TYS-4N plant nutrition meter. The 
leaves were placed in the instrument’s probe, and again, three measurements were taken per leaf from the 
bottom, middle, and top zones. The final measurement was recorded as the average value.

The leaves were then weighed using the electronic balance. Finally, multi-spectral images were captured. 
The MicaSense RedEdge camera was mounted on a tripod at a height of 45 cm above the leaves. Each image 
contained small batches of samples (4 leaves for avocado, 6 to 8 leaves for olive, and 1 leaf for grape samples), 
with the leaves placed against a white background (white paper sheets). To ensure consistent lighting conditions 
during the measurement process, artificial white light was used, and windows and other natural light sources 
were blocked. The artificial white light used to capture the multi-spectral images is provided by a fluorescent 
lamp with a color temperature of 4100 K and a luminous flux of 2850 lumens. The lamps are mounted on the 
ceiling of the laboratory.

The dehydration proceeded as follows: After the initial measurements were collected, the leaves were placed 
in an oven set to a temperature of 65 °C. This temperature was selected based on common practices for assessing 
the flammable content of leaves30. The leaves were dried for 15 minutes. After this process, they were removed 
from the oven, and a new set of measurements was recorded at the first drying stage.

This process was repeated two more times, resulting in additional sets of measurements at the second and 
third drying stages. Finally, the leaves were placed in the oven for 24 h to remove all remaining traces of water. 
After this period, a final set of measurements was recorded with the completely dry leaves.

Both the spectrometer and the nutrition meter were calibrated after each batch of leaves was measured at 
each drying stage, sixteen leaves for avocado leaves and eight leaves for grape leaves. For olive leaves, calibration 
was performed after sixteen samples were measured, but a complete batch was of 32 leaves. The spectrometer 
was calibrated using a white Spectralon surface, and the instrument parameters were optimized. The nutrition 
meter was calibrated using its internal reference, following the vendor’s instructions. Images of the calibration 
panels were collected after all measurements were completed in each trial.

Fig. 2.  Approximate positions where the probe was located in each leaf to collect the measurements in (a) 
avocado, (b) olive and (c) grape leaves.

 

Tree species Number of leaves Months of recollection

Avocado 106 April and May of 2023

Olive 111 July and August of 2023

Grape 106 December of 2023 and January of 2024

Table 2.  Leaf recollection summary.
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The laboratory temperature was kept between 20 and °C using an air conditioning system and the relative 
humidity varied between 55 and 70%.

This measurement process resulted in five distinct sets of measurements at various dehydration stages of the 
leaves: fresh leaves, dehydration stages one through three, and the completely dehydrated stage. This process 
allows the determination of the percentual water content of the leaves at each stage.

Multi-spectral image post-processing
Radiometric calibration was performed for each band of the multi-spectral images. To achieve this, images of 
a calibrated reflectance panel were captured during each trial. The images were then post-processed using the 
metadata from each file, following the vendor’s instructions. The radiometric calibration process was conducted 
using the free Python software provided by Micasense (https://github.com/micasense/imageprocessing).

With the calibrated images, a segmentation process was conducted to extract individual leaves from the 
batches. The segmentation process is as follows:

•	 The binarization of the image was performed using a threshold method. The value of the threshold was cho-
sen using the Otsu method32.

•	 With the binarized image, the individual contours were found for each leaf.
•	 The original image was masked with each contour.
•	 Each leaf was cropped from the original image, and saved in a separate file.The segmentation algorithm was 

implemented in a Python v3.11 environment using the OpenCV library. The results of the segmentation 
algorithm can be seen in Fig. 3.

A visual assessment was performed for each leaf segmented by the algorithm. In some cases, two or more leaves 
were too close to each other, resulting in them being segmented together. In other instances, parts of the leaf 
were mistakenly identified as the background. In such cases, manual segmentation was performed using the 
Image Segmenter app in MATLAB.

Leaf water content
Based on the weight of the leaves, the leaf water content can be expressed as fuel moisture content using either a 
dry basis or a fresh basis30. The equations to calculate the fuel moisture content are shown below:

	
� ��� �

���� � ��

����
� ��� � (1)

	
� ��� �

���� � ��

��
� ��� � (2)

In the equations � ���  is the fuel moisture content using a fresh base, � ��� is the fuel moisture content 
using the dry base, ���� is the leaf weight at the drying stage t, �� is the dry leaf weight after the 24 h in the 
oven.

Data records
All of the data can be found in this repository33.

The dataset is organized into three main folders: Avocado, Olive, and Vineyard, each containing data specific 
to the respective species (the Vineyard folder contains the files for the grape samples). Within each of these 
folders, there is a subfolder called Multi-spectral images. This subfolder contains the multi-spectral images for 
each leaf sample, with five bands and five drying stages, resulting in a total of 25 images per leaf.

Each image is a .tif file, with a resolution of 16 bits. The size of the files and the dimensions of the images vary 
due to the fact that the leaves were cropped and the background was subtracted.

The naming convention is as follows, each file has the name leaf###dy_x.tif, where ### is a three-digit number 
identifying the number of the sample, y is the drying stage (ranging from 0 to 4, with 0 representing the fresh 
stage and 4 representing the completely dehydrated stage), and x is the multi-spectral band, which can take the 
following values: 1 (blue), 2 (green), 3 (red), 4 (near-infrared), and 5 (red edge). The Avocado and Vineyard 
Multi-spectral image folders contain 2,600 files each, while the Olive folder contains 2,775 files.

There are other files in the folders for each species, these files are: FMC_species.mat, Nitrogen_species.mat, 
Chlorophyll_species.mat, Weight_species.mat, Spectral_species.mat, with species being either avocado, olive 
or vineyard. These files can be read using Matlab software. Once these files are loaded, matrices containing the 
chlorophyll content, nitrogen content, weight, and fuel moisture content with a dry and fresh basis will appear in 
the working space, all these matrices are of size � � �, N number of samples, and five drying stages. When the 
Spectral_species is loaded, five variables will appear in the workspace, these matrices are of size � � ����, N is 
the number of samples which depends on the species, and the 2151 are the reflectance values in the wavelength 
range from 350 to 2500 nm. Each matrix contains a drying stage.

The tree structure of the dataset and a Matlab workspace when all the variables have been loaded, can be seen 
in Fig. 4, and a sample of the complete 25 images can be seen in Fig. 5.
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Technical validation
All experiments conducted to gather the dataset followed the protocols specified by previous authors30,31,34. The 
drying process was implemented to achieve various levels of leaf water content, which will aid in analyzing the 
spectral response of leaves to different levels of water stress. The drying temperature for all species was selected 
based on established protocols to ensure that leaves do not lose any flammable gases during the process. These 
temperatures have been tested for forest trees such as Eucalyptus globulus and Pinus radiata30,31,35,36, as well as 
for crops such as potatoes37.

The results of the spectral reflectance values for all species and drying stages are shown in Figs. 6, 7, and 
8. Additionally, Fig. 9 displays the mean values at different drying stages for the three species. As depicted in 
the figures, the areas in the short-wave infrared (SWIR) region exhibit changes in response across the different 
drying stages. This phenomenon is attributed to the response of infrared wavelengths to water molecules30,34. 
Particularly, reflectance values at bands at around 975 nm, 1200 nm, 1400 nm and 1900 nm systematically 
increase across the drying stages due to the vibrational bonds of water molecules38.

Fig. 3.  Segmentation algorithm: (a) A multispectral image of a batch of olive leaves, (b) the binarization result 
using the Otsu threshold, (c) the result of masking the original image with the binarized image, and (d) the 
individual leaves generated.
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For the water content of the leaves, it is evident that as dehydration progresses, each leaf in all species shows 
a considerable loss of water content. Table 3 presents information on the water content for each species at each 
dehydration stage, including the mean, maximum (max), minimum (min), and standard deviation (std). The 
completely dehydrated stage was excluded from the table since the water content is zero in all cases.

Figure 10 shows the violin plots for additional measurements from the dataset, including chlorophyll content 
and leaf water content expressed as fuel moisture content on both a fresh and dry basis. As expected, at the final 
dehydration stage, all values of fuel moisture content are zero, due to the complete removal of water traces during 
the drying process in the oven.

As it can be seen the variation in the spectra, is related to the variation in the physical traits presented by the 
leaves, particularly the leaf moisture content. Variations in the leaf moisture content presented in the violin plots 
are also reflected in the spectra measurements, from Figs. 6, 7, and 8. Suggesting that leaf moisture content can 
be estimated using hyperspectral information as suggested by30.

Another notable result is that in all the species the median value of the chlorophyll content increases with 
the dehydration stage. SPAD values is computed using two transmittance values, from red light at 650 nm and 
infrared light at 940 nm. The equation is shown below39:

	 �� �� � � � ���������� � ���������� � � � (3)

where �� is the transmittance at x wavelength, ��� is the common logarithm function, k is a confidential 
proporcional coeficcient and C is a compensation value in the instrument software39.

It has been demonstrated that the SPAD values are highly correlated with the chlorophyll content per area40, 
however, the SPAD value can be affected by external conditions such as illumination conditions, nitrogen 
treatment40 and water stress induced by floodings41,42.

Thus, it is reasonable to expect variations in the SPAD value, with the different drying stages of the leaves. 
Figure  9 shows the mean reflectance values across the spectrum. In the avocado, and olive plots there is a 
clear change in the region from around 750 nm to 1000 nm, where the fresh stage shows a steep change in the 
reflectance values, whereas in the dehydration stages a smoother change in the values is observed. This changes 
in the reflectance values shows a correlation with the increase in the SPAD values that is shown in the violin 
plots from Fig. 10, particularly from olive and avocado where the biggest change in the mean SPAD value occurs 
from the fresh stage to the first dehydration stage. In the grape leaves, such changes in the reflectance values 
from region 750–1000 nm are not so evident, thus the SPAD measurements remain with little variation to their 

Fig. 4.  (a) File tree with all the files and folders contained in the dataset, (b) variables created in a Matlab 
workspace once all the .mat files have been loaded.
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mean value. Table 4 shows the mean, maximum (max), minimum (min), and the standard deviation (std) for the 
chlorophyll content for each species at each drying stage.

A t-test was conducted to determine if there are significant differences between the means of measurements 
at different drying stages. The test showed that the expected values for FMCf and FMCd are significantly 
different from each other at every drying stage for each of the three species. However, for chlorophyll content, 
dehydration stages 1 through 3 are not significantly different from each other in the avocado and grape samples. 

Fig. 5.  Images of the five bands and five dehydration stages from an avocado leaf. to d.5) dehydration stage 3, 
e.1) to e.5) completely dry leaf.
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In contrast, for the olive dataset, the means of the three stages are significantly different from each other, except 
between stages 2 and 3 of dehydration.

Finally, to further validate the spectral dataset, we replicated the studies conducted by Villacres et al.30, 
in which water-related vegetation indices were computed and linear regressions were used to assess their 

Fig. 7.  Spectral reflectance for the olive leaves, the mean value is darker and the shaded area corresponds to 
the maximum and minimum values, (a) fresh leaves, (b) first dehydration stage, (c) second dehydration stage, 
(d) third dehydration stage, and (e) completely dehydrated leaves.

 

Fig. 6.  Spectral reflectance for the avocado leaves, the mean value is darker and the shaded area corresponds to 
the maximum and minimum values, (a) fresh leaves, (b) first dehydration stage, (c) second dehydration stage, 
(d) third dehydration stage, and (e) completely dehydrated leaves.
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relationships. For our analysis, we selected the top two performing vegetation indices based on the correlation 
factor (��): the Leaf Water Index (LWI) and the Double Difference Index (DDI), as well as one of the least 
performing indices, the Normalized Difference Water Index 1 (NDWI1). The equations for these indices are 
provided below, where �� represents the reflectance value at the x wavelength:

	
�� � �

�����

�����
� (4)

	 ��� � ������ � ����� � ����� � (5)

	
��� �� �

���� � �����

���� � �����
� (6)

Table 5 shows the equations (� � �� � �) and the evaluation metrics of correlation factor �� and root mean 
squared error. The linear plots for the three indices and the corresponding tree species are shown in Fig. 11. 
As can be seen, the results obtained from Villacres et al.,30 and in this technical validation, imply that there is 
a linear relationship between the fuel moisture content in vegetation and some vegetation indices, particularly 
LWI and DDI, however, the metrics in30, reach higher values, particularly the highest correlation factor achieved 
in30 in the LWI is of 0.96 and our result is of 0.84. This can be attributed to different factors, such as variations 
in the reflectance values across the different species, and a more widespread result in the computation of the VIs 
in this study.

Usage notes
There are numerous applications for this dataset. First, the data collection process was carried out following 
strict protocols, and it included information not provided by other datasets particularly multi-spectral images. 
Also, the various levels of leaf water content allow the exploration of the relationship between this biotic factor 
and the respective spectral signature in the range from 350 to 2500 nm, and also with the limited information 
provided by the multi-spectral cameras.

The use of multi-spectral images can be used to perform classification according to the dehydration level such 
as the study conducted in43, but applied to agricultural species.

Finally, the addition of SPAD values can be explored through the use of vegetation indices and multi-spectral 
images. Furthermore, the relationship between the SPAD values and the leaf moisture content can be explored 
with the use of the current dataset.

Fig. 8.  Spectral reflectance for the grape leaves, the mean value is darker and the shaded area corresponds to 
the maximum and minimum values, (a) fresh leaves, (b) first dehydration stage, (c) second dehydration stage, 
(d) third dehydration stage, and (e) completely dehydrated leaves.
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Species Drying stage
� ��� � ���

 Mean Max Min Std Mean Max Min Std

Avocado Fresh 135.00 196.36 86.50 19.25 57.16 66.26 46.38 3.60

Avocado Stage 1 96.48 132.21 37.42 16.32 48.73 56.93 27.23 4.60

Avocado Stage 2 61.04 92.14 9.82 16.34 37.21 47.98 8.94 7.01

Avocado Stage 3 32.66 66.37 2.15 14.36 23.73 39.89 2.10 8.34

Olive Fresh 120.81 154.11 100.84 11.37 54.60 60.65 50.21 2.28

Olive Stage 1 80.60 114.21 62.96 11.09 44.43 53.32 38.64 3.32

Olive Stage 2 50.41 87.42 23.77 11.74 33.12 46.65 19.20 5.15

Olive Stage 3 25.17 55.41 3.28 10.94 19.52 35.65 3.17 6.90

Grape Fresh 246.18 377.41 103.33 54.40 70.27 79.05 50.82 5.57

Grape Stage 1 170.50 233.33 68.35 34.70 62.28 70.00 40.60 6.03

Grape Stage 2 113.05 155.90 32.27 30.91 51.87 60.92 24.40 8.42

Grape Stage 3 67.24 124.20 3.70 30.74 37.89 55.39 3.57 12.98

Table 3.  Descriptive statistics about the leaf moisture content at each drying stage.

 

Fig. 9.  Mean reflectance value for the full spectrum at the five different drying stages: (a) avocado samples, (b) 
olive samples, (c) grape samples.
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Fig. 10.  Violin plots for (a) chlorophyll content, (b) fuel moisture content using a dry basis, and (c) fuel 
moisture content using a fresh basis. The graphs also show the p values for a t-test to check if the expected 
values between the means of each drying stage are significantly different from each other.
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Species VI Linear Model R2 RMSE

Avocado LWI � � � ����� � � � ����� 0.82 0.562

Avocado DDI � � �������� � � � ����� 0.84 0.079

Avocado NDWI1 � � � ������� � � ������ 0.11 0.120

Olive LWI � � � ������ � � � ����� 0.84 0.489

Olive DDI � � �������� � � � ����� 0.92 0.048

Olive NDWI1 � � � ������� � � ������ 0.47 0.042

Grape LWI � � � ������ � � � ��� 0.84 0.507

Grape DDI � � �������� � � � ������ 0.86 0.064

Grape NDWI1 � � � ������� � � ������� 0.77 0.026

Table 5.  Linear regression results for the prediction of fuel moisture content using different vegetation indices.

 

Species Drying stage Mean Max Min Std

Avocado Fresh 55.63 77.53 41.13 6.78

Avocado Stage 1 68.85 96.97 43.83 10.26

Avocado Stage 2 67.65 99.90 49.23 10.56

Avocado Stage 3 80.32 68.02 95.50 10.35

Avocado Dry 80.33 99.90 12.20 14.24

Olive Fresh 67.85 76.60 56.10 11.37

Olive Stage 1 80.69 88.80. 70.10 11.09

Olive Stage 2 82.62 92.80 50.40 11.74

Olive Stage 3 83.62 93.90 74.60 10.94

Olive Dry 87.14 93.90 70.20 5.42

Grape Fresh 31.33 43.80 16.40 6.86

Grape Stage 1 32.01 47.60 21.70 6.40

Grape Stage 2 32.51 47.00 3.70 7.36

Grape Stage 3 34.00 48.60 16.60 6.48

Grape Dry 41.41 76.00 6.48 11.53

Table 4.  Descriptive statistics about the chlorophyll content at each drying stage.
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Data availability
All the data is available at this repository DOI: https://doi.org/10.6084/m9.figshare.26950660.v2.

Code availability
A sample code is available in the project, and it is used to open the spectral information and plot the reflec-
tance values and their respective wavelength. The code is provided as a Matlab Script, within the dataset this 
file is named Sample_code_avocado.mlx.

Received: 13 September 2024; Accepted: 6 January 2025

References
	 1.	 Chilean Ministry of Environment. Chile’s second biennial update report on climate change. ​h​t​t​p​s​:​​/​/​u​n​f​c​​c​c​.​i​n​t​​/​f​i​l​e​​s​/​n​a​t​i​​o​n​a​l​_​r​​e​p​o​r​

t​s​​/​n​o​n​-​​a​n​n​e​x​_​i​_​p​a​r​t​i​e​s​/​b​i​e​n​n​i​a​l​_​u​p​d​a​t​e​_​r​e​p​o​r​t​s​/​a​p​p​l​i​c​a​t​i​o​n​/​p​d​f​/​b​u​r​2​_​c​h​i​l​e​_​e​n​g​l​i​s​h​2​0​1​7​.​p​d​f​​​​ (2016).
	 2.	 Santibanez, F. El cambio climatico y los recursos hidricos de chile. ​h​t​t​p​s​:​​/​/​w​w​w​.​​o​d​e​p​a​.​​g​o​b​.​c​​l​/​w​p​-​c​o​n​t​e​n​t​/​u​p​l​o​a​d​s​/​2​0​1​8​/​0​1​/​c​a​m​b​i​

o​C​l​i​m​1​2​p​a​r​t​e​.​p​d​f​​​​ (2018).
	 3.	 Vougioukas, S. G. Agricultural robotics. Annu. Rev. Control Robot. Auton. Syst. 2, 365–392. ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​1​0​​.​1​1​4​6​​/​a​n​n​u​r​e​v​-​c​o​n​t​r​

o​l​-​0​5​3​0​1​8​-​0​2​3​6​1​7​​​​ (2019).
	 4.	 Estrada, J. S., Fuentes, A., Reszka, P. & Cheein, F. A. Machine learning assisted remote forestry health assessment: A comprehensive 

state of the art review. Front. Plant Sci. 14, 1139232. https://doi.org/10.3389/fpls.2023.1139232 (2023).

Fig. 11.  Linear regression results for the tested VIs for fuel moisture content prediction.

 

Scientific Reports |         (2025) 15:2973 14| https://doi.org/10.1038/s41598-025-85714-8

www.nature.com/scientificreports/



	 5.	 Lu, J. et al. Combining plant height, canopy coverage and vegetation index from UAV-based RGB images to estimate leaf nitrogen 
concentration of summer maize. Biosyst. Eng. 202, 42–54. https://doi.​org/10.1016/​j.biosystems​eng.2020.11​.010 (2021).

	 6.	 Milas, A. S., Romanko, M., Reil, P., Abeysinghe, T. & Marambe, A. The importance of leaf area index in mapping chlorophyll 
content of corn under different agricultural treatments using UAV images. Int. J. Remote Sens. 39, 5415–5431. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​
0​8​0​/​0​1​4​3​1​1​6​1​.​2​0​1​8​.​1​4​5​5​2​4​4​​​​ (2018).

	 7.	 Eugenio, F. C. et al. Estimated flooded rice grain yield and nitrogen content in leaves based on RPAS images and machine learning. 
Field Crops Res. 292, 108823. https://doi.org/10.1016/j.fcr.2023.108823 (2023).

	 8.	 Brinkhoff, J., Dunn, B. W. & Robson, A. J. Rice nitrogen status detection using commercial-scale imagery. Int. J. Appl. Earth Obs. 
Geoinf. 105, 102627. https://doi.org/10.1016/j.jag.2021.102627 (2021).

	 9.	 Longfei, Z. et al. Improved yield prediction of ratoon rice using unmanned aerial vehicle-based multi-temporal feature method. 
Rice Sci. 30, 247–256. https://doi.org/10.1016/j.rsci.2023.03.008 (2023).

	10.	 Marang, I. J. et al. Machine learning optimised hyperspectral remote sensing retrieves cotton nitrogen status. Remote Sens. 13, 
1428. https://doi.org/10.3390/rs13081428 (2021).

	11.	 Shanmugapriya, P. et al. Cotton yield prediction using drone derived LAI and chlorophyll content. J. Agrometeorol. 24, 348–352. 
https://doi.org/10.54386/jam.v24i4.1770 (2022).

	12.	 Messina, G. et al. Monitoring onion crop “cipolla rossa di tropea calabria IGP’’ growth and yield response to varying nitrogen 
fertilizer application rates using UAV imagery. Drones 5, 61. https://doi.org/10.3390/drones5030061 (2021).

	13.	 Peng, J., Manevski, K., Kørup, K., Larsen, R. & Andersen, M. N. Random forest regression results in accurate assessment of potato 
nitrogen status based on multispectral data from different platforms and the critical concentration approach. Field Crops Res. 268, 
108158. https://doi.org/10.1016/j.fcr.2021.108158 (2021).

	14.	 Liu, J., Zhu, Y., Tao, X., Chen, X. & Li, X. Rapid prediction of winter wheat yield and nitrogen use efficiency using consumer-grade 
unmanned aerial vehicles multispectral imagery. Front. Plant Sci. 13, 1032170. https://doi.org/10.3389/fpls.2022.1032170 (2022).

	15.	 Narmilan, A. et al. Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral 
vegetation indices derived from UAV multispectral imagery. Remote Sens. 14, 1140. https://doi.org/10.3390/rs14051140 (2022).

	16.	 Teodoro, P. E. et al. Predicting days to maturity, plant height, and grain yield in soybean: A machine and deep learning approach 
using multispectral data. Remote Sens. 13, 4632. https://doi.org/10.3390/rs13224632 (2021).

	17.	 Tedesco, D. et al. Use of remote sensing to characterize the phenological development and to predict sweet potato yield in two 
growing seasons. Eur. J. Agronomy 129, 126337. https://doi.org/10.1016/j.eja.2021.126337 (2021).

	18.	 Jacquemound, S., Bidel, L., Francois, C. & Pavan, G. Angers leaf optical properties database (2003).
	19.	 Hosgood, B. et al. Leaf optical properties experiment database (lopex93) (1993).
	20.	 Feret, J.-B. et al. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote 

Sens. Environ. 112, 3030–3043. https://doi.org/10.1016/j.rse.2008.02.012 (2008).
	21.	 Wu, J. et al. Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two 

contrasting tropical forests. New Phytol. 214, 1033–1048. https://doi.org/10.1111/nph.14051 (2016).
	22.	 Wu, Jin and Prohaska, Neill and Saleska, Scott. 2012-leaf-reflectance-spectra-of-tropical-trees-in-tapajos-national-forest (2020).
	23.	 Ely, K.S., Serbin, S.P., Lieberman-Cribbin, W. & Rogers, A. Leaf spectra, structural and biochemical leaf traits of eight crop species. 

https://doi.org/10.21232/C2GM2Z (2018).
	24.	 Burnett, A.C., Serbin, S.P., Davidson, K.J., Ely, K.S. & Rogers, A. Hyperspectral leaf reflectance, biochemistry, and physiology of 

droughted and watered crops. https://doi.org/10.21232/UTK8ZAW4 (2020).
	25.	 Ryckewaert, M. et al. Hyperspectral images of grapevine leaves including healthy leaves and leaves with biotic and abiotic 

symptoms. Sci. Data 10, 743. https://doi.org/10.1038/s41597-023-02642-w (2023).
	26.	 Vayssade, J.-A. Multi-spectral leaf segmentation for crop/weed identification. https://doi.org/10.15454/JMKP9S (2021).
	27.	 Przybylska, M. S. et al. Aradiv: A dataset of functional traits and leaf hyperspectral reflectance of Arabidopsis thaliana. Sci. Data 10, 

314. https://doi.org/10.1038/s41597-023-02189-w (2023).
	28.	 Huemmrich, K. & Campbell, P. Tundra plant leaf-level spectral reflectance and chlorophyll fluorescence, 2019–2021. ​h​t​t​p​s​:​/​/​d​o​i​.​o​

r​g​/​1​0​.​3​3​3​4​/​O​R​N​L​D​A​A​C​/​2​0​0​5​​​​ (2022).
	29.	 Georgantopoulos, P. et al. A multispectral dataset for the detection of Tuta absoluta and Leveillula taurica in tomato plants. Smart 

Agric. Technol. 4, 100146. https://doi.org/10.1016/j.atech.2022.100146 (2023).
	30.	 Villacrés, J., Arevalo-Ramirez, T., Fuentes, A., Reszka, P. & Cheein, F. A. Foliar moisture content from the spectral signature for 

wildfire risk assessments in Valparaíso-Chile. Sensors 19, 5475. https://doi.org/10.3390/s19245475 (2019).
	31.	 Kumar, L. High-spectral resolution data for determining leaf water content in eucalyptus species: Leaf level experiments. Geocarto 

Int. 22, 3–16 (2007).
	32.	 Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​

0​9​/​T​S​M​C​.​1​9​7​9​.​4​3​1​0​0​7​6​​​​ (1979).
	33.	 Estrada, J. S. A multi-spectral and hyperspectral image dataset for evaluating the health status of avocado, olive and vineyard. ​h​t​t​p​

s​:​/​/​f​i​g​s​h​a​r​e​.​c​o​m​/​a​r​t​​​i​c​l​e​​s​​/​​d​a​t​a​s​​e​​t​/​_​​b​​_​A​​_​m​​​u​l​t​i​-​​​s​​p​e​c​​t​​r​a​​l​​_​a​​n​d​​_​h​​y​​p​​e​r​s​p​​​​e​c​t​r​a​l​_​i​m​a​g​e​_​d​a​t​a​s​e​t​_​f​o​r​_​e​v​a​l​u​a​t​i​n​g​_​t​h​e​_​h​e​a​l​t​h​_​s​t​a​t​u​s​_​o​f​_​
a​v​o​c​a​d​o​_​o​l​i​v​e​_​a​n​d​_​v​i​n​e​y​a​r​d​_​b​_​/​2​6​9​5​0​6​6​0​​​​​. https://doi.org/10.6084/m9.figshare.26950660.v2 (2024).

	34.	 Arevalo-Ramirez, T., Villacrés, J., Fuentes, A., Reszka, P. & Auat Cheein, F. A. Moisture content estimation of Pinus radiata and 
Eucalyptus globulus from reconstructed leaf reflectance in the SWIR region. Biosyst. Eng. 193, 187–205. ​h​t​t​​​​p​​s​:​​/​​/​d​​​o​i​.​o​r​g​/​​1​0​​.​​​1​0​1​6​/​j​.​
b​i​o​s​y​s​t​e​m​s​e​n​g​.​2​0​2​0​.​0​3​.​0​0​4​​​​ (2020).

	35.	 Simeoni, A. et al. Flammability studies for wildland and wildland-urban interface fires applied to pine needles and solid polymers. 
Fire Saf. J. 54, 203–217 (2012).

	36.	 Jervis, F. X. & Rein, G. Experimental study on the burning behaviour of Pinus halepensis needles using small-scale fire calorimetry 
of live, aged and dead samples. Fire Mater. 40, 385–395 (2016).

	37.	 Liu, N. et al. Spectral characteristics analysis and water content detection of potato plants leaves. IFAC-PapersOnLine 51, 541–546. 
https://doi.org/10.1016/j.ifacol.2018.08.152 (2018).

	38.	 Purwadi, I., Erskine, P. D. & van der Ent, A. Reflectance spectroscopy as a promising tool for ‘sensing’ metals in hyperaccumulator 
plants. Planta 258, 41. https://doi.org/10.1007/s00425-023-04167-3 (2023).

	39.	 Nauš, J., Prokopová, J., Řebíček, J. & Špundová, M. SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast 
movement. Photosynth. Res. 105, 265–271. https://doi.org/10.1007/s11120-010-9587-z (2010).

	40.	 Xiong, D. et al. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci. Rep. 
5, 13389. https://doi.org/10.1038/srep13389 (2015).

	41.	 Lao, Z. et al. Retrieval of chlorophyll content for vegetation communities under different inundation frequencies using UAV 
images and field measurements. Ecol. Indic. 158, 111329. https://doi.org/10.1016/j.ecolind.2023.111329 (2024).

	42.	 Saghouri el idrissi, I. et al. Water stress effect on durum wheat (Triticum durum desf.) advanced lines at flowering stage under 
controlled conditions. J. Agric. Food Res. 14, 100696. https://doi.org/10.1016/j.jafr.2023.100696 (2023).

	43.	 Estrada, J. S., Zanartu, M., Demarco, R., Fuentes, A. & Cheein, F. A. Water content classification on leaves based on multi-spectral 
imagery and machine learning techniques for wildfire prevention. In 2024 IEEE International Conference on Industrial Technology 
(ICIT) 1–7 (2024). https://doi.org/10.1109/ICIT58233.2024.10540771.

Scientific Reports |         (2025) 15:2973 15| https://doi.org/10.1038/s41598-025-85714-8

www.nature.com/scientificreports/



Acknowledgements
The authors acknowledge and thank ANID AFB240002, basal center AC3E, ANID SCIA-ANILLO ACT210052, 
and ANID national doctorate scholarship, folio No. 21231129 for funding the present work.

Author contributions
J.S.E contributed to the data recollection, data analysis, software, and writing process. R.D conceived the project, 
data revision and manuscript revision. C.J. contributed with data analysis and software. M.Z contributed with 
manuscript revision. A.F conceived the project. F.A.C conceived the project, designed the experiments, data 
analysis, and manuscript revision.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.S.E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher�s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |         (2025) 15:2973 16| https://doi.org/10.1038/s41598-025-85714-8

www.nature.com/scientificreports/


	﻿A multi-spectral and hyperspectral image dataset for evaluating chemical traits and the water status of avocado, olive and grape through leaf dehydration under laboratory conditions
	﻿Methods
	﻿Equipment
	﻿Sample recollection process

	﻿Data records
	﻿Technical validation
	﻿Usage notes
	﻿References


