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We study the open system dynamics of a harmonic oscillator coupled with an artificially engineered reser-
voir. We single out the reservoir and system variables governing the passage between Lindblad-type and
non-Lindblad-type dynamics of the reduced system’s oscillator. We demonstrate the existence of conditions
under which virtual exchanges of energy between system and reservoir take place. We propose to use a single
trapped ion coupled to engineered reservoirs in order to simulate quantum Brownian motion.
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I. INTRODUCTION

The dynamics of closed systems may be calculated ex-
actly by solving directly the Schrödinger equation. In realis-
tic physical conditions, however, the system one is interested
in is coupled to its surrounding. In this case the dynamics of
the total closed system can be extremely complicated. For
this reason, since the very early days of quantum mechanics,
a huge deal of attention has been devoted to the study of the
dynamics of open quantum systems[1].

Nowadays the interest in such a broad field has notably
increased mainly for two reasons. On the one hand experi-
mental advances in the coherent control of single or few
atom systems have paved the way to the realization of the
first basic elements of quantum computers,CNOT [2] and
phase quantum gates[3]. Moreover, the first quantum cryp-
tographic [4] and quantum teleportation[5] schemes have
been experimentally implemented. These technological ap-
plications rely on the persistence of quantum coherence.
Thus, understanding decoherence and dissipation arising
from the unavoidable interaction between the system and its
surrounding is necessary in order to implement real-size
quantum computers[6] and quantum technologies. On the
other hand, one of the most debated aspects of quantum me-
chanics, namely, the quantum measurement problem, can be
interpreted in terms of environment induced decoherence[7].
According to this interpretation the emergence of the classi-
cal world from the quantum world can be seen as a decoher-
ence process due to the interaction between system and en-
vironment[8].

A paradigmatic model of the theory of open systems is a
harmonic oscillator linearly coupled with a reservoir mod-
eled as an infinite set of noninteracting oscillators. Indeed
this model is central in many physical contexts, e.g., quan-

tum field theory[9], quantum optics[1,10,11], and solid-
state physics[12].

In order to describe quantitatively and qualitatively how
the reservoir affects the system dynamics one needs to make
some assumptions on its nature and properties. Some of
these properties, as, for example, the temperature of the res-
ervoir, can be experimentally measured. Other parameters, as
the reservoir spectral density or the system-reservoir cou-
pling, are assumed on the basis of physical reasonableness
and deduced by the comparison with experimental data. In
this sense the model is a phenomenological one.

The importance of the damped harmonic oscillator is also
due to the fact that it is one of the few exactly solvable
nontrivial systems. In fact the Heisenberg equations of mo-
tion for the total system(oscillator plus reservoir) can easily
be solved. The solution of the Heisenberg equations of mo-
tion is indeed the most straightforward method for the de-
scription of the dynamics of the expectation values of ob-
servables of interest, e.g., the mean energy of the system. An
example showing the easiness and conceptual transparency
of the method is given in Ref.[1].

Another way to describe the time evolution of the system
is to look at the reduced density matrix which is obtained by
tracing the density matrix of the total system over the envi-
ronmental degrees of freedom. This procedure is motivated
by the fact that, in general, one is interested only in the
dynamics of the system and not in the state of the reservoir.
An exact master equation for the reduced density matrix can
be formulated and exactly solved[13–19].

During the last decade huge advances in laser cooling and
trapping experimental techniques have made it possible to
confine harmonically a single ion and cool it down to very
low temperatures where purely quantum manifestations be-
gin to play an important role[22]. A single laser cooled ion is
theoretically equivalent to a particle moving in a harmonic
potential, whose center of mass motion is quantized as a
harmonic oscillator. Such a system is a unique experimental
system since it approximates very well a closed system[22].
Indeed unwanted dissipation, which in this case manifests
itself as a heating process depopulating the vibrational
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ground state of the ion, is negligible for times much longer
than the usual times in which experiments take place[23,24].
Moreover, arbitrary states of the ion motion can be prepared
and coherently manipulated using proper laser pulses
[25,26]. Even extremely fragile states as Schrödinger cat
states have been realized and detected[27]. Quite recently,
by using multiple ions in a linear Paul trap, experiments on
quantum nonlocality have been performed[28] and many-
particle entangled states have been realized[29]. Further-
more cold trapped ions are the favorite candidates for a
physical implementation of quantum computers[2,6].

The aim of this paper is to study the interaction of a
quantum harmonic oscillator with engineered reservoirs. In
the context of trapped ions it is possible not only to engineer
experimentally an “artificial” reservoir but also to synthesize
both its spectral density and the coupling with the system
oscillator [30,31]. This makes it possible to think of new
types of experiments aimed at testing the predictions of fun-
damental models as the one of quantum Brownian motion
(QBM) (or its high-T limit: the famous Caldeira-Leggett
model [15]).

The mean vibrational quantum number of the ion, also
called heating function[23], is the central quantity we inves-
tigate. We study the heating dynamics of the single oscillator
in correspondence to different reservoir characteristic param-
eters. We analyze the influence of the variations of the engi-
neered reservoir parameters, e.g., the cutoff frequency of the
reservoir spectral density, on the heating process. The idea of
looking at the variation of the open system dynamics induced
by the changes of the relevant reservoir parameters is in fact
rather unusual. Up to recently, indeed, only dissipation
and/or decoherence due to interaction with the “natural” res-
ervoir were studied[1,10,12,13,32,33].

We compare our analytic results for the observable quan-
tities of interest, as the heating function, with the non-
Markovian wave function(NMWF) simulations[1,34], find-
ing a very good agreement. The main result of the paper is
the experimental proposal for observing features of quantum
Brownian motion with single trapped ions. We demonstrate
that, with currently available technology, a regime of the
open system dynamics characterized by virtual phonon ex-
changes between the system and the reservoir may be ex-
plored.

The paper is organized as follows. In Sec. II we introduce
the master equation for QBM and its solution obtained by
means of a superoperatorial approach. In Sec. III we study
the behavior of the heating function for different values of
the reservoir parameters. In Sec. IV we review the basic
ingredients of the experimental procedures for engineering
artificial amplitude reservoir, as the one we study in the pa-
per, and for measuring the heating function. In Sec. V we
describe our experimental proposal for revealing non-
Markovian dynamics of a quantum Brownian particle, simu-
lated with a single trapped ion. Finally in Sec. VI conclu-
sions are presented.

II. EXACT DYNAMICS OF A QUANTUM BROWNIAN
PARTICLE

A. Generalized master equation

The dynamics of a harmonic oscillator linearly coupled
with a quantized reservoir, modeled as an infinite chain of

quantum harmonic oscillators, may be described exactly by
means of a generalized master equation of the form
[1,16,35,36]

drSstd
dt

=
1

i"
H0

SrSstd − FDstdsXSd2 − PstdXSPS

−
i

2
rstdsX2dS+ igstdXSPSGrSstd. s1d

We indicate withXSsSd andPSsSd the commutatorsanticom-
mutatord position and momentum superoperators, respec-
tively, and withH0

S the commutator superoperator relative to
the system Hamiltonian. The time dependent coefficients ap-
pearing in the master equation can be written, to the second
order in the coupling strength, as follows:

Dstd =E
0

t

kstdcossv0tddt, s2d

gstd =E
0

t

mstdsinsv0tddt, s3d

Pstd =E
0

t

kstdsinsv0tddt, s4d

rstd = 2E
0

t

mstdcossv0tddt, s5d

where

kstd = a2khEstd,Es0djl, s6d

and

mstd = ia2kfEstd,Es0dgl, s7d

are the noise and dissipation kernels, respectively. In the pre-
vious equations we indicate witha the system-reservoir cou-
pling constant, withv0 the frequency of the system oscillator
and withE the generalized reservoir position operator.

The master equation(1) is local in time, even if non-
Markovian. This feature is typical of all the generalized mas-
ter equations derived by using the time-convolutionless pro-
jection operator technique[1,34] or equivalent approaches
such as the superoperatorial one presented in Refs.[19,20].

The time dependent coefficients appearing in Eq.(1) con-
tain all the information about the short time system-reservoir
correlation. The coefficientrstd gives rise to a time depen-
dent renormalization of the frequency of the oscillator. The
term proportional togstd is a classical damping term while
the coefficientsDstd andPstd are diffusive terms.

In what follows we study the time evolution of the heating
functionknstdl with n quantum number operator. The dynam-
ics of knstdl depends only on the diffusion coefficientDstd
and on the classical damping coefficientgstd [19]. Further-
more, the quantum number operatorn belongs to a class of
observables not influenced by a secular approximation which
takes the master equation(1) into the form[19,37]
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drSstd
dt

=
Dstd + gstd

2
f2arSstda† − a†arSstd − rSstda†ag

+
Dstd − gstd

2
f2a†rSstda − aa†rSstd − rSstdaa†g.

s8d

For this reason, in order to calculate the exact time evolution
of the heating function, one can use the solution of the ap-
proximated master equations8d. In the previous equation we
have introduced the bosonic annihilation and creation opera-
tors a=sX+ iPd /Î2 and a†=sX− iPd /Î2, with X and P di-
mensionless position and momentum operator. Note that
the above master equation is of Lindblad type as far as the
coefficientsDstd±gstd are positivef21g.

B. Analytic solution

The superoperatorial master equation(1) can be exactly
solved by using specific algebraic properties of the superop-
erators[19]. The solution for the density matrix of the sys-
tem is derived in terms of the quantum characteristic func-
tion (QCF) xtsjd at time t, defined through the equation[9]

rSstd =
1

2p
E xtsjdesja†−j*add2j. s9d

It is worth noting that one of the advantages of the superop-
eratorial approach is the relative easiness in calculating the
analytic expression for the mean values of observables of
interest by using the relation

ka†manl = US d

dj
DmS−

d

dj* Dn

euju2/2xsjdU
j=0

. s10d

The exact analytic expression for the time evolution of the
heating function can be obtained from the secular solution.
In the secular approximation the QCF isf19g

xtsjd = e−DGstduju2x0fe−Gstd/2e−iv0tjg s11d

with x0 QCF of the initial state of the system. The quantities
DGstd andGstd appearing in Eq.s11d are defined in terms of
the diffusion and dissipation coefficientsDstd and gstd, re-
spectively, as follows:

Gstd = 2E
0

t

gst1ddt1, s12d

DGstd = e−GstdE
0

t

eGst1dDst1ddt1. s13d

Equations11d shows that the QCF is the product of an ex-
ponential factor, depending on both the diffusionDstd and
the dissipationgstd coefficients, and a transformed initial
QCF. The exponential term accounts for energy dissipation
and is independent of the initial state of the system. Informa-
tion on the initial state is given by the second term of the
product, the transformed initial QCF.

Having in mind Eq.(11) and using Eq.(10), one gets the
following expression for the heating function

knstdl = e−Gstdkns0dl + 1
2se−Gstd − 1d + DGstd. s14d

The asymptotic long-time behavior of the heating function is
readily obtained by using the Markovian stationary values
for Dstd andgstd. For a thermal reservoir, one gets

knstdl = e−Gtkns0dl + nsv0ds1 − e−Gtd. s15d

In the following section we will discuss in detail the dynam-
ics of the heating process and we will show the changes in
the short-time dynamics due to the variations of typical res-
ervoir parameters such as its temperature and cutoff fre-
quency.

III. NON-MARKOVIAN DYNAMICS OF LINDBLAD AND
NON-LINDBLAD TYPE

In a previous paper we have presented a theory of heating
for a single trapped ion interacting with a natural reservoir
able to describe both its short-time non-Markovian behavior
and the asymptotic thermalization process[38]. In this paper
we focus instead on the case of interaction with engineered
reservoirs. In the trapped ion context, it is experimentally
possible to engineer artificial reservoirs and couple them to
the system in a controlled way. Since the coupling with the
natural reservoir is negligible for long-time intervals[22,23],
this allows to test fundamental models of open system dy-
namics as the one for QBM we are interested in. In a sense
this extends the idea of using trapped ions for simulating the
closed dynamics of quantum optical systems[24,39,40] to
the possibility of simulating the dynamics of an ubiquitous
open system as the damped harmonic oscillator. In particular,
by using the analytic solution, one can look for ranges of the
relevant parameters of both the reservoir and the system in
correspondence of which deviations from Markovian dissi-
pation become experimentally observable.

In the experiments on artificially engineered amplitude
reservoirs[31] the high-temperature condition"v0/KT!1 is
always satisfied. For this reason here we concentrate on this
regime of the parameters. For an Ohmic reservoir spectral
density with Lorentz-Drude cutoff

Jsvd =
2v

p

vc
2

vc
2 + v2 , s16d

the dissipation and damping coefficientsgstd and Dstd, ap-
pearing in the master equations8d, to second order in the
coupling constant, take the form

gstd =
a2v0r

2

1 + r2 f1 − e−vct cossv0td − re−vct sinsv0tdg,

s17d

and

Dstd = 2a2kT
r2

1 + r2h1 − e−vctfcossv0td − s1/rdsinsv0tdgj

s18d

with r =vc/v0. Equations18d has been derived in the high-T
limit, while gstd does not depend on temperature. Comparing
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Eq. s18d with Eq. s17d, one notices immediately that in the
high-temperature regime,Dstd@gstd. Having this in mind it
is easy to prove that the heating function, given by Eq.s14d,
may be written in the following approximated form

knstdl . DGstd, s19d

where we have assumed that the initial state of the ion is its
vibrational ground state, as it is actually the case at the end
of the resolved sideband cooling processf25,26,41g. For
times much bigger than the reservoir correlation timetR
=1/vc the asymptotic behavior of Eq.s19d is given by Eq.
s15d. This equation gives evidence for a second characteristic
time of the dynamics, namely, the thermalization timetT
=1/G, with G=a2v0r

2/ sr2+1d. The thermalization time de-
pends both on the coupling strength and on the ratior
=vc/v0 between the reservoir cutoff frequency and the sys-
tem oscillator frequency. Usually, when one studies QBM,
the conditionr @1, which corresponds to a natural flat res-
ervoir, is assumed. In this case the thermalization time is
simply inversely proportional to the coupling strength. For
an “out of resonance” engineered reservoir withr !1, tT is
notably increased and therefore the thermalization process is
slowed down.

A further approximation to the heating function of Eq.
(19) can be obtained for timest!tT:

knstdl . E
0

t

Dst1ddt1 =
2a2KT

vc

r2

sr2 + 1d2hvctsr2 + 1d

s20d

− sr2 − 1df1 − e−vct cossv0tdg − re−vct sinsv0tdj.

s21d

This approximation shows a clear connection between the
sign of the diffusion coefficientDstd and the time evolution
of the heating function before thermalization. The diffusion
coefficient is indeed the time derivative of the heating func-
tion. We remind that, sinceDstd@gstd for the case consid-
ered here, wheneverDstd.0 the master equations8d is of
Lindblad type, whilst the caseDstd,0 corresponds to a non-
Lindblad-type master equation. From Eq.s20d one sees im-
mediately that while forDstd.0 the heating function grows
monotonically, whenDstd assumes negative values it can de-
crease and present oscillations.

To better understand such a behavior we study in more
details the dynamics for three exemplary values of the ratior
between the reservoir cutoff frequency and the system oscil-
lator frequency:r @1, r =1, andr !1. As we have already
noticed the first case corresponds to the assumption com-
monly done when dealing with natural reservoir while the
last case corresponds to an engineered out of resonance res-
ervoir.

For r @1 the diffusion coefficient, given by Eq.(18), is
positive for all t and r since

Dstd ~ 1 − e−vct cossv0td ù 0. s22d

Therefore the master equation is always of Lindblad type and
the heating function grows monotonically from its initial null
value. Equations20d shows that, for timest!tR and for r
@1, knstdl.sa2vckTdt2, that is the initial non-Markovian
behavior of the heating function is quadratic in time.

For r =1, a similar behavior is observed since also in this
caseDstd is positive at all times.

Finally, in the caser !1, Eq. (18) shows that, ifr is
sufficiently small,Dstd oscillates acquiring also negative val-
ues. It is worth noting, however, that the long-time
asymptotic value ofDstd is always positive. Whenever the
diffusion coefficient is negative, the heating function de-
creases, so the overall heating process is characterized by
oscillations of the heating function. The decrease in the
population of the ground state of the system oscillator, after
an initial increase due to the interaction with the high-T res-
ervoir, is due to the emission and subsequent reabsorption of
the same quantum of energy. Such an event is possible since
the reservoir correlation timetR=1/vc is now much longer
than the period of oscillationts=1/v0. We underline that,
although the master equation in this case is not of Lindblad
type, it conserves the positivity of the reduced density ma-
trix. This of course does not contradict the Lindblad theorem
since the semigroup property is clearly violated for the re-
duced system dynamics[1].

IV. EXPERIMENTAL TECHNIQUES

This section gives a brief review of the experimental pro-
cedures for engineering artificial reservoirs and for measur-
ing the heating function of the trapped ion. Starting from the
careful analysis of the recent experiments presented in this
section, we will describe, in the Sec. V, our experimental
proposal for simulating QBM with single trapped ions.

A. Engineering reservoirs

Let us begin discussing the technique used to engineer an
artificial reservoir coupled to a single trapped ion. Reference
[31] presents recent experimental results showing how to
couple a properly engineered reservoir with a quantum oscil-
lator, namely, the quantized center of mass(c.m.) motion of
the ion. These experiments aim at measuring the decoher-
ence of a quantum superposition of coherent states and Fock
states due to the presence of the reservoir. Several types of
engineered reservoirs are demonstrated, e.g., thermal ampli-
tude reservoirs, phase reservoirs, and zero-temperature reser-
voirs.

A high-T amplitude reservoir is obtained by applying a

random electric fieldEW whose spectrum is centered on the
axial frequencyvz/2p=11.3 MHz of oscillation of the ion
[31]. The trapped ion motion couples to this field due to the

net chargeq of the ion: Hint=−qxW ·EW , with xW =sX,Y,Zd dis-
placement of the c.m. of the ion from its equilibrium posi-

tion. Remembering thatEW ~oi«W isbi +bi
†d, with bi andbi

† anni-
hilation and creation operators of the fluctuating field modes,
and thatX~ sa+a†d one realizes that this coupling is equiva-
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lent to the bilinear one assumed to derive Eq.(1).
The random electric field is applied to the endcap elec-

trodes through a network of properly arranged low-pass fil-
ters limiting the natural environmental noise but allowing
deliberately large applied fields to be effective. This type of
drive simulates an infinite-bandwidth amplitude reservoir
[31]. It is worth stressing that, for the times of duration of the
experiment, namely,Dt=20 ms, the heating due to the natu-
ral reservoir is definitively negligible[31].

The reservoir considered in our paper is a thermal reser-
voir with spectral distribution given by

Isvd = Jsvdfnsvd + 1/2g

=
v

p

vc
2

vc
2 + v2cothsv/KTd, s23d

where Eq.s16d has been used. For highT, Eq. s23d becomes

Isvd =
2KT

p

vc
2

vc
2 + v2 . s24d

The infinite-bandwidth amplitude reservoir realized in the
experiments corresponds to the casevc→` in the previous
equation. Therefore, for highT, the reservoir discussed in the
paper can be realized experimentally by filtering the random
field, used in the experiments for simulating an infinite-
bandwidth reservoir, with a Lorentzian shaped low-pass fil-
ter at frequencyvc. The change of the ratior thus would be
accomplished simply by changing the low-pass filter.

B. Measurements of the heating function

In this section we focus on two experimental methods for
measuring the heating function of a single trapped ion. The
first method is based on the asymmetry in the sideband mo-
tional spectrum of the ion and it has been used in Ref.[23]
for measuring the process of thermalization of an ion, ini-
tially cooled down to its ground vibrational state, due to the
interaction with the natural reservoir. The same method is
used in Ref.[26] for measuring the cooling dynamics of an
ion subjected to sideband cooling lasers. The second tech-
nique allows to measure the populations of the vibrational
density matrix of the ion, from which the heating function
can be obtained. This last method has been used in Ref.[31]
in the case of interaction with an artificial amplitude reser-
voir.

For both techniques the first step is the preparation of the
initial vibrational and electronic ground state,un=0,−l
;un=0l ^ u−l, obtained by laser cooling and optical pumping
to the stateu−l. The mean vibrational number is then mea-
sured after fixed delay time intervals. During the delay arti-
ficial noise, which simulates the amplitude reservoir, may be
applied. In this way, the time evolution ofknstdl is obtained.

Let us begin with the first technique. At each fixed delay
time, the ion is in its electronic ground stateu−l and in a
certain vibrational state. A laser pulse tuned to a vibrational
sideband is then used to transfer the population to the upper
electronic level u+l. After this, by means of an electron
shelving technique, the electronic state of the ion is detected
in order to check wether a transition tou+l has occurred or

not. Repeating this procedure one gets the electronic excited
state occupation probabilityP+. The amplitude of the blue
and red vibrational sidebands is defined as the probability of
making a transitionu−l→ u+l due to a laser pulse tuned to the
blue or red sideband, respectively, and therefore is given by
P+. This quantity depends on the mean occupation number
knl. For un=0l, only the blue sideband can be exited while
the red one is absent. In general the asymmetry in the am-
plitude of thekth red sIred

k d and bluesIblue
k d vibrational side-

bands, allows to extractknl [23]:

Ired
k = S knl

knl + 1
Dk

Iblue
k . s25d

A limitation of this method is given by off-resonant exci-
tation via the carrier transition. If the driving field is tuned to
the first lower vibrational sideband, in the resolved sideband
conditionv0@V, with V Rabi frequency of the laser pulse,
processes involving off-resonant transitions go assV /v0d2.
In order to have a sensible measurement of the heating func-
tion, the population due to off-resonant transitions have to be
much smaller than the scale over whichknstdl varies.

We now focus on the second experimental method for
measuring the heating function. This method actually allows
to measure the diagonal elementsPn of the vibrational den-
sity matrix and it has been used to observe their decay due to
the interaction with an artificial amplitude reservoir, as the
one described in the preceding section. For this type of res-
ervoir and in the experimental conditions of Ref.[31], the
time evolution ofPnstd;rnnstd is well approximated by the
law

rnnstd .
1

1 + n̄gt
o
j=0

n S n̄gt

1 + n̄gt
D jS 1

1 + n̄gt
D2n−2j

3 o
l=0

` S n̄gt

1 + n̄gt
D lSn + l − j

n − j
DSn

j
Drn+l−j ,n+l−js0d,

s26d

where the phenomenological parametersn̄ and g are the
mean reservoir quantum number and the heating rate, respec-
tively. Equations26d is valid under the assumptions of high-
T reservoir and for times much smaller than the thermaliza-
tion time, gt!1. Such conditions turn out to be verified in
the experiments described in Ref.f31g. In this experimental
situation, the Markovian behavior of the heating function,
before thermalization takes place, is simply given byknstdl
= n̄gt. Note that in the limitr @1, corresponding to an infi-
nite bandwidth Markovian reservoir, Eq.s20d becomes
knstdl.2a2KTt/p. Comparing this expression of the heating
function with the one of the experiments one can identify
n̄=KT/v0 and g=2a2v0/p. It is worth underlining, how-
ever, that according to Eq.s26d, only the productn̄g may be
deduced from the experimental data.

In order to describe our experimental proposal for simu-
lating QBM, it is important to look in more detail at the
procedure used in Ref.[31] to obtain the time evolution of
the populationsPn. This allows to deduce from the experi-
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mental data the characteristic parameters of the amplitude
reservoir used in the experiments. In Ref.[31], after prepar-
ing a superposition of Fock states, the amplitude noise is
applied for a fixed time oft̄=3 ms after which the popula-
tions Pn are measured. In order to measurePn the ion is
irradiated with a pair of Raman beams tuned to the first blue
sideband for various probe timestp, andP−stpd is measured
from the fluorescence signal. From theP−stpd data the popu-
lationsPnst̄d are finally extracted with a single value decom-
position [31]. In order to observe the time evolution ofPn
one can proceed in two equivalent ways. Either one changes
the interval of timet̄ during which the amplitude noise is
applied, or one fixest̄ and varies the variance of the applied
noisekV2l. In fact, as shown in Ref.[31], the variance of the
random noise used to simulate an amplitude reservoir is
2kV2l= n̄gt. Practically, increasing the fluctuations of the ran-
dom electric field applied at the trap electrodes is equivalent
to an increase in the heating functionknl= n̄gt. SincePnstd,
as given by Eq.(20), depends only onn̄gt, one can obtain the
time evolution of the populations simply by changingkV2l.
This is the method used in Ref.[31] for measuring the popu-
lations, so, in fact, in the experimentPnskV2ld is recorded. In
principle, by using the relationn̄g=kV2l / t̄, with t̄=3 ms, one
could directly obtain the characteristic parameter of the res-
ervoir from the value of the noise voltage applied to the trap
electrodes. However, unknown geometrical factors in con-
verting the voltage to variations in the secular frequency pre-
vent a direct comparison. If we indicate withkV2lappl

=ckV2l the fluctuations of the voltage applied to the elec-
trodes, withcPR, fitting the experimental data according to
the theoretical law given by Eq.(26), allows to extrapolate
the factorc and thereforen̄g. It is not difficult to show that,
in the experiment on the decay(heating) of a Fock state due
to interaction with engineered amplitude reservoir(see Fig.
[15] of Ref. [31]), c.10 and hence, fort̄=3 ms andkV2l
=0.25V2, n̄g.0.84·107 Hz. Note that, in the experiment,
kV2l is varied from 0 to 0.3V2.

At this point we are ready to describe our experimental
proposal for observing the non-Markovian dynamics of the
heating function and, in general, for simulating the dynamics
of a quantum Brownian particle.

V. EXPERIMENTAL PROPOSAL FOR SIMULATING QBM

It is well known that non-Markovian features usually oc-
cur in the dynamics for timest!tR=1/vc. In general, since
vc@v0 and typically v0.107 Hz for trapped ions, this
means that deviations from the Markovian dynamics appear
for times t!0.1 ms. This is the reason why the initial qua-
dratic behavior of the heating function is not observed in the
experiments, wherein the typical time scales go from 1 to
100 ms.

A way to force non-Markovian features to appear is to
“detune” the trap frequency from the reservoir spectral den-
sity. This corresponds, for example, to the case in whichr
=vc/v0=0.1. In this case the reservoir correlation time is
bigger than the period of oscillation of the ion and this leads
to the oscillatory behavior of the heating function predicted

by Eq. (20) for r !1. Under this conditiontc=1 ms, and
therefore the non-Markovian features show up in the time
evolution and can be measured. Detuning the trap frequency
from the reservoir, however, decreases the effective coupling
between the system and the environment and, for this reason,
in order to obtain values of the heating function big enough
to be measured we need to increase either the coupling con-
stanta2, which correspond to an increase in the intensity of
the voltage applied to the electrodes, or the strength of the
fluctuationskV2l, which correspond to an increase in the ef-
fective temperature of the reservoir.

Let us look in more detail to Eq.(20). For r !1 this equa-
tion becomes

knstdl .
2a2KT

pvc
r2hvct + f1 − e−vct cossv0tdg

− re−vct sinsv0tdj. s27d

In the comparison with the experiment done in the preceding
section we have seen that the front factor 2a2KT/p= n̄g
.0.843107 Hz. Increasing of two order of magnitude this
front factor, and forr =0.1, Eq.s27d predicts the behavior
for the heating function shown in Fig. 1. We believe that
for this range ofknl and of times the oscillations of the
heating function could be experimentally measurable. For
example, with the first technique described in Sec. IV B,
using V=106 Hz and for v0=107 Hz, the ground-state
population transferred to the excited level due to off reso-
nant excitation is of the order of 10−2, which is one order
of magnitude smaller than the variation of the heating
function we want to measuressee Fig. 1d. Also the other
method described in the preceding section seems to be
enough accurate to reveal the oscillatory behavior of the
heating function in the conditions here examined. How-
ever, it is worth noting that, since the heating function
does not depend now on the dimensionless variablen̄gt,
but rather onvct, the time evolution can be obtained only

FIG. 1. Time evolution of the heating function for 2a2KT/p
=0.843109 Hz, vc=1 MHz, andr =0.1. Solid line is the analytical
and circles the simulation result.
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by varying the duration of the time of application of the
amplitude reservoir. This is not equivalent to a change in
the applied voltage fluctuations, as it was in the Markov-
ian case discussed in Sec. IV B.

Summarizing, in order to observe the virtual exchanges of
phonons between the system and the reservoir, leading to the
oscillations of the heating function, one needs to increase of
two order of magnitude the coefficient 2a2KT/p= n̄g. This
can be done either increasing the intensity or increasing the
fluctuations of the applied noise, or combining an increase in
the intensity with an increase in the fluctuations. Moreover
one needs to use a low pass filter for the applied noise, as
described in Sec. IV A, having cutoff frequencyvc=0.1v0.

We now examine briefly the conditions for which the qua-
dratic behavior of the heating function, could be observed.
We remind that this is the case in whichr @1 and the time
evolution of the density matrix is of Lindblad type. In view
of the considerations done at the beginning of this section, in
order to reveal non-Markovian dynamics in a time scale of
1–100ms we need to havetRù1 ms, that is, forr =10, v0
ø0.1 MHz. This means that one actually needs a “loose”
trap. For example, forv0=100 kHz, with the same applied
noise used in Ref.[31]), i.e., n̄g=0.843107 Hz, the time
evolution of the heating function is the one shown in Fig. 2.

If one wants to perform a fast measurement ofknl, e.g.,
using the first method and assumingV=106 Hz, the small
value of the trap frequency makes it difficult not only to
implement one of the two methods for measuring the heating
function, but also to reach the initial ground state since the
sidebands are not clearly resolved, and therefore resolved
sideband cooling technique cannot be applied. It is worth

stressing, however, that contrarily to the case of a natural
reservoir, which is always “in action,” in the case of an en-
gineered reservoir one can switch off the applied noise after
a certain delay time and, assuming that the effect of the
natural reservoir is negligible, measure the heating function
without the severe requirement of big values ofV. If one
assumes that after an amplitude noise pulse the state of the
ion does not change, then it is not necessary to perform a fast
measurement ofknl. Therefore one can work with smaller
values ofV, such thatV /v0!1.

Concluding, while measuring the quadratic behavior of
the heating functionsr @1d could be a more challenging task
from the experimental point of view, revealing the oscillatory
non-Markovian behaviorsr !1d appears to us in the grasp of
the experimentalists, in the conditions we have analyzed in
this section.

VI. CONCLUSIONS

In this paper we have studied the dynamics of a single
harmonic oscillator coupled to a quantum reservoir at ge-
neric temperatureT. In our analysis we have used both the
analytic solution for the reduced density matrix and the
NMWF method.

We have paid special attention to the non-Markovian
heating dynamics typical of short times. In this regime the
system time evolution is influenced by correlations between
the system and the reservoir. For certain values of the system
and reservoir parameters, virtual exchanges of energy be-
tween the system and its environment become dominant.
These virtual processes strongly affect the short time dynam-
ics and are responsible for the appearance of oscillations in
the heating function(non-Lindblad-type dynamics).

Extending the ideas of using trapped ions for simulating
quantum optical systems, we have proposed to simulate
QBM with single trapped ions coupled to artificial reservoirs.
We have carefully analyzed the possibility of revealing, by
using present technologies, the non-Markovian dynamics of
a single trapped ion interacting with an engineered reservoir
and we have underlined the conditions under which non-
Markovian features become observable.
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FIG. 2. Time evolution of the heating function for 2a2KT/p
=0.843109 Hz, vc=1 MHz, andr =10. Solid line is the analytical
and circles the simulation result.
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