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We study the open system dynamics of a harmonic oscillator coupled with an artificially engineered reser-
voir. We single out the reservoir and system variables governing the passage between Lindblad-type and
non-Lindblad-type dynamics of the reduced system’s oscillator. We demonstrate the existence of conditions
under which virtual exchanges of energy between system and reservoir take place. We propose to use a single
trapped ion coupled to engineered reservoirs in order to simulate quantum Brownian motion.
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[. INTRODUCTION tum field theory[9], quantum opticg1,10,1], and solid-
state physic$12].

The dynamics of closed systems may be calculated ex- |n order to describe quantitatively and qualitatively how
actly by solving directly the Schrodinger equation. In realis-the reservoir affects the system dynamics one needs to make
tic physical conditions, however, the system one is interestedome assumptions on its nature and properties. Some of
in is coupled to its surrounding. In this case the dynamics othese properties, as, for example, the temperature of the res-
the total closed system can be extremely complicated. Fagrvoir, can be experimentally measured. Other parameters, as
this reason, since the very early days of quantum mechanict)e reservoir spectral density or the system-reservoir cou-
a huge deal of attention has been devoted to the study of thegling, are assumed on the basis of physical reasonableness
dynamics of open quantum systefi3. and deduced by the comparison with experimental data. In

Nowadays the interest in such a broad field has notabljhis sense the model is a phenomenological one.
increased mainly for two reasons. On the one hand experi- The importance of the damped harmonic oscillator is also
mental advances in the coherent control of single or fewue to the fact that it is one of the few exactly solvable

atom systems have paved the way to the realization of th@ontrivial systems. In fact the Heisenberg eq_uations qf mo-
first basic elements of quantum computersioT [2] and tion for the total systentoscillator plus reservojrcan easily
phase quantum gatg8]. Moreover, the first quantum cryp- be solved. The solution of the Heisenberg equations of mo-

tographic[4] and quantum teleportatiofs] schemes have 1N IS indeed the most straightforward method for the de-
been experimentally implemented. These technological a scription of the dynamics of the expectation values of ob-

lications relv on the persistence of quantum coherenceservables of interest, e.g., the mean energy of the system. An
P y on p quantum ¢ . example showing the easiness and conceptual transparency
Thus, understanding decoherence and dissipation arising the method is given in Refl]

from the unavoidable interaction between the system and itS' 5, jiher way to describe the time evolution of the system

surrounding is necessan(/j in order to |rr]npllem_ent (r;aal-ﬁlz% to look at the reduced density matrix which is obtained by
quantum computerg] and quantum technologies. On the 5qing the density matrix of the total system over the envi-
other hand, one of the most debated aspects of quantum mes

, )nmental degrees of freedom. This procedure is motivated
chanics, namely, the quantum measurement problem, can lB

. X . ) y the fact that, in general, one is interested only in the
interpreted in terms of environment induced decohergiite v amics of the system and not in the state of the reservoir.

According to this interpretation the emergence of the C|aSSIAn exact master equation for the reduced density matrix can
cal world from the quantum world can be seen as a decoheBe formulated and exactly solvéti3—19

ence process due to the interaction between system and en- During the last decade huge advances in laser cooling and

vironment|8). trapping experimental techniques have made it possible to

A paradigmatic model of the theory of open systems is g, nfine”harmonically a single ion and cool it down to very
harmonic oscillator linearly coupled with a reservoir mod- ., temperatures where purely quantum manifestations be-
eled as an infinite set of noninteracting oscillators. Indeecg

hi del i | hvsical in to play an important rolg22]. A single laser cooled ion is
this model is central In many physical contexts, €.9., qUaNiyeqretically equivalent to a particle moving in a harmonic

potential, whose center of mass motion is quantized as a
harmonic oscillator. Such a system is a unique experimental

*Electronic address: sabrina@fisica.unipa.it system since it approximates very well a closed syq@2zh
"Ecole Normale Supérieure, Centre National de la Recherche Sclndeed unwanted dissipation, which in this case manifests
entifique, Université Pierre et Marie Curie. itself as a heating process depopulating the vibrational
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ground state of the ion, is negligible for times much longerquantum harmonic oscillators, may be described exactly by
than the usual times in which experiments take p[23:24. means of a generalized master equation of the form
Moreover, arbitrary states of the ion motion can be prepareg,16,35,36
and coherently manipulated using proper laser pulses

[25,26. Even extremely fragile states as Schrodinger cat dpst) 1 s . 2 5SS

states have been realized and dete¢2. Quite recently, dt iﬁHOPS(t) AKX - TIOXP

by using multiple ions in a linear Paul trap, experiments on )

quantum nonlocality have been performg8] and many- _! S, s

particle entangled states have been realig29. Further- 2r(t)(X )S+iOXP | ps(t). (1)

more cold trapped ions are the favorite candidates for a = . s 5 )
physical implementation of quantum compute2ss]. We indicate withXS* and PS® the commutatofanticom-

The aim of this paper is to study the interaction of amutato) position and momentum superoperators, respec-
quantum harmonic oscillator with engineered reservoirs. Iffively, and withH§ the commutator superoperator relative to
the context of trapped ions it is possible not only to engineethe system Hamiltonian. The time dependent coefficients ap-
experimentally an “artificial” reservoir but also to synthesizepearing in the master equation can be written, to the second
both its spectral density and the coupling with the systenorder in the coupling strength, as follows:
oscillator [30,31. This makes it possible to think of new .
types of experiments aimed at testing the predictions of fun- _
damental models as the one of quantum Brownian motion A(t)_fo «(7)codwor)dr, 2)
(QBM) (or its highT limit: the famous Caldeira-Leggett

model [15]). ;
The mean vibrat_ional quantum number of_ the ic_m, also Y(t):f w(n)sin(wyndr, (3)
called heating functiofi23], is the central quantity we inves- 0

tigate. We study the heating dynamics of the single oscillator
in correspondence to different reservoir characteristic param- t
eters. We analyze the influence of the variations of the engi- T1(t) :f k(7)sin(wer)dr, (4)
neered reservoir parameters, e.g., the cutoff frequency of the 0
reservoir spectral density, on the heating process. The idea of
looking at the variation of the open system dynamics induced t
by the changes of the relevant reservoir parameters is in fact r(t)y=2 f u(7)cod wyr)dr, (5)
rather unusual. Up to recently, indeed, only dissipation
and/or decoherence due to interaction with the “natural” reSyhere
ervoir were studied1,10,12,13,32,33

We compare our analytic results for the observable quan- k(1) = oX{E(7),E(0)}), (6)
tities of interest, as the heating function, with the non-
Markovian wave functiofNMWF) simulations[1,34)], find- and
ing a very good agreement. The main result of the paper is .,
the experimental proposal for observing features of quantum (1) =iaX[E(7),E(0)]), (7)

Brownian motion with single trapped ions. We demonstrate h . d dissipation k | vel h
that, with currently available technology, a regime of the € the noise and dissipation kernels, respectively. In the pre-

open system dynamics characterized by virtual phonon ex\fif)us equations we indicate with the system-reservoir_cou—
P y y y P ling constant, withw, the frequency of the system oscillator

changes between the system and the reservoir may be eR . . . "
plored. and with E the generalized reservoir position operator.

The paper is organized as follows. In Sec. Il we introduce The master equatiold) is local in time, even if non-
the master equation for QBM and its solution obtained byMarkowa_n. This fgature is typlcal of gll the generallzed mas-
means of a superoperatorial approach. In Sec. Il we stud{er €quations derived by using the time-convolutionless pro-
the behavior of the heating function for different values ofjection operator techniqufl,34 or equivalent approaches
the reservoir parameters. In Sec. IV we review the basiéuch as the superoperatorial one presented in REIs2Q.
ingredients of the experimental procedures for engineering The time dependent coefficients appearing in @g|con-
artificial amplitude reservoir, as the one we study in the patain all the information about the short time system-reservoir
per, and for measuring the heating function. In Sec. V wecorrelation. The coefficient(t) gives rise to a time depen-
describe our experimental proposal for revealing nondent renormalization of the frequency of the oscillator. The
Markovian dynamics of a quantum Brownian particle, simu-term proportional toy(t) is a classical damping term while
lated with a single trapped ion. Finally in Sec. VI conclu- the coefficients\(t) andII(t) are diffusive terms.

0

sions are presented. In what follows we study the time evolution of the heating
Il. EXACT DYNAMICS OF A QUANTUM BROWNIAN funcuon(n(t)) with n quantum numb(_ar operator. T_h(_e dynam-
PARTICLE ics of (n(t)) depends only on the diffusion coefficieA(t)
_ _ and on the classical damping coefficiept) [19]. Further-
A. Generalized master equation more, the quantum number operatobelongs to a class of

The dynamics of a harmonic oscillator linearly coupledobservables not influenced by a secular approximation which
with a quantized reservoir, modeled as an infinite chain otakes the master equatiéh) into the form[19,37

052101-2



SIMULATING QUANTUM BROWNIAN MOTION WITH ... PHYSICAL REVIEW A 69, 052101(2004)

dps(t) _ A(t) + (1)
dt 2
L AW - ()
2

() =e"n©O) + 3TV -1 +Ar). (14

The asymptotic long-time behavior of the heating function is
. " . readily obtained by using the Markovian stationary values
[2a'pg(t)a—aa'pg(t) - ps(t)aa']. for A(t) and y(t). For a thermal reservoir, one gets

) (V) =" (n(0)) + n(wp)(1 -&™). (15

For this reason, in order to calculate the exact time evolutiorin the following section we will discuss in detail the dynam-
of the heating function, one can use the solution of the apics of the heating process and we will show the changes in
proximated master equatidB). In the previous equation we the short-time dynamics due to the variations of typical res-
have introduced the bosonic annihilation and creation operarvoir parameters such as its temperature and cutoff fre-
tors a=(X+iP)/y2 anda’=(X-iP)/y2, with X and P di-  quency.

mensionless position and momentum operator. Note that

the above master equation is of Lindblad type as far as them_ NON-MARKOVIAN DYNAMICS OF LINDBLAD AND
coefficientsA(t) £ y(t) are positive[21]. NON-LINDBLAD TYPE

[2apg(t)a’ - a'apg(t) - pg(t)a'a]

B. Analytic solution In a previous paper we have presented a theory of heating
for a single trapped ion interacting with a natural reservoir

The superoperatorial master equatidn can be exactly . X o ) . )
solved by using specific algebraic properties of the Superop:glble to describe both its short-time non-Markovian behavior

erators[19]. The solution for the density matrix of the sys- and the asymptotic thermalization proc¢38]. In this paper

tem is derived in terms of the quantum characteristic funcy'e focus instead on the case of interaction with engineered

) . , : reservoirs. In the trapped ion context, it is experimentally
tion (QCP) x(¢) at timet, defined through the equatie] possible to engineer artificial reservoirs and couple them to

1 (cal-ga) 2 the system in a controlled way. Since the coupling with the
ps(t) = Z—J xi(§e@ ¢ A%, (9)  natural reservoir is negligible for long-time interva2,23,
It is worth noting that one of the advantages of the superophamics as the one for QBM we are interested in. In a sense
eratorial approach is the relative easiness in calculating ththis extends the idea of using trapped ions for simulating the
interest by using the relation the possibility of simulating the dynamics of an ubiquitous
m N open system as the damped harmonic oscillator. In particular,
tman d d 422
@mah = | —] |- -5 %9 . :
d¢ dé &0 relevant parameters of both the reservoir and the system in
correspondence of which deviations from Markovian dissi-
heating function can be obtained from the secular solutionpatlon become gxpenmentally .o.bservablt'a. .
In the experiments on artificially engineered amplitude
Al " S . .
xi(&) = e BrOlEy [e T/ 2gmiwgtg] (12) alw_ays satisfied. For this reason here we concentrate on this
regime of the parameters. For an Ohmic reservoir spectral
Ar(t) andI'(t) appearing in Eq(11) are defined in terms of
the diffusion and dissipation coefficients(t) and (1), re- Iw) =2_w W (16)

this allows to test fundamental models of open system dy-
analytic expression for the mean values of observables dflosed dynamics of quantum optical systef2d,39,4Q to
(10) by using the analytic solution, one can look for ranges of the
The exact analytic expression for the time evolution of the
In the secular approximation the QCF{IE] reservoirg31] the high-temperature conditiditw,/KT<<1 is
with xo QCF of the initial state of the system. The quantitiesdensity with Lorentz-Drude cutoff
spectively, as follows: T W+ w?’

t the dissipation and damping coefficienggt) and A(t), ap-
F(t)—ZfO Yt)d, (12) pearing in the master equatidB), to second order in the
coupling constant, take the form

2 2
a“wol .
1 +(;2 [1-e ! cogwgt) — re e sin(wgt)],

t
Ap(t)y=eT0 f e'WA(ty)dt; . (13 i) =
0

Equation(11) shows that the QCF is the product of an ex- 1
ponential factor, depending on both the diffusiaft) and  gpg
the dissipationy(t) coefficients, and a transformed initial
QCF. The exponential term accounts for energy dissipation 5 2 r _ aod _ -
and is independent of the initial state of the system. Informa- Al)=2a le +r2{1 & elcodaot) - (Lnsin(woh
tion on the initial state is given by the second term of the (18)
product, the transformed initial QCF.

Having in mind Eq.(11) and using Eq(10), one gets the with r=w./ w,. Equation(18) has been derived in the high-
following expression for the heating function limit, while y(t) does not depend on temperature. Comparing

2
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Eq. (18) with Eg. (17), one notices immediately that in the A(t) < 1 — e codwot) = 0. (22
high-temperature regimé\(t) > y(t). Having this in mind it
is easy to prove that the heating function, given by @4),
may be written in the following approximated form

Therefore the master equation is always of Lindblad type and
the heating function grows monotonically from its initial null
value. Equation20) shows that, for time$< 7z and forr
>1, (n(t))=(PwkTt? that is the initial non-Markovian
(n(t)) = Ar(t), (190 pehavior of the heating function is quadratic in time.
Forr=1, a similar behavior is observed since also in this
where we have assumed that the initial state of the ion is itsaseA(t) is positive at all times.
vibrational ground state, as it is actually the case at the end Finally, in the caser<1, Eq. (18) shows that, ifr is
of the resolved sideband cooling procd®5,26,41. For  sufficiently small, A(t) oscillates acquiring also negative val-
times much bigger than the reservoir correlation time ues. It is worth noting, however, that the long-time
=1/w, the asymptotic behavior of Eq19) is given by Eq. asymptotic value ofA(t) is always positive. Whenever the
(15). This equation gives evidence for a second characteristidiffusion coefficient is negative, the heating function de-
time of the dynamics, namely, the thermalization time creases, so the overall heating process is characterized by
=1/T, with T'=a?wer?/(r?+1). The thermalization time de- oscillations of the heating function. The decrease in the
pends both on the coupling strength and on the ratio population of the ground state of the system oscillator, after
= w./ wy between the reservoir cutoff frequency and the sysan initial increase due to the interaction with the highes-
tem oscillator frequency. Usually, when one studies QBM,ervoir, is due to the emission and subsequent reabsorption of
the conditionr > 1, which corresponds to a natural flat res- the same quantum of energy. Such an event is possible since
ervoir, is assumed. In this case the thermalization time ig¢he reservoir correlation timez=1/w; is now much longer
simply inversely proportional to the coupling strength. Forthan the period of oscillations=1/w,. We underline that,
an “out of resonance” engineered reservoir witd1, 7w is  although the master equation in this case is not of Lindblad
notably increased and therefore the thermalization process fgpe, it conserves the positivity of the reduced density ma-

slowed down. trix. This of course does not contradict the Lindblad theorem
A further approximation to the heating function of Eq. since the semigroup property is clearly violated for the re-
(19) can be obtained for times< 7: duced system dynamig4].
t 202KT 12 , IV. EXPERIMENTAL TECHNIQUES
(M) = | Altpdty=———————{ot(r"+1) . o : : .
0 w, (r'+1) This section gives a brief review of the experimental pro-

(20) cedures for engineering artificial reservoirs and for measur-
ing the heating function of the trapped ion. Starting from the
careful analysis of the recent experiments presented in this

2 _arod _ ramod o section, we will describe, in the Sec. V, our experimental
("= D1 ~e codwgt)] - re sm(wo(t)}.) proposal for simulating QBM with single trapped ions.
21

A. Engineering reservoirs
This approximation shows a clear connection between the
sign of the diffusion coefficieni\(t) and the time evolution
of the heating function before thermalization. The diffusion
coefficient is indeed the time derivative of the heating func-
tion. We remind that, sincé(t)> y(t) for the case consid-

ered here, whenevek(t)>0 the master equatio(8) is of o ion These experiments aim at measuring the decoher-

Lindblad type, whilst the cas&(t) <0 corresponds to anon-  gnee of 4 quantum superposition of coherent states and Fock
Lindblad-type master equation. From H@0) one sees im-  gtates due to the presence of the reservoir. Several types of
mediately that while forA(t)>0 the heating function grows gngineered reservoirs are demonstrated, e.g., thermal ampli-

monotonically, when\(t) assumes negative values it can de-y,de reservoirs, phase reservoirs, and zero-temperature reser-
crease and present oscillations. Voirs.

To better unde_rstand such a behavior we study in more A high-T amplitude reservoir is obtained by applying a
details the dynam|cs_for three exemplary values of the ratlo_ andom electric fielde whose spectrum is centered on the
between the reservoir cutoff frequency and the system osCilyyia| frequencyw,/27=11.3 MHz of oscillation of the ion
Iatqr frequenpy.r>1, r=1, andr<1. As we have already rTL3l]. The trapped ion motion couples to this field due to the
noticed the first case corresponds to the assumption com- i R ,

net chargeq of the ion: H;,,=—gX-E, with x=(X,Y,2) dis-

monly done when dealing with natural reservoir while the X i 112 .
last case corresponds to an engineered out of resonance r@§acement of the c.m. of the ion from its equilibrium posi-

Let us begin discussing the technique used to engineer an
artificial reservoir coupled to a single trapped ion. Reference
[31] presents recent experimental results showing how to
couple a properly engineered reservoir with a quantum oscil-
lator, namely, the quantized center of méssn,) motion of

ervoir. tion. Remembering th£MEi§i(bi+biT), with b; andb anni-
For r>1 the diffusion coefficient, given by E@18), is  hilation and creation operators of the fluctuating field modes,
positive for allt andr since and thatX = (a+a') one realizes that this coupling is equiva-
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lent to the bilinear one assumed to derive Eq. not. Repeating this procedure one gets the electronic excited
The random electric field is applied to the endcap elecstate occupation probabiliti?,. The amplitude of the blue
trodes through a network of properly arranged low-pass filand red vibrational sidebands is defined as the probability of
ters limiting the natural environmental noise but allowing making a transitiof-) — |+) due to a laser pulse tuned to the
deliberately large applied fields to be effective. This type ofblue or red sideband, respectively, and therefore is given by
drive simulates an infinite-bandwidth amplitude reservoirP,. This quantity depends on the mean occupation number
[31]. It is worth stressing that, for the times of duration of the(n). For [n=0), only the blue sideband can be exited while
experiment, namely\t=20 us, the heating due to the natu- the red one is absent. In general the asymmetry in the am-
ral reservoir is definitively negligibl¢31]. plitude of thekth red (I, and blue(ly,) vibrational side-
The reservoir considered in our paper is a thermal reseibands, allows to extracn) [23]:
voir with spectral distribution given by

(m ¥
(@) = J@)N(w) + 1/2] = (— . 25
0 W w1
=— 2: 5Coth(w/KT), (23 A limitation of this method is given by off-resonant exci-
0™ @ tation via the carrier transition. If the driving field is tuned to

where Eq.(16) has been used. For high Eq. (23) becomes  the first lower vibrational sideband, in the resolved sideband
condition wy> ), with Q) Rabi frequency of the laser pulse,

processes involving off-resonant transitions go(Qs wg)?.
In order to have a sensible measurement of the heating func-

o . . ) . ) tion, the population due to off-resonant transitions have to be
The infinite-bandwidth amplitude reservoir realized in the ,,,ch smaller than the scale over whigiit)) varies.

experiments corresponds to the case—« in the previous

2KT  o?

o)==

. (24)

tion. Theref for hidh. th ir di din th We now focus on the second experimental method for
equation. nerefore, for high, the reservorr discussed in the measuring the heating function. This method actually allows
paper can be realized experimentally by filtering the random " - < \re the diagonal elemefts of the vibrational den-

Eelda U_Zfr? in the _exp%rllmel_nts f(zr_ smt;}latmg Ian mﬂmti_-l sity matrix and it has been used to observe their decay due to
andwidtn reservoir, with a Lorentzian shaped low-pass Hily, o jnteraction with an artificial amplitude reservoir, as the

ter at fre.quency{oc. The change_of the ratiothus W.OU|d be one described in the preceding section. For this type of res-
accomplished simply by changing the low-pass filter. ervoir and in the experimental conditions of RE31], the
time evolution ofP,(t) = p,4(1) is well approximated by the
law

In this section we focus on two experimental methods for _
measuring the heating function of a single trapped ion. The 1 mt \[ 1\
first method is based on the asymmetry in the sideband mo- Prn(t) = 1+1- > ( ) ( )
tional spectrum of the ion and it has been used in 23]

B. Measurements of the heating function

for measuring the process of thermalization of an ion, ini- - nmt \'/n+1-j\(n

tially cooled down to its ground vibrational state, due to the x> ( — ) ( B )( )pn+|_,-,n+|_j(0),
interaction with the natural reservoir. The same method is =0 \1+nA n-J

used in Ref[26] for measuring the cooling dynamics of an (26)

ion subjected to sideband cooling lasers. The second tech- . .
nique allows to measure the populations of the vibrationawhere the phenomenological parametersand y are the
density matrix of the ion, from which the heating function mean reservoir quantum number and the heating rate, respec-

can be obtained. This last method has been used in[&4f. tively. Equation(26) is valid under the assumptions of high-
in the case of interaction with an artificial amplitude reser-T reservoir and for times much smaller than the thermaliza-

Voir. tion time, yt<<1. Such conditions turn out to be verified in
For both techniques the first step is the preparation of théhe experiments described in Rg81]. In this experimental
initial vibrational and electronic ground statén=0,-)  situation, the Markovian behavior of the heating function,

=|n=0)®|-), obtained by laser cooling and optical pumping before thermalization takes place, is simply given(hgt))
to the statd—). The mean vibrational number is then mea-=nt. Note that in the limitr>1, corresponding to an infi-
sured after fixed delay time intervals. During the delay arti-nite bandwidth Markovian reservoir, E¢20) becomes
ficial noise, which simulates the amplitude reservoir, may ben(t)) = 2a?KTt/«. Comparing this expression of the heating
applied. In this way, the time evolution @(t)) is obtained. function with the one of the experiments one can identify
Let us begin with the first technique. At each fixed delayn=KT/w, and y=2a2w,/ . It is worth underlining, how-
time, the ion is in its electronic ground state) and in a  ever, that according to E26), only the produchy may be
certain vibrational state. A laser pulse tuned to a vibrationableduced from the experimental data.
sideband is then used to transfer the population to the upper In order to describe our experimental proposal for simu-
electronic level|+). After this, by means of an electron lating QBM, it is important to look in more detail at the
shelving technique, the electronic state of the ion is detectegrocedure used in Ref31] to obtain the time evolution of
in order to check wether a transition t®) has occurred or the populations?,,. This allows to deduce from the experi-
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mental data the characteristic parameters of the amplitud¢ 035 ' ' ' ' '
reservoir used in the experiments. In Rgl], after prepar-
ing a superposition of Fock states, the amplitude noise is 03f 1
applied for a fixed time of=3 us after which the popula-

tions P, are measured. In order to measwRg the ion is 0.25¢ 1
irradiated with a pair of Raman beams tuned to the first blue

sideband for various probe tim¢s andP_(t,) is measured 0.2¢ 006 .
from the fluorescence signal. From tRe(t,) data the popu- \C’; e,

lations P,,(t) are finally extracted with a single value decom- ~ o.15} 1
position [31]. In order to observe the time evolution B,
one can proceed in two equivalent ways. Either one change .1} S 1
the interval of timet during which the amplitude noise is
applied, or one fixes and varies the variance of the applied .05t 1
noise(V?). In fact, as shown in Ref31], the variance of the
random noise used to simulate an amplitude reservoir is s s s s ‘
2(V3=nyt. Practically, increasing the fluctuations of the ran- 0 05 ! taf’s) 2 25 8
dom electric field applied at the trap electrodes is equivalent

. . . ) - ) FIG. 1. Time evolution of the heating function for2KT/ 7
to an increase in the heating functigm =nyt. SincePy(t), =0.84x 10° Hz, w.=1 MHz, andr=0.1. Solid line is the analytical

as given by Eq(20), depends only onyt, one can obtain the 4 circles the simulation resuit.
time evolution of the populations simply by changiti).

This is the method used in R¢B1] for measuring the popu- by Eq. (20) for r<1. Under this conditionr,=1 us, and

. ; : ; N
Iat_|on.s, S0, 1n fgct, in the ex.pirlrfeﬁzg((l/ >)_ |s_rfcorded. In therefore the non-Markovian features show up in the time
principle, by using the relationy=(V<)/t, with t=3 us, one  gypjytion and can be measured. Detuning the trap frequency
could directly obtain the characteristic parameter of the resfrom the reservoir, however, decreases the effective coupling
ervoir from the value of the noise voltage applied to the traphetween the system and the environment and, for this reason,
electrodes. However, unknown geometrical factors in conin order to obtain values of the heating function big enough
verting the voltage to variations in the secular frequency pretg pe measured we need to increase either the coupling con-
vent a direct comparison. If we indicate wittV*),pn  stanta?, which correspond to an increase in the intensity of
=c(V? the fluctuations of the voltage applied to the elec-the voltage applied to the electrodes, or the strength of the
trodes, withc € R, fitting the experimental data according to fluctuations(V?), which correspond to an increase in the ef-
the theoretical law given by Eq26), allows to extrapolate fective temperature of the reservoir.

the factorc and thereforeny. It is not difficult to show that, Let us look in more detail to Eq20). Forr <1 this equa-

in the experiment on the decglyeating of a Fock state due tijon becomes

to interaction with engineered amplitude reservsiee Fig.

[15] of Ref. [31]), c=10 and hence, fot=3 us and(V?) _ 20°KT, ot
=0.25v2, ny=0.84-1G Hz. Note that, in the experiment, (n(t)) = Ton {ogt +[1 - €™ codwt)]
(V?) is varied from 0 to 0.82 _
—re d sin(wot)}. (27

At this point we are ready to describe our experimental

proposal for observing the non-Markovian dynamics of the . . . . .
heating function and, in general, for simulating the dynamicd" the comparison with the experiment done m the preceding
of a quantum Brownian particle. section we have seen that the front factar*RT/7=nvy

=0.84% 10" Hz. Increasing of two order of magnitude this
front factor, and for=0.1, Eq.(27) predicts the behavior
for the heating function shown in Fig. 1. We believe that

It is well known that non-Markovian features usually oc- for this range of(n) and of times the oscillations of the
cur in the dynamics for times< rr=1/w,. In general, since heating function could be experimentally measurable. For
w.> w, and typically wy=10" Hz for trapped ions, this example, with the first technique described in Sec. IV B,
means that deviations from the Markovian dynamics appeausing Q=1 Hz and for wy=10" Hz, the ground-state
for timest<0.1 us. This is the reason why the initial qua- population transferred to the excited level due to off reso-
dratic behavior of the heating function is not observed in thenant excitation is of the order of 1%) which is one order
experiments, wherein the typical time scales go from 1 toof magnitude smaller than the variation of the heating
100 us. function we want to measursee Fig. 1. Also the other

A way to force non-Markovian features to appear is tomethod described in the preceding section seems to be
“detune” the trap frequency from the reservoir spectral denenough accurate to reveal the oscillatory behavior of the
sity. This corresponds, for example, to the case in which heating function in the conditions here examined. How-
=w./wp=0.1. In this case the reservoir correlation time isever, it is worth noting that, since the heating function
bigger than the period of oscillation of the ion and this leadsdoes not depend now on the dimensionless variable
to the oscillatory behavior of the heating function predictedbut rather onwt, the time evolution can be obtained only

V. EXPERIMENTAL PROPOSAL FOR SIMULATING QBM
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10 ' ‘ ‘ stressing, however, that contrarily to the case of a natural
reservoir, which is always “in action,” in the case of an en-
gineered reservoir one can switch off the applied noise after
a certain delay time and, assuming that the effect of the
natural reservoir is negligible, measure the heating function
without the severe requirement of big values(f If one
assumes that after an amplitude noise pulse the state of the
ion does not change, then it is not necessary to perform a fast

A
v°e measurement ofn). Therefore one can work with smaller
4r values of(), such that}/ wy<<1.
sl Concluding, while measuring the quadratic behavior of
the heating functioitr > 1) could be a more challenging task
2r from the experimental point of view, revealing the oscillatory
n non-Markovian behaviofr < 1) appears to us in the grasp of
. the experimentalists, in the conditions we have analyzed in
Voash s ; 5 ,  this section.
t (us)
FIG. 2. Time evolution of the heating function for2KT/ 7 VI. CONCLUSIONS
=0.84x 10° Hz, ;=1 MHz, andr=10. Solid line is the analytical In this paper we have studied the dynamics of a single
and circles the simulation result. harmonic oscillator coupled to a quantum reservoir at ge-

neric temperaturd. In our analysis we have used both the

by varying the d“Fa“O”. Of the time .Of application of thg analytic solution for the reduced density matrix and the
amplitude reservoir. This is not equivalent to a change INUMWE method

Fhe applleq voltage fluctuatlons, as it was in the Markov- We have paid special attention to the non-Markovian
ian case discussed in Sec. IV B. E

Summarizing, in order to observe the virtual exchanges o eating dynamics typical of short times. In this regime the

phonons between the system and the reservoir, leading to t’fstem time evolution is influenced by correlations between

g,igllgﬂz?so?fr;genﬁﬁ?&??ﬁlﬁ;ﬁé@?@;ﬁf /ds_t?]_lncTrﬁ;se %nd reservoir parameters, virtual exchanges of energy be-
lagnit . . =iy tween the system and its environment become dominant.
can be done either increasing the intensity or increasing th

Whese virtual processes strongly affect the short time dynam-

fl ions of th lied noi r combining an incr in ; o .
uctuations of the applied noise, or combining an increase ics and are responsible for the appearance of oscillations in

the intensity with an increase in the fluctuations. Moreover, heating functiorinon-Lindblad-type dynamigs

one n.eeds. to use a low pass filter for the applied noise, as Extending the ideas of using trapped ions for simulating
deflsgaeo?/vlgxi%:i.nlg/tﬁi,et‘]la\éwgccéjrzgif:igr?sq?;rnv?/%i:g.tlﬁg ua guantum optical systems, we have proposed to simulate
dratic behavior of the he)::lting function, could be obse?vedQB'vI with single trapped ions coupled fo grtificial rese_rvoirs.
We remind that this is the case in whi(;B>1 and the time W? have carefully analy-zed the possibility qf reveallng, by
evolution of the density matrix is of Lindblad type. In view using present teqhnqlogles, .the non-Markoylan dynamics qf
of the considerations done at the beginning of this.section i single trapped ion mteractmg Wlth. an engineered reservorr
order to reveal non-Markovian dynamics in a time scale ’o nd we have underlined the conditions under which non-
. _ Markovian features become observable.
1-100us we need to haveg=1 us, that is, forr=10, wg
=<0.1 MHz. This means that one actually needs a “loose”
trap. For example, fowy=100 kHz, with the same applied
noise used in Ref[31]), i.e., ny=0.84X 10" Hz, the time The authors gratefully acknowledge Heinz-Peter Breuer
evolution of the heating function is the one shown in Fig. 2.for helpful comments and stimulating discussions. J.P. ac-
If one wants to perform a fast measurementmf, e.g.,  knowledges financial support from the Academy of Finland
using the first method and assumifig=1C° Hz, the small  (Project No. 5031xand the Finnish IT center for Science
value of the trap frequency makes it difficult not only to (CSC for computer resources. J.P. and F.P. thank the Uni-
implement one of the two methods for measuring the heatingersity of Palermo for the hospitality. S.M. acknowledges
function, but also to reach the initial ground state since thd=inanziamento Progetto Giovani Ricercatori anno 1999 Co-
sidebands are not clearly resolved, and therefore resolveditato 02 for financial support and the Helsinki Institute of
sideband cooling technique cannot be applied. It is worttPhysics for the hospitality.

e system and the reservoir. For certain values of the system
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