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Stochastic Analysis of LMS Algorithm
with Delayed Block Coefficient Adaptation

Mohd. Tasleem Khan and Oscar Gustafsson, Senior Member, IEEE

Abstract—In high sample-rate applications of the least-mean-
square (LMS) adaptive filtering algorithm, pipelining or/and
block processing is required. As opposed to earlier work, pipelin-
ing and block processing are jointly considered to obtain what
we refer to as the delayed block LMS (DBLMS) algorithm.
Different stochastic analyses for the steady and transient states to
estimate the step-size bound, adaptation accuracy, and adaptation
speed based on the recursive relation of delayed block excess
mean square error (MSE) are presented. The effect of different
amounts of pipelining delays and block sizes on the adaptation
accuracy and speed of the adaptive filter with different filter
lengths and speed-ups are studied. It is concluded that for
a constant speed-up, a large delay and small block size lead
to a slower convergence rate compared to a small delay and
large block size with almost the same steady-state MSE. Monte
Carlo simulations indicate a good agreement with the proposed
estimates for Gaussian inputs.

Index Terms—Convergence, Least-mean-square (LMS), Step-
size, Stability, Mean-square error (MSE), DBLMS

I. INTRODUCTION

ADAPTIVE filtering algorithms are widely used in many
signal processing applications such as system identifica-

tion, noise/echo cancellation, channel equalization and linear
prediction [1]–[5]. For instance, in system identification, the
transfer function of an unknown plant needs to be determined
in order to apply the necessary control signals. In such
scenarios, adaptive filters (ADFs) can be employed to model
the unknown plant. To develop the ADFs, least-mean-square
(LMS) algorithm is probably the most popular due to its
simplicity, robustness, and ease of implementation [6], [7].
Nonetheless, it offers satisfactory convergence performance for
a given choice of the step-size. Foreseeing anticipated demands
of data rate in next decade technologies [8], [9], it is essential
to develop high sample rate LMS ADFs using advanced signal
processing algorithms [4], [5], [10].

The sample rate of LMS ADFs is fundamentally limited by
the iteration period bound caused by the coefficient adaptation
loop. Increasing the sample rate can be achieved by modifying
the LMS algorithm, typically in one of two different ways.
The delayed LMS (DLMS) ADF [11]–[14] introduces a set
of D additional delays in the adaptation loop, to decrease
the iteration period, and therefore increase the sample rate
by D+1. The block LMS (BLMS) ADF [15]–[18] processes
a block of L samples with an iteration period similar to the
LMS algorithm. Hence, the sample rate is expected to be L
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Fig. 1. Relations between LMS, DLMS, BLMS, and the considered DBLMS
algorithm via pipelining and/or block processing.

times higher. However, the increase in sample rates for these
algorithms comes at the expense of slower convergence as the
step-size bound is decreased. Note that these are first-order
estimations of the sample rate, there are additional factors
affecting it, but implementation results indicate that they are
relevant [19].

Efforts have been made to determine the step-size bounds
of DLMS [11], [13], [20]–[22] and BLMS [16], [17], [23].
For DLMS, Kabal [20] estimated the step-size bound using
the behaviour of the average coefficient error vector. Long et
al. provided an improved step-size bound using some simpli-
fications [11], [13]. In [21], the step-size bound was obtained
by transforming it into a problem of finding the eigenvalues of
a matrix. However, the matrix size grows quadratically with
D. Later, in [22], an implicit step-size bound was derived in
terms of a complex algebraic expression.

In contrast to DLMS, the convergence performance of
BLMS is similar to LMS, as long as the BLMS step size
is L times the LMS step size [16]. Feuer [17] argued that
there were no guaranteed convergences of block mean square
error (MSE) using the step size from [16]. Therefore, an easy-
to-calculate step-size bound was derived, more restrictive than
[16]. Using the framework from [17], Lee et al. [23] presented
a not-so-tight bound for frequency-domain BLMS.

From a high-speed implementation perspective, it is natu-
rally of interest to consider both DLMS and BLMS. However,
it is also possible to combine those two approaches into a
delayed block LMS (DBLMS) algorithm. This is the focus
of the current work. The relations between the different
algorithms are illustrated in Fig. 1. The DBLMS algorithm
has a speedup of S = (D + 1)L. It is clear that the DBLMS
ADF reduces to LMS ADF for D = 0 and L = 1; DLMS
ADF for L = 1; and BLMS ADF for D = 0.

In this paper, we jointly consider delayed block adaptive
filtering procedures with the Wiener filtering problem based on
the generalization of the gradient searching LMS algorithm of
Widrow and Hoff [24]–[26]. In the present work, we show that
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Fig. 2. Top-level diagram of (a) LMS algorithm with µ0 as the step-size. (b) DLMS algorithm with D as the number of delays and µD as the step-size. (c)
BLMS algorithm with L as the block size and µ̂L = µL/L as the effective step-size. • is the inner product operator, SIPO stands for serial-in parallel-out,
T indicates a sample delay, thick and thin lines represent vector and scalar quantities, respectively.

by introducing block into the DLMS algorithm (or delay into
the BLMS algorithm), it is possible to trade the convergence
properties of DLMS and BLMS together with a suitable com-
bination of delay and block sizes, while ensuring algorithm
stability. The important results here are design formulas for
DBLMS ADFs. Cautiously, the designer has to consider the
maximum usable delay and block size as it is limited by step
size in a known way. The groundwork laid here is expected to
be useful to develop efficient delayed and block procedures for
other algorithms commonly found in estimation and detection
theory. The key contributions of this paper are analytical first-
order approximations for the following quantities expressed in
D and L, derived for DBLMS ADFs based on second-order
statistics:

• Bound on the adaptation step size, (61), and the optimum
adaptation step size in terms of MSE, (65).

• Excess MSE error, (59), misadjustment, (63), and misad-
justment at optimum adaptation step size, (66).

• Adaptation time constant, (77), and slope, (78).

Simulations are used to confirm the validity of the derived
approximations.

The rest of the paper is organized as follows. In Section
II, the LMS algorithm followed by its delayed and block
adaptation variants are reviewed. In the next Section, the
delayed block LMS adaptive filtering procedure and algorithm
are introduced. In Section IV, the mathematical analysis to
obtain the measures for convergence properties of the DBLMS
algorithm is performed. In Section V, the performance of the
DBLMS algorithm with numerical simulations and analytical
results is presented. Finally, conclusions are provided in Sec-
tion VI.

II. LMS AND RELATED ALGORITHMS

The adaptive filtering discussed here is of LMS type as
presented by Widrow et al. [26]. For comparison purposes of
different related algorithms, we consider the system identifi-
cation problem to model the unknown plant with coefficients
wo. To begin with, we first explore the LMS algorithm and
then its existing high-speed variants.

A. The LMS Algorithm

At time instant n, the actual output yn of an N -tap LMS
ADF can be expressed as inner product form:

yn = wT
n · xn =

N−1∑
i=0

wn(i)xn−i, (1)

where
xn = [xn, xn−1, . . . xn−N+1]

T

is the input vector and

wn = [wn(0), wn(1), . . . , wn(N − 1)]
T

is the filter coefficient vector. At time instant n, the LMS
algorithm as shown in Fig. 2(a) adjusts the coefficients,
according to

wn+1 = wn + µ0enxn, (2)

where µ0 is the step-size of the LMS algorithm, and en is the
error, which is calculated as the difference between unknown
plant output dn with an i.i.d., additive noise zn and the actual
output yn, i.e., en = dn+zn−yn. The noise zn is zero-mean,
with variance σ2

z . It is independent of any other signal in the
system.

For guaranteed convergence and algorithm stability, it is
important to select an appropriate step size µ0. As per [27], it
can be selected within the bound µ0,crit as

0 < µ0 < µ0,crit s.t. µ0,crit =
2

(N + 2)σ2
, (3)

where σ2 is the input signal power. This bound can be obtained
when the assumptions of independence theory [26], [28]–[30]
are used. In this framework, we assume xn is independent,
zero mean, and jointly Gaussian. Thus, applying expectation
on both sides of (2), we have

E[wn+1] = (I − µ0R0)E[wn] + µ0p0, (4)

where R0 = E
[
xnx

T
n

]
and p0 = E [xndn]. The convergence

of the mean is guaranteed if 0 < µ0 < 2/tr [R0], where tr[·]
is the trace operator. Using the MSE of en, i.e., ξL = E

[
e2n
]

as a performance measure leads to the best results. It follows
then that the optimal set of filter coefficients w∗ = R−1

0 p0

which is same as the Wiener filter.
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B. The DLMS Algorithm

Unlike the LMS algorithm, the inputs xn and the error en
in the DLMS algorithm become available after D delays, as
shown in Fig. 2(b). It follows that the delayed error en−D and
inputs xn−D are used to update the coefficients. The DLMS
algorithm adjusts the coefficients as

wn+1 = wn + µDen−Dxn−D, (5)

where µD is the step-size of DLMS algorithm, and en−D

is the error obtained by the difference of unknown plant
delayed output dn−D (with delayed noise zn−D) and the actual
delayed output yn−D i.e., en−D = dn−D+zn−D−yn−D. The
choice of step-size µD is critical as it determines the filter
convergence and stability. The step-size µD can be selected
within bound under first order approximation [13], [31] as

0 < µD < µD,crit s.t. µD,crit =
2

(N + 2 + 2D)σ2
. (6)

Similar to LMS, the independence assumptions also hold
for DLMS. Thus, applying expectation on both sides of (5),
we have

E[wn+1] = E[wn]− µDRD E[wn−D] + µDpD, (7)

where RD = E[xn−DxT
n−D] and pD = E[xn−Ddn−D].

Unlike LMS, the convergence of the mean of DLMS also
depends on the covariance of filter coefficients separated by D
delays. By using delayed MSE of en−D, i.e., ξD = E

[
e2n−D

]
,

it follows that the optimal set of filter coefficients for the
DLMS algorithm is given as w∗

D = R−1
D pD.

C. The BLMS Algorithm

Unlike the LMS and DLMS algorithms, BLMS processes
L inputs and produces L outputs in one iteration by fixing
the coefficients for L samples in block iteration k, i.e., wk =
wn such that k = nL. A typical configuration of the BLMS
algorithm is shown in Fig. 2(c). At block iteration, k, (1) can
be expressed as a block of inner products:

yk = Xk ·wk, (8)

where

yk =
[
y(k−1)L+1, y(k−1)L+2, . . . , ykL

]T
and

Xk =
[
x(k−1)L+1,x(k−1)L+2, . . . ,xkL

]T
.

The error block ek is computed as the difference between
unknown plant block output

dk =
[
d(k−1)L+1, d(k−1)L+2, . . . , dkL

]T
with noise

zk =
[
z(k−1)L+1, z(k−1)L+2, . . . , zkL

]T
and actual block output yk as

ek = dk+zk−yk =
[
e(k−1)L+1, e(k−1)L+2, . . . , ekL

]T
. (9)

Using ek, the coefficients wk are updated as

wk+1 = wk +
µL

L
XT

k ek, (10)
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Fig. 3. Top-level diagram of DBLMS algorithm with µ̂ = µ/L is the effective
step-size.

where µL is the step-size of the BLMS algorithm whose choice
is critical to determine its convergence and stability [16]. In
[17], [23], a bound for the step-size µL is given as

0 < µL < µL,crit s.t. µL,crit =
2L

(N + L+ 1)σ2
. (11)

Again, the previous independence assumptions hold for the
BLMS algorithm. Thus, applying expectation on both sides of
(10), we get

E[wk+1] = (I − µLRL)E[wk] + µLpL, (12)

where RL = E
[
XT

kXk

]
and pL = E

[
XT

k dk

]
. Likewise, the

convergence of the mean is guaranteed if 0 < µL < 1/tr [RL].
By using block MSE of ek, i.e., ξB = 1

L E[eTk ek], it follows
then that the optimal set of filter coefficients for BLMS algo-
rithm can be given as w∗

L = R−1
L pL. For stationary inputs,

RL and pL are simply L times of R0 and p0 respectively.
Thus, they must have similar properties as those of R0 and
p0 which are listed below:

1) RL and R0 are symmetric (Hermitian) and positive
definite,

2) RL and R0 posses N linearly independent eigenvectors
and can be reduced to a diagonal form by a similarity
transformation [32],

3) Eigenvalues of RL are real, positive and ×L of R0.

III. THE DBLMS ALGORITHM

The top-level diagram for the DBLMS algorithm is shown
in Fig. 3. The symbols used in the analysis of DBLMS are
the same as the BLMS algorithm except that subscript L is
dropped for the sake of brevity and simplicity. For clarity, we
list the symbols used for the analysis of the DBLMS algorithm
in Table I.

A. Optimum Filter Coefficients

The original Wiener filter can also be extended to the
delayed block input case, as shown in Fig. 3. Notably, the
coefficients in the DBLMS algorithm are updated with a
delayed block of inputs and errors. To determine the optimum
filter coefficients, we define the error ek−D as

ek−D = dk−D + zk−D − yk−D (13)

=
[
e(k−D−1)L+1, e(k−D−1)L+2, . . . , e(k−D)L

]T
.
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TABLE I
SYMBOLS USED IN THE ANALYSIS OF THE DBLMS ALGORITHM.

Quantity Symbol
Filter taps N
Block size L
Adaptation loop delays D
Speedup S = (D + 1)L
Input matrix Xk

Error vector ek
Step-size µ
Effective step-size µ̂
Effective critical step-size (or bound) µ̂crit

Effective optimum step-size µ̂opt

Scaled step-size ˆ̂µ
Delayed block mean squared error ξ
Delayed block excess MSE ξex
Delayed block minimum MSE ξmin

Gradient ∇k

Unbiased gradient ∇̃k

Eigenvalues λi

Diagonal vector Λ
Root mean square of λi λrms

Average of λi σ2

Misadjustment M = ξex/ξmin

Time constant τ
Mapping matrix S ˆ̂µL,D
Slope factor α ˆ̂µL,D
Kurtosis ν

The desired delayed block input

dk−D =
[
d(k−D−1)L+1, d(k−D−1)L+2, . . . , d(k−D)L

]T
is obtained by delaying the desired block input dk through D
delays. Similarly, the noise zk−D can be obtained by delaying
the desired block noise zk through D delays. The delayed
output block from (8) can be written as

yk−D = Xk−D ·wk−D. (14)

For clarity, we show the computation of the inner product
(14) by dropping the time index from wk−D for N = 3,
D = 1, and L = 2:

X−1

{
X0

{
X1

{



x−1 0 0
x0 x−1 0
x1 x0 x−1

x2 x1 x0

x3 x2 x1

x4 x3 x2

·· ·· ··


·

w1

w2

w3


︸ ︷︷ ︸

W

=



y−1

y0
y1
y2
y3
y4
··



}
y−1}
y0}
y1

.

(15)
The block of inputs and outputs is delayed by the unit

amount compared to the zero delayed block method (8). Using
(13), we estimate the delayed block MSE (DBMSE) ξ as a cost
function that the DBLMS algorithm minimizes as

ξ =
1

L
E
[
eTk−Dek−D

]
= E

 1

L

(k−D)L∑
n=(k−D−1)L+1

e2n

 . (16)

From (16), it is clear that the DBMSE is the expected value of
an estimate of squared error over one delayed block. Further, it
combines the information corresponding to delays and blocks

into a single value in the least squares sense [33]. Using (13),
we can further express (16) as

Lξ = σ2
z + E

[
dT
k−Ddk−D

]
− E

[
dT
k−DXk−D

]
w

−wT E
[
dT
k−DXk−D

]
+wT E

[
XT

k−DXk−D

]
w. (17)

The terms containing zk−D were suppressed as their ex-
pected values are equal to zero in (17), except with a second-
order term of zk−D which corresponds to variance σ2

z =
E
[
zTk−Dzk−D

]
. We define the correlation matrices for the

DBLMS algorithm as

R = E
[
XT

k−DXk−D

]
and p = E

[
XT

k−Ddk−D

]
. (18)

Using these definitions and invoking the stationarity, we can
re-write (17) as

ξ =
1

L

(
E
[
dT
k−Ddk−D

]
− 2pTw +wTRw + σ2

z

)
. (19)

Defining
σ2
d = E

[
dT
k−Ddk−D

]
(20)

where σ2
d is the variance of the delayed block desired signal.

It is clear from (19) that the DBMSE is the same as the
delayed MSE of DLMS for the stationary inputs, i.e., ξ = ξD,
it follows then that their optimal set of filter coefficients are
also equal, i.e., w∗ = w∗

D. One can find the expression of
minimum DBMSE by extending the principle of orthogonality
which says that coefficient vector w∗ minimizes the DBMSE
for which ek−D is orthogonal to Xk−D. Hence, the minimum
DBMSE expression can be given as

ξmin =
1

L
E
[
dT
k−Dek−D

]
=

1

L

(
σ2
d − pTw∗) . (21)

In order to calculate ξmin, it is required to obtain w∗. This
will be discussed later in a subsection.

B. Coefficient Update Equation

Analogous to LMS, DLMS, and BLMS adaptive filtering,
a delayed block algorithm can be obtained by solving for the
Wiener coefficient vector in real time using gradient search
method [24], [25]. As stated, in the DLMS algorithm, it
is desired that the coefficients are updated by the delayed
inputs and errors. In contrast, the BLMS algorithm keeps the
coefficients fixed in every new block of data. Thus, DBLMS
in gradient form can be expressed as

wk+1 = wk − 1

2
µ∇k, (22)

where µ is the step size of DBLMS algorithm and ∇k is the
gradient of ξ at block iteration k. Formally, the gradient is
expressed with respect to the coefficients:

∇k ≜
∂ξ

∂w
=

1

L

∂ E[eTk−Dek−D]

∂w

∣∣∣∣∣
w=wk

. (23)

An estimate, ∇̃k, of the gradient ∇k is

∇̃k =
1

L

∂
[
eTk−Dek−D

]
∂wk

= − 2

L
XT

k−Dek−D. (24)
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Using this unbiased gradient estimate in the coefficient adjust
algorithm (22), gives the DBLMS algorithm as

wk+1 = wk +
µ

L
XT

k−Dek−D. (25)

Note that the coefficient update term in (25) is an average
of L DLMS-like terms en−DXn−D generated by a block of
data. The choice of delay and block size is important, and (25)
reveals that the algorithm is valid for any D and L. However,
algorithm stability and convergence must be examined.

C. Development of DBMSE in Diagonal Form

To examine algorithm stability and convergence, it is re-
quired to develop the MSE expression of the DBLMS algo-
rithm in the diagonal form [32]. Recall (19) and (20), we
simplify the DBMSE as

ξ =
1

L
(σ2

d + σ2
z − 2pTw +wTRw). (26)

∇̃ in diagonal form using (24) with respect to w is

∇̃ =
1

L
(−2p+ 2Rw). (27)

Using (19), one can find an alternative and useful expression
to calculate the DBMSE as

ξ = ξmin +
1

L
E
[
(w −w∗)TR(w −w∗)

]
= ξmin +

1

L
E
[
vTRv

]
; v ≜ (w −w∗), (28)

where v is the coefficient error vector at block iteration k.
Since R is symmetric and positive definite, it can be

diagonalized using a similarity transformation [32], R =
QΛQ−1 = QΛQT , where Q is the orthonormal (QT =
Q−1) modal matrix of R, and Λ is the diagonal matrix of
eigenvalues λi (i = 0, 1, . . . , N − 1) of R. Thus, (28) can be
re-written as

ξ = ξmin +
1

L
E
[
vTQΛQ−1v

]
. (29)

Using linear transformation, a new variable ṽ is introduced as

ṽ ≜ Q−1v = QTv and v = Qṽ. (30)

Similarly, the delayed block input matrix is transformed to
X̃k−D = Q(Xk−D). Based on this new coordinate system,
(29) may be precisely written as

ξ = ξmin +
1

L
E
[
ṽTΛṽ

]
. (31)

According to (31), DBMSE at any iteration k depends on the
composite product E

[
ṽTΛṽ

]
/L over one delayed block.

D. Mean Coefficient Behaviour and Coefficient-Error Vector

For guaranteed convergence and algorithm stability, it is
important to analyze and select an appropriate µ for a given
choice of L and D. Similar to LMS, DLMS, and BLMS,
independence assumptions hold for DBLMS i.e., the elements
of input matrix Xk−D are uncorrelated in time, zero mean,
and jointly Gaussian. Thus, the mean coefficient behaviour of

the DBLMS ADF is determined by applying the expectation
on both sides of (25) as

E[wk+1] = E[wk]−
µ

L
RE[wk−D] +

µ

L
p. (32)

Like DLMS, the convergence of the mean of DBLMS also
depends on the covariance of the coefficients separated by past
D delays. From (32), we can find the steady-state coefficient
vector, if the DBLMS algorithm convergence is assumed.
Then, one can obtain the steady-state filter coefficients from
the condition lim

k→∞
E[wk] = E[wk−D] = w∗ as

w∗ = R−1p. (33)

As expected, w∗ converges to the mean of DBMSE in (19),
if ξ = ξmin. These estimates are usually not sufficient as it
only involves first-order moments. Further, no guarantee that
the mean of coefficients will converge within finite variance, as
indicated by the second term of (31). Therefore, it is necessary
to carry out the analysis with second-order statistics. As per
(28), it is useful to analyze the coefficients vector in terms of
their error vector as it could provide better estimates. Thus,
the coefficient update equation in terms of ṽk can be given as

ṽk+1 = ṽk − µ

L
X̃T

k−DX̃k−Dṽk−D +
µ

L
X̃T

k−Dzk−D

−µ

L
X̃T

k−DX̃k−Dw̃∗ +
µ

L
X̃T

k−Ddk−D. (34)

Defining effective step-size µ̂ = µ/L and eo,k−D =
dk−D − X̃k−Dw̃∗ in (34), we can simplify it as

ṽk+1 = ṽk−µ̂X̃T
k−DX̃k−Dṽk−D+µ̂X̃T

k−D(eo,k−D+zk−D).
(35)

The update of coefficient error vector depends on ṽk, ṽk−D,
eo,k−D, zk−D and Xk.

IV. CONVERGENCE OF THE DBLMS ALGORITHM

In this Section, the mathematical expressions for the con-
vergence of the DBLMS algorithm in the steady and transient
states are derived.

A. Steady-State Analysis

Defining the second term of (31) as the excess DBMSE,
i.e., ξk,ex at iteration k, we obtain

Lξk,ex = L(ξk − ξmin) = E
[
ṽT
k Λṽk

]
(36)

The definition of (36) can be generalized with respect to past
coefficient error vectors ṽk−r and ṽk−s as

Lξk,rs = E
[
ṽT
k−rΛṽk−s

]
. (37)

Thus, one can deduce ξk,ex as

ξk,ex = ξk,00. (38)

The following properties are used in the DBMSE analysis:

ξk−D−1,rs = ξk−1,(r−D)(s−D), (39a)
ξk−1,0D = ξk−1,D0, (39b)

ξk−1,(r+1)s = ξk−s−1,0(r−s+1). (39c)



6

By expanding the product terms in (36) using (35), taking
the expectation on the result, utilizing the relations in (38)
and (39b) with some algebraic manipulation (see Appendix
A), and defining kD = k −D − 1 for brevity, we have

Lξk,00 = Lξk−1,00 − 2µ̂E
[
ṽT
kD

Λ2ṽkD+D

]
+µ̂2 E

[
ṽT
kD

X̃T
kD

X̃kD
ΛX̃T

kD
X̃kD

ṽkD

]
+µ̂2 E

[
eTo,kD

X̃kD
ΛX̃T

kD
eo,kD

]
+µ̂2 E

[
zTkD

X̃kD
ΛX̃T

kD
zkD

]
, (40)

Equation (40) contains four non-trivial terms which will be
analyzed individually for the sake of clarity. The middle term
in (40), excluding ṽT

kD
and ṽkD

, can be written as

E
[
X̃T

kD
X̃kD

ΛX̃T
kD

X̃kD

]
= E

X̃T
kD

 L∑
j=1

N∑
i=1

λix̃
2
kDL+j+i

 X̃kD

 , (41)

Define the symmetric Gram matrix ỸkD
= X̃T

kD
X̃kD

. Each
element, ỸkD

(u, v), can be expressed as

ỸkD
(u, v) =


∑L

j=1
x̃2
kDL+j+u, u = v.∑L

j=1
x̃kDL+j+ux̃kDL+j+v, u ̸= v.

(42)

A single element of the composite matrix in (41) is written as

E

 L∑
j=1

N∑
i=1

λix̃
2
kDL+j+iỸkD

(u, v)

 . (43)

Using (42), we can re-write (43) as

E

δuv L∑
j=1

(
N∑
i=1

λix̃
2
kDL+j+i

) L∑
j=1

x̃2
kDL+j+u


= δuv

 N∑
i=1

λi

E

 L∑
j=1

x̃2
kDL+j+i

E

 L∑
j=1

x̃2
kDL+j+u


+(νu − 1)λu

E

 L∑
j=1

x̃2
kDL+j+u

2


= δuv

[
L

(
N∑
i=1

λ2
i

)
λu + L2(νu − 1)λ3

u

]
, (44)

where δuv is the Kronecker delta function and νu is kurtosis
defined by νu = E

[
x̃4
u

]
/
(
E
[
x̃2
u

])2
. To simplify the analysis,

all νu are considered to be the same, i.e., νu = ν. This is true
if x (so x̃) has a Gaussian distribution which results in ν = 3.

Re-expressing (44) in the original matrix form as

LNλ2
rmsΛ+ L2(ν − 1)Λ3, (45)

where λ2
rms ≜

∑N
i=1 λ

2
i /N , we obtain:

E
[
ṽT
kD

X̃T
kD

X̃kD
ΛX̃T

kD
X̃kD

ṽkD

]
= E

[
ṽT
kD

(LNλ2
rmsΛ+ (ν − 1)L2Λ3 )ṽkD

]
= NL2λ2

rmsξkD,00 + L2(ν − 1)E
[
ṽT
kD

Λ3ṽkD

]
. (46)

The second term in (46) can be approximated as

L2(ν − 1)E
[
ṽT
kD

Λ3ṽkD

]
≈ L2(ν − 1)λ2

rms E
[
ṽT
kD

ΛṽkD

]
= L3(ν − 1)λ2

rmsξkD,00. (47)

Note that (47) holds under the following assumption:

E
[
ṽT
kD

Λ3ṽkD

] ∼= E
[
Λ2
]
E
[
ṽT
kD

ΛṽkD

]
, (48)

which is valid under first-order approximation [31].
The middle term in (40) is then simplified as

ρ(N + (ν − 1)L)L2σ4ξkD,00 = ρPL2σ4ξkD,00, (49)

where P = N + (ν − 1)L, ρ = λ2
rms/σ

4 with σ2 =∑N
i=1 λi/N .
For the second term in (40), an approximation based on a

similar assumption as given in (48), gives:

E
[
ṽT
kD

Λ2ṽk−1

]
≈ σ2LE

[
ṽT
kD

Λṽk−1

]
= σ2LE

[
ṽT
k−1ΛṽkD

]
= σ2L2ξk−1,0D. (50)

The second last term in (40) can be reduced to

E
[
eTo,kD

X̃kD
ΛX̃T

kD
eo,kD

]
= E

 N∑
i=1

λi

 L∑
j=1

x̃2
kDL+j+i

E
[
eTo,kD

eo,kD

]
= LNλ2

rmsLξmin = ρL2Nσ4ξmin. (51)

Similarly, the last term in (40) can be simplified to

E
[
zTkD

X̃kD
ΛX̃T

kD
zkD

]
= ρL2Nσ4σ2

z . (52)

Finally, substituting (49)−(50) into (40), and after some
manipulation, we arrive at

ξk,00 ≈ ξk−1,00 − 2ˆ̂µLξk−1,0D + ˆ̂µ
2
ρPLξkD,00

+ρLN ˆ̂µ
2
ξmin + ρLN ˆ̂µ

2
σ2
z , (53)

where ˆ̂µ = µ̂σ2.
It is clear from (53) that ξk,00 can be determined, if the

estimate of ξk−1,0D is known, as ξmin can be computed
from (21). To estimate ξk−1,0D, we first need to determine
any ξk−1,0s, then later we replace s by D without loss of
generality. Using (35) and (37), we can obtain ξk−1,0s

Lξk−1,0s = E
[
ṽT
k−2Λṽk−s−1

]
−E

[
ˆ̂µṽT

k−D−2X̃k−D−2X̃
T
k−D−2Λṽk−s−1

]
≈ Lξk−2,0(s−1) − µ̂σ2LE

[
ṽT
k−D−2Λṽk−s−1

]
.(54)

Using (39b) and after some simplification of (54), we obtain

ξk−1,0s = ξk−2,0(s−1) − ˆ̂µLξk−s−1,0(D−s+1). (55)

For a given delay D, it is noticed that (55) comprises a set
of D difference equations for s ∈ {1, 2, ..., D}. Using (55),
a useful relation to determine ξk−1,0D is obtained in (B.6),
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see Appendix B. Substituting (B.6) into (53) and after some
simplification, we get

ρLN ˆ̂µ
2
(ξmin + σ2

z) =

(
2ˆ̂µL− ρP

L

(
ˆ̂µL
)2)

ξkD,00

−2
(
ˆ̂µL
)2

DξkD,01 + ξk,00

−ξk−1,00. (56)

To find the excess DBMSE in the steady state, we use the
following approximation:

ξk,00 ≈ ξk−1,00 ≈ ξkD,00 ≈ ξkD,01 ≈ ξ∞,00. (57)

Using (57), we can simplify (56) by setting P = ρ(N + 2L)
(∵ ν = 3, for Gaussian inputs) as

2ξ∞,00 − ˆ̂µL

(
ρ(N + 2L)

L
+ 2D

)
ξ∞,00 = ρN ˆ̂µ(ξmin + σ2

z).

(58)
Using (38) and (58), we estimate ξ∞,ex in the steady-state as

ξ∞,ex =
ρN ˆ̂µ(ξmin + σ2

z)

2− ˆ̂µ(ρ(N + 2L) + 2DL)
. (59)

From (59), it can observed that ξ∞,ex increases as either D
or L or both increases for a fixed step-size. In contrast, if ˆ̂µ
increases from zero, the denominator of (59) starts decreasing
until it becomes zero for a fixed delay D and block size L.
In consequence, ξ∞,ex starts increasing, and could result in
algorithm divergence i.e., ξ∞,ex > 1. Thus, an expression for
the stability bound and algorithm convergence can be found
by setting the denominator of (59) to 0. There exists only one
real root after solving for ˆ̂µ as

ˆ̂µ <
2

L(ρ(N + 2L)/L+ 2D)
=

2

ρN + 2(D + ρ)L
. (60)

Note this is the theoretical limit on the bound for stability
and algorithm convergence under the noiseless case. How-
ever, due to the involvement of the noise component in the
numerator of (59), its effect on the algorithm convergence
slightly reduces the bound. This is explained through the set
of simulations in Section V. Without loss of generality, we
assume σ2

z = 0. Using ˆ̂µ = µ̂σ2, (60) in terms of effective
critical step-size µ̂crit can be expressed as

µ̂ < µ̂crit s.t. µ̂crit =
2

(ρN + 2(D + ρ)L)σ2
. (61)

By keeping L = 1 and D = 0 in (61) reduces to µ0,crit

given in (3), assuming ρ = 1. Further, µ̂crit coincides to
µ̂D,crit given in (6) for L = 1; while it is slightly smaller
(N + L+ 1)/(N + 2L), than µ̂L,crit given in (11) for D = 0.
The steady-state excess DBMSE from (59) is then approxi-
mated as

ξ∞,ex =
ρN ˆ̂µξmin

2− (ρN + 2(D + ρ)L)ˆ̂µ
. (62)

The adaptation accuracy indicates how much coefficient
noise is in the steady state, and is quantified by the misad-
justment (M ). It is defined as the ratio of excess error, ξ∞,ex

to the minimum MSE, ξmin:

M ≜
ξ∞,ex

ξmin
=

ρN ˆ̂µ

2− (ρN + 2(D + ρ)L)ˆ̂µ
. (63)

For given M , N , D, and L, the desired µ̂ can be found as

µ̂ =
2

(K + 2DL)σ2
, K = ρ

(
N

(
1 +

1

M

)
+ 2L

)
. (64)

Finally, the optimum effective step size µ̂opt can be obtained
by differentiating the right side of (56) with respect to (ˆ̂µL),
setting the result to 0, and using ˆ̂µ = µ̂σ2 as

µ̂opt =
1

(ρN + 2(D + ρ)L)σ2
. (65)

It is clear from (65) that µ̂opt is half of µ̂crit. Therefore,
the optimum misadjustment Mopt can be obtained by setting
µ̂ = µ̂opt in (63) as

Mopt =
ρN

(ρN + 2(D + ρ)L)
. (66)

Clearly, Mopt can be estimated for a given N,D, and L. For
a special case [17], when all eigen values are equal λi = λ
(i = 1, 2, . . . , N ) implies ρ = 1, so (65) and (66) become

µ̂opt =
1

(N + 2(D + 1)L)σ2
=

1

(N + 2S)σ2
(67)

and
Mopt =

N

(N + 2(D + 1)L)
=

N

N + 2S
, (68)

respectively. It is clear from (67) and (68) that µ̂opt and Mopt

become fixed for a given choice of N and S (N , D and L).

B. Transient-State Analysis

Consider the DBMSE as defined in (31) during the learning
process. As the coefficient error vector adapts toward the op-
timal coefficients w∗, the error vector ek−D is non-stationary.
To model the DBMSE in the transient state, we again compute
E
[
ṽT
k Λṽk

]
, but it requires a different interpretation than ex-

cess DBMSE for steady-state (in Appendix A). The following
DBMSE expression is obtained for the transient state, see
Appendix C, as

ξk,00 = ξk−1,00 − 2ˆ̂µLξk−1,0D. (69)

Like (53), the DBMSE expression in (69) depends on
ξk−1,0D. We again follow a set of D difference equations
given by (55) to derive a useful relation between ξk−1,0D and
ξk−1,00 in the transient state, see Appendix D. The shorthand
notation for (D.5) can be written as:

ξkD,0 = S ˆ̂µL,D · ξkD
, (70)

where S ˆ̂µL,D is the mapping matrix of size D ×D, ξkD,0 =
[ξkD,00, 0, . . . , 0] and ξkD

= [ξkD,01, ξkD,02, . . . , ξkD,0D].
S ˆ̂µL,D is independent of time instant, and performs mapping
from ξkD

to ξkD,0. In scalar form, the relation between ξkD,0D

and ξkD,00 can be obtained as

ξkD,00 = α ˆ̂µL,DξkD,0D, (71)

where α ˆ̂µL,D is a slope factor that indicates the change in the
transient-state DBMSE as a result of different D and L values.

Using Cramer’s rule, α ˆ̂µL,D is given by

α ˆ̂µL,D =
|S− ˆ̂µL,(D−1)|

|S ˆ̂µL,D|
, (72)



8

0 9 19 29
Delay, D

0.6

0.7

0.8

0.9

1

Sl
op

e
fa

ct
or

,,
^̂ 7L

;D

L = 1
L = 4
L = 9
L = 16

1 10 20 30
Block size, L

D = 0
D = 3
D = 8
D = 15

Fig. 4. Behaviour of α ˆ̂µL,D for N = 32 as a function of D for L ∈
{1, 4, 9, 16} (left), and L for D ∈ {0, 3, 8, 15} (right).

where | · | denotes the determinant. After manipulating S ˆ̂µL,D
for both odd and even D, as illustrated in Appendix D, we
obtain the recursive expression for

∣∣∣S ˆ̂µL,D

∣∣∣ as∣∣∣S ˆ̂µL,D

∣∣∣ =∑D

m=0
(−1)⌊m/2⌋

(⌊D+m
2

⌋
m

)(
ˆ̂µL
)m

, (73)

where ⌊·⌋ denotes the floor function, and
(·
·
)

denotes the
binomial coefficients.

∣∣∣S− ˆ̂µL,(D−1)

∣∣∣ can be obtained from (73)

by replacing ˆ̂µL with − ˆ̂µL and D with D − 1.
The behaviours of α ˆ̂µL,D for N = 32 and µ̂ = µ̂opt with

D for some L ∈ {1, 4, 9, 16}, and with L for some D ∈
{0, 3, 8, 15} are shown in left and right of Fig. 4, respectively.
From the curves, it is clear that α ˆ̂µL,D decreases for both
increasing D and L values. The rate of decrease in α ˆ̂µL,D for
a given L with different D values is slower than the rate of
decrease in α ˆ̂µL,D for a given D with different L values. It is
interesting to note that α ˆ̂µL,D saturates slower for a larger D
with a given L, while it saturates faster for a smaller L with
a given D. Using (71), we can re-write (69) as

ξk,00 = ξk−1,00 − 2ˆ̂µLα ˆ̂µL,Dξk−1,00

=
(
1− 2ˆ̂µLα ˆ̂µL,D

)k
ξ0,00. (74)

Clearly, DBMSE in the transient state decays geometrically
with a ratio

(
1− 2ˆ̂µLα ˆ̂µL,D

)
. Like ξk,00 in (74), the actual ξk

also decays geometrically, as per (31), when ˆ̂µ is appropriately
chosen for DBLMS convergence. Observably, it can be seen
that lim

k→∞
ξk = ξmin which then follows

lim
k→∞

(
1− 2ˆ̂µLα ˆ̂µL,D

)k
= 0. (75)

To follow the decay, we define a time constant of DBMSE
convergence for an exponential envelope to fit on the above
geometric sequence. Its value should be 2 times that of the time
constant needed for the coefficients converging toward their
optimal values w∗ [34]. This is because the excess DBMSE
in (36) involves two coefficient vectors due to second-order
statistics. Thus, we can equate the geometric ratio to the
exponential envelope:

(
1− 2ˆ̂µLα ˆ̂µL,D

)
= e−

1
2τ = 1− 1

2τ
+

1

2!(2τ)2
· · · . (76)

For the case of a slow adaptation, which is of most general
interest, τ is usually large, so that (76) can be approximated
by the first two terms of the Taylor series expansion which
results in

τ =
1

4ˆ̂µLα ˆ̂µL,D

with τopt =
N + 2S

4α ˆ̂µoptL,D

, (77)

where τopt is the time constant at ˆ̂µ = ˆ̂µopt = µ̂optσ
2.

It can be noted that τ is of the same form as that of the
non-pipelined non-block method (D = 0, L = 1) of steepest
descent [34]. Furthermore, it only depends on the behaviour
of α ˆ̂µL,D for a given ˆ̂µ.

The adaptation speed of the DBLMS ADF can be deter-
mined from the transient decay (or slope) of the MSE curve.
According to (76), the exponential envelope decay involving
τ decides the adaptation speed. Thus, the slope in dB/sample
can be defined as

Slope = −10 log10(e)

2τ
with Slopeopt ≈ −8.68

α ˆ̂µoptL,D

N + 2S
,

(78)
where Slopeopt is the slope approximation using τopt.

V. RESULTS AND DISCUSSION

This section presents the application of ADF to system
identification problem to corroborate the proposed model and
illustrate the properties of the DBLMS algorithm. Validations
of analytical step-size bound µ̂crit (61), adaptation accuracy
in terms of misadjustment, Mopt (68), and adaptation speed
using (77) are included through extensive simulations. The
simulations are carried out with white Gaussian data which
keeps sufficient information for the estimated results and
provides reliable design guidelines [1].

Note that the initial coefficient vector is zero in all cases.
The Monte Carlo simulations are performed by averaging 500
ensemble trials. For the considered examples, the coefficients
wo of unknown plant are normalized to satisfy woTwo = 1.
The order of the unknown plant and the taps of DBLMS ADF
are considered to be the same size. In all the simulations, white
Gaussian input Xk consisting of independent samples with
zero mean and unit variance is used. While the desired input
dn is obtained by contaminating the output of the unknown
plant with white Gaussian noise zn of strength -60 dB.

A. Stability Analysis

The analytical prediction and simulation results to validate
the stability bound given by (61) are shown in Fig. 5(a)–
(d). The simulation results are obtained by incrementing
the step size in 0.0265µ̂crit divisions, while simultaneously
checking the magnitude of any steady-state MSE point ≥ 1,
for algorithm divergence. Precisely, at every incremental step,
we check if any sample of steady-state MSE crosses the unity.
This acts as a starting point to find out the critical stability. Two
different scenarios corresponding to small taps, e.g., N = 4,
and large taps, e.g., N = 32 with different delays and block
sizes are considered. This is to demonstrate that our analytical
results apply to any tap size, delay, and block size.
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The theoretical bound as given in (61), matches fairly well
the extensive simulations for both the taps and different delays
and block sizes. The analytical step-size bound for N = 4 is
slightly overestimated by the simulated bound for different
delays and block sizes with a noiseless case, as shown in
Fig. 5(a)–(b). However, the simulated bound slightly shifts
down with −60 dB Gaussian noise. This is because the
impact of increasing the step-size towards bound on excess
MSE given in (59) will be slightly favoured through a noise.
As a consequence, it causes a slight mismatch between the
simulated and analytical results, especially at lower delays
and block sizes. Similar arguments apply to simulated and
analytical results for N = 32, as shown in Fig. 5(c)-(d).

These studies have not been considered in the prior works
for DLMS and BLMS algorithms [13], [17], [22], [23]. Among
[13], [17], [22], [23], only [22] had described a partial strategy
for simulating the bound with random binary inputs. Similarly,
leaky-DLMS [14] simulated the bound under a noiseless
scenario for N = 32. They showed that the simulated stability
bound lies always below the analytical stability bound. From
this observation, it is believed that the considered strategy for
the simulated bound is well explored and accurate enough to
validate the analytical bound given in (61).

Furthermore, one can observe the mismatches between the
analytical and simulated stability bound results, the reasons are
described as follows: (1) the approximations used in (47), (48),
(50), (54) and (57); and (2) the independent assumption [14],
[28]. In addition, some approximations are considered such as
equal eigenvalues like the one given in (67) and (68). Even
so, the simulation results presented in Fig. 5 illustrate that the
stability bound as given in (61) is a valid approximation.

B. Adaptation Accuracy

The analytical misadjustment Mopt as derived in (68) is
also verified through simulations. We consider two different
scenarios which are more practical, namely, the one with
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Fig. 6. Convergence curves of DBLMS ADF for S = N with N = 32
and (D,L) ∈ {(0, 32), (1, 16), (3, 8), (7, 4), (15, 2), (31, 1)}, where the
analytical predictions given in (67) and (68) are indicated by a solid line;
simulations output are indicated by a dashed line; theoretical minimum
MSE ξmin given in (21) are indicated by a dash-dotted line; the point of
convergence is indicated by ∗ with coordinates indicated by dotted lines.

speedup is the same as the number of taps, i.e., S = N ; and
the other with speedup is less than the number of taps, i.e.,
S < N . For S > N , it violates the assumption (48), especially
with large D values, thereby making the proposed model less
accurate [31].

To begin with, we first consider S = N with a sys-
tem identification example to discuss the proposed model,
and we later discuss S < N . The possible D and L
values for a DBLMS ADF with N = 32 and S =
32 can be selected from an ordered pair (D,L) ∈
{(0, 32), (1, 16), (3, 8), (7, 4), (15, 2), (31, 1)}. Both the sim-
ulated and analytical convergence curves are shown in Fig. 6.
In all the cases, the step size µ̂opt given in (67) is used. The
analytical ξmin corresponding to the Wiener solution given in
(21) is estimated. It can be observed that ξmin shown in Fig. 6
reduces slightly for higher D and lower L values, for instance,
ξmin = −60.007 dB for D = 0, L = 32 and ξmin = −60.090
dB for D = 31, L = 1. This slight reduction is due to
the increased cross-correlation between Xk−D and dk−D for
lower L and higher D values, in accordance with (21). The
analytical ξ∞,ex is then estimated by the analytical ξmin using
the misadjustment Mopt given in (68). It is interesting to note
that ξ∞,ex follows the same trend as that of ξmin since Mopt

is constant irrespective of D and L values. Moreover, these
correspond to approximately the same steady-state MSE.

For evaluation, the estima and simulated Mopt given in
(68) for different possible D and L values are listed in
Table II. To determine the simulated Mopt, only simulated
ξ∞,ex is to be estimated, as ξmin is known using (21). By
averaging the steady-state MSE samples, the simulated ξ∞,ex
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TABLE II
ESTIMATED AND SIMULATED OPTIMAL MISADJUSTMENT, Mopt , (68)

AND Slopeopt (78) WITH S = N AND S < N .

Mopt Slopeopt
†

N S,D,L Est. (68) ∗Simulated Est. (78) ∗∗Simulated
32 32, 0, 32 0.333 0.255 -0.091 -0.078

32, 1, 16 0.333 0.294 -0.078 -0.076
32, 3, 8 0.333 0.318 -0.071 -0.075
32, 7, 4 0.333 0.334 -0.068 -0.073
32, 15, 2 0.333 0.344 -0.066 -0.072
32, 31, 1 0.333 0.349 -0.065 -0.071

16 12, 0, 12 0.400 0.265 -0.217 -0.173
12, 1, 6 0.400 0.340 -0.189 -0.162
12, 2, 4 0.400 0.364 -0.179 -0.156
12, 3, 3 0.400 0.367 -0.174 -0.154
12, 5, 2 0.400 0.381 -0.169 -0.152
12, 11, 1 0.400 0.389 -0.165 -0.149

† : Unit of slope is dB/sample, ∗: Calculated by (63) with ξ∞,ex is
determined by averaging steady-state samples, and ξmin is determined by
(21), ∗∗: Calculated by two points (a1, b1) and (a2, b2) in the linear region
of MSE curve using the relation (b2 − b1)/(a2 − a1).

is estimated. It can be seen that the simulated Mopt increases
for lower L and higher D values and matches fairly well to the
proposed model. For the chosen D and L values, the analytical
point of convergence (i.e., the intersection of analytical expo-
nential decay with analytical excess error steady-state MSE)
approximates fairly to the simulated point of convergence. The
simulations show that a higher D and a lower L increases the
misadjustment, and vice-versa.

Likewise, S < N is considered, however, with N = 16 and
S = 12. The selection of different N is to reinforce that the
proposed model holds for various N and S. In this case, the
possible D and L values can be selected from an ordered pair
(D,L) ∈ {(0, 12), (1, 6), (2, 4), (3, 3), (5, 2), (11, 1)}. Both
the simulated and analytical MSE curves of the DBLMS ADF
are shown in Fig. 7.

The same arguments are also valid for S < N as is the
case of S = N . However, both analytical and simulated ξmin

and ξ∞,ex reduce a bit, thereby increasing both analytical and
simulated Mopt. This can also be understood from the fact that
when S < N , µ̂opt given in (67) is increased by 3N/(N +
2S) times as compared to S = N case. As a consequence,
the misadjustment is reduced, as per (63). The analytical and
simulated Mopt values so obtained are listed in Table II.

C. Adaptation Speed
To validate (78), we reconsider the S = N and S < N

scenarios. In the transient state, both the simulated and ana-
lytical convergence curves for S = N and S < N are shown
in Figs. 6 and 7, respectively.

From Fig. 4, it can be observed that α ˆ̂µL,D reduces more
quickly for a higher L and a lower D, and vice-versa. This
implies τopt is smaller for a higher L and a lower D, which
brings the faster convergence, and vice-versa. This can be
explained by using the analytical point of convergence i.e.,
the number of samples taken by DBLMS ADF for possible D
and L values to reach the steady-state. For given a speedup
S ≤ N , the selection of a higher D and a lower L shifts the
point of convergence towards the right (shown in Figs. 6 and
7), i.e., reduces the convergence rate, and vice-versa.
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Fig. 7. Convergence curves of DBLMS ADF for S < N with N = 16 and
(D,L) ∈ {(0, 12), (1, 6), (2, 4), (3, 3), (5, 2), (11, 1)}, where the meaning
of different linestyles for analytical predictions are same as those in Fig. 6.

For instance, the number of samples for S = N with
N = 32 is 681 for (D,L) = (0, 31), and is 934 for
(D,L) = (31, 1), as shown in Fig. 6. In contrast, for any
S, especially under S < N , the step-size µ̂opt is increased,
therefore, the adaptation speed becomes higher as compared
to S = N case. A more appropriate measure to determine
the adaptation speed is the slope of the MSE curve in the
transient state, as discussed above. For better validation of
adaptation speed, both the analytical and simulated slope under
S = N and S < N scenarios are also listed in Table II. It
can be observed that the simulated slope is well captured by
the proposed analytical model for different possible (D,L)
values.

In the above discussion, we have considered the single
speedup S ≤ N , while it can take any value in practice. To
have a better insight into the adaptation speed with different
speedups, the slope for any speedup S in power (and/or non-
power) of twos for different D and L values is illustrated in
Fig. 8. It is found that for a given S and L, the increase in
D also increases the τ , thereby reducing the slope. However,
choosing a higher L can converge the DBLMS ADF faster.
Noticeably, for any S in the power of twos will impose the
selection of D from the odd values, as shown for N = 32
in Fig. 8. In contrast, when S is a non-power of two (or a
composite number) will allow the selection of D from both
even and odd values, as shown for N = 16 in Fig. 8.

VI. CONCLUSION

A stochastic analysis of the LMS algorithm with delayed
block coefficient adaptation which is very useful to obtain
high sample rates adaptive filter has been presented. The
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Fig. 8. Slope variation with S ≤ N for N = 32 (left) and N = 16 (right).

delayed block adaptive filtering procedure has been consid-
ered in which the coefficients are adjusted once per block
of delayed data in the LMS sense. Then, an analysis has
been carried out to calculate step-size bound and adaptation
accuracy. Subsequently, a measure of the adaptation speed in
the transient state for a given delay and block size has been
provided.

This is the first time to show an explicit step-size bound
that has both delay and block size parameters for the valida-
tion of stability and algorithm convergence. Interestingly, the
revelation of this not-so-restrictive bound, and would allow
the development of efficient delayed block adaptive filters for
high throughput applications.

For the same speedup, it has been found that the selection
of step size is critical for a given delay and block size,
for instance, a higher delay and a lower block size lead to
a slower convergence rate, and vice versa with almost the
same steady-state MSE. Monte Carlo simulations for Gaussian
inputs confirm the validity of the derived approximations.
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APPENDIX A
DERIVATION OF (40)

By changing iteration k to k−1 and transposing both sides
of (35), we get, with kD = k −D − 1 for brevity:

ṽT
k = ṽT

k−1 − µ̂ṽT
kD

X̃T
kD

X̃kD
+ µ̂eTo,kD

X̃kD
+ µ̂zTkD

X̃kD

(A.1)
Taking the expectation of the composite product ṽT

k Λṽk and
expand it using (35) and (A.1), we get

E
[
ṽT
k Λṽk

]
= E

[
ṽT
k−1Λṽk−1

]
−µ̂E

[
ṽT
k−1ΛX̃T

kD
X̃kD

ṽkD

]
+µ̂E

[
ṽT
k−1ΛX̃T

kD
ẽo,kD

]
−µ̂E

[
ṽT
kD

X̃T
kD

X̃kD
Λṽk−1

]
−µ̂2 E

[
ẽo,kD

ṽT
kD

X̃T
kD

X̃kD
ΛX̃T

kD

]
+µ̂E

[
ẽTo,kD

X̃kD
Λṽk−1

]
−µ̂2 E

[
ẽTo,kD

X̃kD
ΛX̃T

kD
X̃kD

ṽT
kD

]
+µ̂2 E

[
ṽT
kD

X̃T
kD

X̃kD
ΛX̃T

kD
X̃kD

ṽkD

]
+µ̂2 E

[
eTo,kD

X̃kD
ΛX̃T

kD
eo,kD

]
+µ̂2 E

[
zTkD

X̃kD
ΛX̃T

kD
zkD

]
. (A.2)

The terms containing the expectations of zkD
were suppressed

in (A.2), except the one with zkD
and zTkD

. Since E [eo,kD
] =

E [dkD
]− E[XkD

w∗] = 0, expectations involving the first-
order eo,kD

term become zero. Thus,

E
[
ṽT
k Λṽk

]
= E

[
ṽT
k−1Λṽk−1

]
− µ̂E

[
ṽT
k−1Λ

2ṽkD

]
−µ̂E

[
ṽT
kD

Λ2ṽk−1

]
+µ̂2 E

[
ṽT
kD

X̃T
kD

X̃kD
ΛX̃T

kD
X̃kD

ṽkD

]
+µ̂2 E

[
eTo,kD

X̃kD
ΛX̃T

kD
eo,kD

]
+µ̂2 E

[
zTkD

X̃kD
ΛX̃T

kD
zkD

]
. (A.3)

The number of terms in (A.3) is reduced to six, whose step-
by-step simplification are discussed in (40)−(50).

APPENDIX B
DERIVATION OF (50)

Consider an example of a system for any L with delay
D = 3. The set of equations can describe (55) as below:

s = 1 ⇒ ξk−1,01 = ξk−2,00 − ˆ̂µLξk−2,03, (B.1a)

s = 2 ⇒ ξk−1,02 = ξk−2,01 − ˆ̂µLξk−3,02, (B.1b)

s = 3 ⇒ ξk−1,03 = ξk−2,02 − ˆ̂µLξk−4,01. (B.1c)

A useful interpretation for the second terms of right hand
side of (B.1a) and (B.1b) can be obtained from (39c) as

ξk−s−1,0(r−s+1) = ξk−(s+δ)−1,0(r−s+1−δ), (B.2)

Using (B.2), we can simplify (B.1a) and (B.1b) as

s = 1 ⇒ ξk−1,01 = ξk−2,00 − ˆ̂µLξk−4,01, (B.3a)

s = 2 ⇒ ξk−1,02 = ξk−2,01 − ˆ̂µLξk−4,01. (B.3b)
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The terms at the left hand side of (B.3a) and (B.3b) are
substituted in (B.3b) and (B.1c), respectively. This requires
unit delay versions of the terms at the left-hand side of
(B.3a) and (B.3b) using the following interpretation based on
combining (39a) and (39c) as

ξk−s−1−γ,0(r−s+1) = ξk−(s−γ)−1,0(r−s+1), (B.4)

From this, ξk−1,02 = ξk−2,02 and ξk−1,01 = ξk−2,01. Finally,
substituting (B.3a) and (B.3b) into (B.3b) and (B.1c), respec-
tively, we have

ξk−1,03 = ξk−4,00 − 3ˆ̂µLξk−4,01. (B.5)

In general, (B.5) can be extended for any s = D as required
in (50) to get ξk−1,0D as

ξk−1,0D = ξkD,00 − ˆ̂µLDξkD,01. (B.6)

So, (B.6) holds for any D under first order approximations.

APPENDIX C
DERIVATION OF (69)

Unlike (A.2), we first need to expand ṽT
k using (A.1) to

compute ṽT
k Λṽk as

ṽT
k Λṽk = ṽT

k−1Λṽk + µ̂eTo,kD
X̃kD

Λṽk

−µ̂ṽT
kD

X̃T
kD

X̃kD
Λṽk. (C.1)

Then, we substitute ṽk from (35) by changing the iteration k
to k − 1 in first term of (C.1), to get

ṽT
k Λṽk = ṽT

k−1Λṽk−1 + µ̂ṽT
k−1ΛX̃T

kD
eo,kD

−µ̂ṽT
k−1ΛX̃T

kD
X̃kD

ṽkD
+ µ̂eTo,kD

X̃kD
Λṽk

−µ̂ṽT
kD

X̃T
kD

X̃kD
Λṽk. (C.2)

Taking expectation of (C.2), and keeping E [eo,kD
] =

E [dkD
]− E[XkD

w∗] = 0, we obtain

E
[
ṽT
k Λṽk

]
= E

[
ṽT
k−1Λṽk−1

]
− ˆ̂µE

[
ṽT
k−1ΛX̃T

kD
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ṽT
kD
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. (C.3)

E
[
ṽT
k Λṽk

]
= E

[
ṽT
k−1Λṽk−1

]
−2ˆ̂µE

[
ṽT
k−1ΛX̃T

kD
X̃kD

ṽkD

]
. (C.4)

Unlike (A.3), the number of terms in (C.4) is two.

APPENDIX D
DERIVATION OF (70)

By changing k to k− 2 in (B.1a); k to k− 1 in (B.1b) and
re-arranging (B.1a), (B.1b) and (B.1c), we have

ξk−4,00 = ξk−3,01 + ˆ̂µLξk−4,03

0 = −ξk−3,01 + ξk−2,02 + ˆ̂µLξk−4,02

0 = ˆ̂µLξk−4,01 − ξk−2,02 + ξk−1,03. (D.1)

Using (B.4), we simplify (D.1) as

ξk−4,00 = ξk−4,01 + ˆ̂µLξk−4,03

0 = −ξk−4,01 + ξk−4,02 + ˆ̂µLξk−4,02

0 = ˆ̂µLξk−4,01 − ξk−4,02 + ξk−4,03. (D.2)

Equation (D.2) can be written in matrix-vector multiplication
form asξk−4,00

0
0

 =

 1 0 ˆ̂µL

−1 1 + ˆ̂µL 0
ˆ̂µL −1 1

ξk−4,01

ξk−4,02

ξk−4,03

 . (D.3)

Similarly, the analysis for D = 4 can be extended for any L.
The corresponding matrix-vector form is then obtained as:

ξk−5,00

0
0
0

 =


1 0 0 ˆ̂µL

−1 1 ˆ̂µL 0

0 −1 + ˆ̂µL 1 0
ˆ̂µL 0 −1 1



ξk−5,01

ξk−5,02

ξk−5,03

ξk−5,04

 .

(D.4)
Like (D.3) and (D.4), the matrix evolves in the same fashion
for odd D and even D respectively. However, in general, the
matrix can be described as:

ξkD,00

0
...
0

 =


1 0 · · · ˆ̂µL
−1 1 · · · 0
...

...
. . .

...
ˆ̂µL 0 · · · 1



ξkD,01

ξkD,02

...
ξkD,0D

 . (D.5)

In order to determine α ˆ̂µL,D as given in (72), it is required to

find
∣∣∣S ˆ̂µL,D

∣∣∣ and
∣∣∣S− ˆ̂µL,(D−1)

∣∣∣ for any D. Consider
∣∣∣S ˆ̂µL,D

∣∣∣
with D = 3 using (D.3) as∣∣∣S ˆ̂µL,3

∣∣∣ = ∣∣∣∣1 + ˆ̂µL 0
−1 1

∣∣∣∣+ ˆ̂µL

∣∣∣∣−1 1 + ˆ̂µL
ˆ̂µL −1

∣∣∣∣
=
∣∣∣S ˆ̂µL,1

∣∣∣+ ˆ̂µL
∣∣∣S− ˆ̂µL,2

∣∣∣ . (D.6)

In general, we obtain the following recursive rule for |S ˆ̂µL,D|
for any D and L as∣∣∣S ˆ̂µL,D

∣∣∣ = ∣∣∣S ˆ̂µL,D−2

∣∣∣+ ˆ̂µL
∣∣∣S− ˆ̂µL,D−1

∣∣∣ , D ≥ 2, (D.7)

with
∣∣∣S ˆ̂µL,0

∣∣∣ = 1 and
∣∣∣S ˆ̂µL,1

∣∣∣ = 1+ ˆ̂µL. The above recursive

rule can be proven by induction. From this,
∣∣∣S ˆ̂µL,3

∣∣∣ can be
expressed explicitly as∣∣∣S ˆ̂µL,3

∣∣∣ = ∣∣∣S ˆ̂µL,1

∣∣∣+ ˆ̂µL
∣∣∣S− ˆ̂µL,2

∣∣∣
= 1 + 2ˆ̂µL−

(
ˆ̂µL
)2

−
(
ˆ̂µL
)3

. (D.8)

A similar analysis for
∣∣∣S ˆ̂µL,D

∣∣∣ with D = 4 using (D.4) can

also be carried out. Thus, a general explicit form of
∣∣∣S ˆ̂µL,D

∣∣∣
for any D and L is given in (73).
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