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Facility location for a closed-loop distribution network: a 

hybrid approach  
 

Purpose - The aim of the study is to find a sustainable facility location solution for a closed 

loop distribution network in the uncertain environment created by of high levels of product 

returns from online retailing coupled with growing pressure to reduce carbon emissions.  

 

Design/methodology/approach - A case study approach attempts to optimize the distribution 

centre location decision for single and double hub scenarios. A hybrid approach combining 

centre of gravity and mixed integer programming is established for the un-capacitated multiple 

allocation facility location problem. Empirical data from a major national UK retail distributor 

network is used to validate the model. 

 

Findings - The paper develops a contemporary model that can take into account multiple 

factors (e.g. operational and transportation costs and supply chain risks) while improving 

performance on environmental sustainability.  

 

Practical implications - Based on varying product return rates, Supply Chain Managers can 

decide whether to choose a single or a double hub solution to meet their needs. The study 

recommends a two hub facility location approach to mitigate emergent supply chain risks and 

disruptions. 

 

Originality/value - A two-stage hybrid approach outlines a unique technique to generate 

candidate locations under 21st century conditions for new distribution centers. 

 

Keywords: Facility Location Problem, Mathematical Modelling, Centre of Gravity, Reverse 

Logistics, Product Returns, Closed-loop Supply Chains, Online retail. 

 

 

 

 



Ghadge, A; Yang, Q; Caldwell, N; Konig, C; Tiwari, M. (2016), “Facility location for a 
closed-loop distribution network: a hybrid approach”, International Journal of Retail and 
Distribution Management, Accepted (DOI: 10.1108/IJRDM-07-2015-0094). 

 

1. Introduction 

The increased cost of distribution and reverse logistics activities are making the location 

decision of where to site storage and service facilities a strategic decision (Pishvaee et al., 2010). 

Supply chain management must answer the Facility Location Problem (FLP) in order to serve 

customers’ requirements efficiently with reduced delivery cost and time (Harris et al., 2014).  

Location decisions are determined by several factors such as geographical restrictions, financial 

constraints and capacity issues related to storage and distribution. Increasingly in online retail, 

organizations must offer fast and cost effective forward and return services; and therefore 

product returns are emerging as an additional factor in the location decision.  Most Distribution 

Centres (DCs) or warehouses are located at a convenient location with proximity to a 

production plant or transportation infrastructure (Nilsson and Smirnov, 2016). Due to constant 

changes in supply chain network design, facility location decisions need to be reviewed over 

time (Melo et al., 2009). It has been observed that facilities are often not re-located even when 

the scale and scope of the operations has grown exponentially (weterings, 2014).  

 With the new focus on the costs of distribution and the implications of reverse logistics, 

the main concern for Supply Chain (SC) Managers is to optimise the locations of their service 

and storage facilities. The FLP decision is locating a set of facilities in order to achieve the 

lowest costs and simultaneously satisfy customer demand under certain constraints (Hekmatfar 

and Pilshvaee, 2009). It is possible to reduce the transportation and delivery cost from the 

warehouse to customer simply by improving the distribution network. This can be achieved by 

adjusting the transportation modes and scheduling techniques. However, increasing 

government regulations to reduce carbon emission (Kotzab et al., 2011; Singh et al, 2015) are 

also forcing organizations to re-address the issue of FLP. This new pressure for carbon emission 

reduction means that traditional optimization models that only take limited factors or 

unidirectional flow into consideration are less salient. This increased complexity of managing 

forward and reverse logistics demands the integration of sustainability considerations in Closed 

Loop Supply Chain (CLSC) networks. There is extant work on the forward FLP decision (e.g. 

Amin and Zhang, 2013) and on understanding the requirements for sustainable facility location 

(Chen et al., 2010) using multiple case studies. However this study addresses a current gap by 

focusing on reverse flow considerations and therefore will make a contribution to the area of 

decision making on sustainable facility location.    
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 Extant literature provides several definitions of sustainability (e.g. Ahi and Searcy, 

2013) and for a closed loop supply chain (e.g. Souza, 2013). We define a sustainable facility 

location as an environmentally conscious, cost effective location decision focussed on 

providing efficient customer service. The proposed definition compliments the triple bottom 

line proposed by Carter and Rogers (2008) by taking into account the environmental, social and 

economic dimensions of sustainability. Therefore in this study a sustainable facility location 

takes into account environmental awareness, cost effectiveness and service level issues.  

 E-commerce is the fastest growing retail market in the Europe and North America with 

online sales growth of 20% annually (Centre for Retail Research, 2016). The retail sector has 

been observed to react dynamically in response to changes in the economy (Larsson, 2014). 

The explosive growth of online retailing and E-commerce has led to a new problem dimension 

in FLP decision making; the sheer volume of customer returns. U.K. retail analysts estimate 

that online returns range from 25% to 50% depending on the commodity (Information week, 

2013). Today’s customer centric return policies are driving this return rate and fuelling demand 

for enhanced reverse logistics activities (Jack et al., 2010; Alumur et al., 2012). A well-

structured CLSC is necessary to cope with the collection and recovery of uncertain product 

returns generated through online transactions. Hence the aim of the study is to develop a 

sustainable facility location for a closed loop supply chain in an uncertain E-commerce 

environment.  

 The objectives of the research are two-fold. First, to establish whether increasing 

product returns made through E-commerce significantly influence the FLP decision. And, if the 

answer to that question is positive, to develop a robust FLP model to accommodate this 

uncertainty in forward and reverse logistics flow due to increased E-commerce activity. The 

research attempts to optimize the facility location decision using a hybrid method approach by 

combining a centre of gravity approach with mixed integer linear programming modelling. The 

hybrid model represents a relatively novel approach to solving the FLP for increasing product 

returns compounded by regulatory demand for minimization of Co2 emission.  

 The remainder of this paper is structured as follows. In the next section supporting 

literature on the facility location problem and reverse logistics is reviewed. Section 3 outlines 

the research design and presents the data collection and analysis techniques. Section 4 describes 

the problem statement and the formulation of the model using a hybrid approach to solve the 
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facility location problem. Following a descriptive analysis of the simulation results in section 

5, findings are drawn out in section 6. The key insights, managerial implications and possible 

avenues for the future research are discussed in the final section. 

2. The Facility Location Problem 

The structure of a physical distribution network is aligned with the flow of material between 

different locations with intermediate switching points being used for the most cost and time 

efficient transportation (Çetiner et al., 2010). Such a transportation network is referred as a hub 

and spoke system. In such a system, the nodes, i.e. the points of origin and destination are 

connected via one central or multiple regional hubs, called switching points. Spokes represent 

the direct links between hubs and nodes. Hubs are built to provide switching, transhipment and 

sorting operations in order to smooth the product flow and gain benefit from economies of scale 

(Sheffi, 2013). A hub and spoke system significantly reduces the number of transportation 

linkages by consolidating the collection process, line haul journey and final delivery to 

customers journey (Yaman, 2011). Following the emergence of ‘Third Party Logistics 

Providers’ (3PLs’), operations research is re-addressing the hub location decisions in supply 

chain networks (Arabzad et al., 2015). The recent trend of building collaborations and alliances 

through SC strategies (e.g. VMI, Agility, etc.) makes the strategic location of hubs a crucial 

decision in the firm’s long term planning. Important decision factors such as operational cost, 

demand, distance and availability (or feasibility) of locations influence the efficiency and 

effectiveness of the whole supply chain network (Creazza et al., 2012; Hadas and Laor, 2013). 

 Aspects and dimensions of sustainability are increasingly important for FLP decisions 

(Chen et al., 2014) yet research that combines FLP and sustainability perspective is still rare. 

Recent research on reverse logistics and waste management in FLP by Dekker et al. (2012) and 

Van der Wiel et al. (2012) reflects the growing interest in the field. The Hub Location Problem 

(HLP) is an extension to the conventional FLP (Farahani et al., 2013); with the assumption that 

there is no direct shipment between spoke nodes (Alumur et al., 2012). The location routing 

problem is another approach, which integrates FLP and vehicle routing with the aid of modern 

optimization techniques (Prodhon and Prins, 2014).  

 Location decision making plays a crucial role in the retail logistics sector; demonstrated 

by several studies that have achieved seminal status (e.g. Clark et al., 1997; Hernandez and 

Bennison, 2000). Location decision approaches have stressed the adoption of objective 
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assessment techniques (Reynolds and Wood, 2010); and several quantitative research methods 

can solve complex facility location problems. Multiple factors such as market requirements, 

competition, power, economies of scale, international regulations, government incentives, taxes 

and trade barriers have been considered. Farahani et al. (2012) conducted a comprehensive 

review of facility location models, solutions and applications. Facility locations are typically 

classified into static and dynamic problems depending on space and time issues respectively. 

An et al. (2014) proposes a two-stage robust optimization model for a facility location exposed 

to disruptions. Multi-objective optimization models can be used for making a facility location 

sustainable by combining economic, service and environmental considerations (Xifeng et al., 

2013). Also extant literature reports on the multi-commodity, multi-plant, un-capacitated 

facility location problem using Mixed Integer Linear Programming (MILP), heuristics, and 

genetic algorithm. MILP is found to be the preferred research method for FLP decisions within 

CLSC network design (Devika et al., 2014). Gelareh and Nickel (2011) generated an advanced 

MILP simulation approach to solve large databases. Cardoso et al. (2013) use a MILP 

optimization approach for a CLSC network under uncertain demand. Similarly, Taghipourian 

et al. (2012) presents a fuzzy integer liner programming approach in order to solve a dynamic 

virtual hub location problem. More recently, Gelareh et al. (2015) optimized a multi-period hub 

location problem for leased facilities using a meta-heuristic solution algorithm. All of these 

approaches expand the domain of FLP decision making. 

3. Reverse Logistics and Product Returns 

In the academic literature Reverse Logistics (RL) is also referred to as reversed logistics, return 

logistics, retro logistics and reverse distribution. Reuse, repair, recycle, remanufacture, 

refurbish and cannibalizations are different kinds of reverse logistics activities (Rogers et al., 

2012). Product returns can be divided in three categories: manufacturing returns, distribution 

returns and customer returns (Souza, 2013). CLSCs incorporate RL activities to reduce resource 

consumption and waste (Kim et al., 2014). Economic features, government regulations and 

customer pressure are three influences on RL (Melo et al., 2009). Several developed nations 

have put in place strict regulations and policies on products and services that impact society 

and the environment (Xu et al., 2013; Gunasekaran and Spalanzani, 2012). Although 

government regulations and policies differ across nations (Mollenkopf et al., 2010); all SC 

networks face pressure from ever rising environmental standards. Where environmental 

standards are most rigorously applied, government legislation forces a manufacturer to take on 
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an extended responsibility for any social and environmental issues associated with their 

product. The ‘Extended producer responsibility’ concept has evolved out of government 

interventions, RL, sustainability and interaction between manufacturers (Sheu and Gao, 2014; 

Piers et al., 2015). Customer’s environmental consciousness is becoming another driving force 

for RL (Kumar and Putnam, 2008). In addition to government legislation, growing consumer 

awareness of high levels of carbon emissions in the atmosphere has encouraged firms to 

publically appear to comply with the government imposed legislations and to be associated with 

‘green’ practices and products (Guarnieri et al., 2015). The size of the firm also dictates the 

implementation of reverse flow operations (Min and Galle, 2001). Large-sized organizations 

have a significantly higher rate of returns than small or medium-sized organizations. Where a 

business is virtual, RL is critical, as online businesses encounter higher product returns than 

traditional brick-and-mortar businesses (Ramanathan, 2011). It is evident that a robust CLSC 

network is necessary for handling such increased product returns.  

 Poor quality of products, liberal return policies and the ease of online transactions are 

some of the common grounds for product returns (Souza, 2012). A good customer experience 

with returning a product improves customer perception of the seller and the likelihood of re-

using that seller (Prahinski and Kocabasoglu, 2006). Walsh et. al (2016) found a strong 

relationship between an online retailer’s reputation and product returns. They observed a 14.6% 

return rate from respondents shopping at eight online retailers. Product returns cost US firms 

up to $100bn annually in RL activities (Blanchard, 2007). In a contemporary survey conducted 

by Petersen and Kumar (2015), 70% of customers returned their products for apparel retail and 

75% for general merchandise retailing. Return rates could be as high as 50% in the retail sector, 

whilst customers may respond positively to firms that have good returns processes, this is still 

a trade-off between customer satisfaction and profitability (Martinez, 2009). Such reports on 

online returns make RL and facility location related decisions of strategic importance.  

4. Research Methodology 

The research adopts a quantitative approach to the facility location decision for a closed-loop 

distribution network. Table I outlines a general comparison of different optimization models 

that can be used to solve the FLP. Each method has specific characteristics associated with it 

that aid the choice of an appropriate methodology, based on objectives and constraints. We use 

a mixed infinite-set approach to calculate a series of alternative locations. Linear programming 
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is applied for optimizing the result in terms of costs by using the Centre of Gravity approach. 

Centre of Gravity (COG) is an infinite set approach that uses the weighted mean centre function 

to minimise transportation costs in FLP.  

 

Table I. Comparison of common optimisation methods 

Method Characteristics 
Linear Programming Limited resources; single objective 
Analytical Hierarchy Process Combines qualitative and quantitative methods; 

used to process hierarchy factors 
Fuzzy Clustering Method Suitable for vague and approximate situations 
P-Median Problem Limited to one facility location problem; takes the 

average distance 
Centre of gravity Infinite set approach, simple and expansible 

 

Past research has considered dynamic supply and customer demand volumes. Several 

quantitative models have been studied within the context of an RL network (e.g. Fleischmann 

et al., 2001; Salema et al., 2007). However, there are limited FLP optimization studies that 

consider customer demand flows in both forward and backward directions. As stated earlier, 

the objectives of the research are to first find whether increasing product returns significantly 

influence the strategic decision of FLP. Then, building on a positive answer to the first question, 

to develop a robust model to accommodate forward and reverse flow uncertainty in the CLSC 

network. In the proposed model, two different kinds of optimization methods are integrated for 

solving the facility location problem. COG is implemented to find out the possible options for 

the distribution centre locations, producing an input to the second stage. Mixed integer linear 

programming will perform the final selection addressing single and group option scenarios. The 

COG and MILP approaches blend well together, because geometrically COG is a linear 

programming problem (Dantzig and Thapa, 2006). First the assumptions of the model are 

described and explained for clarity. Later, the COG model is modified to suit reverse flow 

considerations. A MILP model is developed and tested following a systematic approach to 

propose an optimal facility location.  

4.1. Data collection process 

Empirical and secondary data was collected from Argos, a large nationwide retailer and 

distributor of UK consumer goods. Shipment data (shipment volume, points of origin and 
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destinations) was collected from an Argos distribution centre to model the problem. The 

secondary data collected included volume in terms of weight and the location of the different 

warehouses. However, due to commercial sensitivity, certain data could not be made available 

to the researchers, and so for example, the unit costs for infrastructure, administrative and 

transport costs for each distribution centre are assumed to be average for modelling purposes.   

4.2. Data analysis process 

The hybrid approach adopted in the research methodology is discussed in this section. A 

simulation model was constructed using the software Xcode, which is a programming platform 

under the environment of a MacOS X operating system. The modelling code was programmed 

using C++ as the main programming language. The simulation for different scenarios was tested 

individually. Convergence criteria for each scenario was met when the simulation run was 

successful. Due to the use of a commercial simulation platform, it is difficult to identify the 

exact number of runs performed before reaching the convergence criteria; however, a failed test 

indicates reasons for the failure. 

 The COG model resulted in five possible facility locations. The MILP model then 

determined the optimal solution for two conditions, including both one hub and two hub 

locations for the DC. The multi-objective function for the MILP model conducts sensitivity 

analysis by simulating the optimal locations with different return ratios. In order to simulate 

different scenarios, the stochastic return rates (i.e. the reverse material flows) were randomly 

generated following a normal distribution. The return rates generated are later presented in 

Table VIII and fed into the simulation platform. 

4.3. Base data description 

This section presents the secondary data used for the analysis. The company needs to centralize 

its inventory and optimize its distribution structure for its supply chain network taking into 

account both forward and reverse logistics. The new network structure must deal with both 

distributing products to all customers (demand points A, B and C) and collecting returning 

goods using the collection center back to the manufacturers (supply points D, E and F). Table 

II presents the consolidated data that describes the problem, including a total of six supply and 

demand points and the associated shipment volumes per year. Multiple supply and demand 

points (A, B, C, D, E and F) in the current structure of the case company provides a realistic 

scenario for optimizing the location based on their distribution network in the UK. 
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Table II. Data coordinates of supply and demand points 

Supply and  
Demand Point 

Coordinate Average 
volume per 
year (,000) 

Longitude Latitude 

Barton (A)   1.21W 52.88N 39,000 
Mossend (B)   4.00W 55.81N 12,000 
Heywood (C)   2.22W 53.59N 21,000 
Castleford (D)   1.36W 53.72N 17,000 
Corby (E)   0.70W 52.49N 39,000 
Bridgewater (F)   3.00W 51.13N 17,000 

 

The unit costs for handling operations in the DC for warehousing and collection 

purposes, as well as the transportation costs for forward and reverse flows between each of the 

supply and demand points are presented in Table III. All the costs are individually calculated 

based on the average cost structure between the existing location sites of Argos within the UK.  

Table III. Unit costs for facility operations 

Facility Average 
unit costs 

Warehouse 15 
Collection Center 10 
Transportation 7 

 

5. Problem statement and model formulation 

We develop a single objective function, focusing on minimizing costs for both forward and 

reverse material flows in a closed loop supply chain. This section proposes the framework and 

the settings required in order to develop and formulate the hybrid model. DC activities are 

becoming increasingly complex taking on a broad range of additional activities such as after-

sales replacement, returns, and other handling activities. DCs are also referred to as Collection 

Centers (CCs), when their purpose is to handle and process returned goods. Based on the above 

understanding, we distinguish between the following two types of material flows in our model:  

1. Forward Flow: Manufacturer à DC à Retailer 

2. Reverse Flow: Retailer à Collection center (CC) à Manufacturer 

The proposed model is based on a three level supply chain as illustrated in Figure 1. The 

distribution center incorporates two different roles namely warehousing and collection center. 



Ghadge, A; Yang, Q; Caldwell, N; Konig, C; Tiwari, M. (2016), “Facility location for a 
closed-loop distribution network: a hybrid approach”, International Journal of Retail and 
Distribution Management, Accepted (DOI: 10.1108/IJRDM-07-2015-0094). 

 

Goods in the forward material flows go through the warehouse, while reverse flow goods pass 

through the collection center in the DC.  

 

 
Figure 1. Three level supply chain material flow 

 

Figure 1 illustrates a CLSC with the simplification that the end customer forms a part 

of the retailer level. A typical CLSC should include forward and reverse materials flow from 

raw material suppliers to final customers and vice versa. However, some CLSCs incorporate 

extra functions such as repair and maintenance (Hazen et al., 2012). The simplified model does 

not consider such extra functions and is expected to provide appropriate insights without 

increasing the complexity of the FLP problem. As we distinguish between forward and reverse 

material flow, we also distinguish between handling costs in the distribution center for 

warehousing (forward flow) and collection (reverse flow). 

5.1. Declaration of variables and parameters 

In order to formulate the model, we consider the following notation as outlined in the Table IV. 

Including the use of the previous notations, the mathematical formulation for both the COG and 

MILP model is described in the following sub-sections.  
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Table IV. Variables for the model 

Variable Description 
𝑖 Serial number of demand or supply points 
𝑗 Serial number of DC candidates 
𝑛 Total volume of demand and supply points 
𝑚 Total volume of DC candidates 
𝑋& Longitude of DC candidate j 
𝑌& Latitude of DC candidate j 
𝑋( Longitude of supply point i 
𝑌( Latitude of supply point i 
𝑤𝑓( Total weight of forward flow 
𝑤𝑏( Total weight of backward flow 
𝜆(& Stochastic variable as a proportion of forward flow  
𝑉(&
. Total volume of forward flow between i and j 

𝑉(&/  Total volume of reverse flow between i and j 
𝐶. Unit costs for handling in DC for forward material flow 
𝐶/ Unit costs for handling in DC for reverse material flow 
𝐶1 Transport costs per unit per kilometre 
𝑑(& Distance between points i and j  
𝛼 Parameter to convert calculated distance into real distance on road 
𝑍( Equals to 1 if DC is considered, otherwise it equals to 0 
𝑆(& Equals to 1 if demand at node I is served by j, otherwise it equals to 0 

 

5.2. Centre of gravity model 

The COG method is used for the FLP decisions to find the weighted centres for an infinite 

number of demand points. It is expected that transportation costs would be minimised, if the 

facility were located at the weighted centre of those points. The original function of COG is 

outlined in equation (1) and (2). 

 x = x8w8 w8 (1) 

 y = y8w8 w8 (2) 

In the above functions, 𝑥 and 𝑦 are the coordinates of the potential facility. 𝑤& is the 

weight of the demand point 𝑗 . This method only takes forward material flows into 

consideration. Therefore, a variable 𝜆(& which is set as a random proportion of forward flows is 

inserted in the original COG function to capture reverse flow. The modified function is shown 

in the following equations (3) and (4). 
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 X8 =
>?(A?BA?C?D)F

?GH
(A?BA?C?D)F

?GH
 (3) 

 Y8 =
J?(A?BA?C?D)F

?GH
(A?BA?C?D)F

?GH
 (4) 

Weight  𝑤(&𝜆(&	represents the reverse material flow between distribution centre j and 

demand point i. Moreover, 𝜆(& is a stochastic variable as mentioned in the variables notation, 

which means that each return rate between two points is randomly manipulated, although 

realistically the return rate follows the normal distribution with a mean of 30 % product returns 

(see section 6.2. for the results of the randomly generated return rates).   

5.3. Mixed integer programming model 

MILP is used as a filtering algorithm to identify the potential candidates for a distribution centre 

in a CLSC. Our modified COG model simulates five possible facility locations that serve as the 

input for the MILP model. The objective is to find the optimized location for a distribution 

center by minimizing all associated costs and distances for transportation and material handling. 

Equation 13 presents the final MILP model for solving the minimum cost objective. There are 

two major types of costs in our model; operational (handling) costs and transportation costs, 

which are defined as follows. 

 

- Operational costs: 

 𝐶.LM(N(1O = 	 𝑉(&
.𝐶. + 𝑉(&/𝐶/Q

(RS
T
&RS  (5) 

- Transportation costs: 

 CVWXYZ[\WVXV]\Y = 	 𝑉(&
. + 𝑉(&/ d]8Y

]RS 𝐶/_
8RS  (6) 

 

Seven constraints are included in the proposed MILP model and are discussed below: 

  

(1) 𝑍& is a variable to decide if DC candidate 𝑗 is considered in the particular turn of the 

simulation. If yes, then 𝑍& equals to one, otherwise equals to zero. 

 𝑍& = 0,1  (7) 
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(2) Another constraint of 𝑍& is that after each turn of simulation, the sum of 𝑍& must be less 

than or equal to 2. This constraint takes into account the condition that one candidate or 

two candidates can appear at the same time. 

 Z8 ≤ 2_
8RS  (8) 

(3) The function of variable S]8 is similar to 𝑍& and includes the decision whether a direct 

link between 𝑖 and 𝑗 is feasible or not. 

 S]8 = 0,1  (9) 

(4) Another constraint for 𝑆(& is that its sum should be equal to 𝑛, which is the total number 

of supply and demand points.  

 S]8 = nY
]RS  (10) 

(5) The difference between the actual distance on a road and that of a straight line drawn 

between two demand or supply nodes is considered in the following distance calculation 

function. This calculation allows us to get a close approximation to the actual distance 

on a road map. This function is also known as Haversine formula. The model does not 

consider external variables such as speed limits and congestion on the roads, as such 

factors would have little impact on the distance calculation function. 𝑑(& represents the 

distance between demand and supply point 𝑖 and 𝑗. 𝑙𝑎𝑡𝐴 and 𝑙𝑜𝑛𝑔𝐴 is the coordinate of 

DC 𝑗 whereas 𝑙𝑎𝑡𝐵 and 𝑙𝑜𝑛𝑔𝐵 is the coordinate of DC 𝑖. 𝑎 is a parameter that converts 

the assumed direct distance into actual distance on the road. 

𝑑(& = 𝑎 cos(sin 𝑙𝑎𝑡𝐴 sin 𝑙𝑎𝑡𝐵 + cos 𝑙𝑎𝑡𝐴 cos 𝑙𝑎𝑡𝐵 cos(𝑙𝑜𝑛𝑔𝐵 − 𝑙𝑜𝑛𝑔𝐴))6371𝑎 

(6) Another constraint is a dynamic selection process for choosing the shorter route between 

two points, when there are two candidates appearing at the same time (see Figure 2).  

 d]8 = min(d]x, d]y) i, k, l ∈ ZB  (11) 

Figure 2 illustrates a schematic plot for two DC options. The solid line from DP1 to 

DC1 is shorter than the dotted line from DP1 to DC2. Hence, all material flows will go through 

the solid line rather than the dotted line. This selective feature is also reflected in the simulation 

model and realised through a comparison of choosing the shortest route for each point. 
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Figure 2. Plot for the automatic selection of the shortest route 

(7) The proportion of reverse material flows in relation to forward material flows is 

represented in the following constraint function. The variable λ]8𝑉(&
. has already been 

included into the modified COG function above.  

 

 Vr]8 = λ]8𝑉(&
. (12) 

 

The complete model of MILP is presented below in equation 13. The simulation model 

solves this objective function by finding the minimum overall costs and distances. 

 

 MinR = 𝑉(&
.𝐶. + 𝑉(&/𝐶/ Z8 + ((𝑉(&

. + 𝑉(&/)d]8𝐶1Y
]RS S]8)_

8RS
Y
]RS

_
8RS  (13) 

Subject to: 

𝑍& = 0,1  

𝑍& ≤ 2
T

&RS

 

𝑆(& = 0,1  

𝑆(& = 𝑛
Q

(RS

 

𝑑(& = 𝛼 cos(sin 𝑙𝑎𝑡𝐴 sin 𝑙𝑎𝑡𝐵 + cos 𝑙𝑎𝑡𝐴 cos 𝑙𝑎𝑡𝐵 cos(𝑙𝑜𝑛𝑔𝐵 − 𝑙𝑜𝑛𝑔𝐴))6371𝛼 
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𝑑(& = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑑(&, 𝑑(N) 𝑘, 𝑙 = 1,2,3,4, … ,𝑚 , 𝑖 = 1,2,3, … , 𝑛  

𝑉(&/ = 𝜆(&𝑉(&
. 

 

6. Model solution and simulation results  

Using the base data of locations and demand and supply volumes, Table V shows the group of 

candidates calculated by our modified COG model.  

 

Table V. Results of all possible candidates calculated by COG 

Candidates 
Number 

Coordinate 
Longitude Latitude 

1 1.60664W 52.881N 
2 1.61488W 52.965N 
3 1.62606W 53.0664N 
4 1.68863W 53.1288N 
5 1.60911W 53.0201N 

 

As mentioned in the constraints of our model formulation, we consider two solution 

conditions for the facility location. Table VI presents a matrix including the combination of 

different possible candidates that are included in different options for the simulation using the 

MILP model. For example, option 1 considers candidate number 1 and 2, whereas option 2 

considers candidates number 1 and 3, and so on. 

 

Table VI. Number of possible options corresponding to candidates 

Candidates 1 2 3 4 5 
1 X Option 1 Option 2 Option 3 Option 4 
2  X Option 5 Option 6 Option 7 
3   X Option 8 Option 9 

4    X Option 
10 

5     X 
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6.1. Model Solution for both one hub and two hub conditions 

By minimizing the costs and distances for all the options, the MILP model simulates the 

minimum cost function resulting in an optimal facility location (Table VII) for both scenarios-

one DC and two DCs. The Optimization is solved using Cplex solver and the results are 

presented in the form of tables and figures for further analysis. 

Table VII: Results of the final DC selection  

Condition Option / 
Candidates 
no. 

Coordinates Operation 
Volume 
(Unit) 

Cost 
(£) Longitude Latitude 

One DC 1 1.60664 52.881 218,290 1,468,447,416 
Two DCs 4 1 1.60664 52.881 157,220 1,504,719,616 

5 1.60911 53.0201 80,610 
 

The results presented in Table VII indicate that the model solution supports one hub 

condition, resulting in candidate number 1 as the preferred facility location with the lowest 

overall costs. However, this solution implies higher overall volumes for handling and collection 

per DC (218,290 units) compared to the solution under a two hub condition (157,220 units and 

80,610 units). This may not be an ideal solution for organizations looking to avoid the risk of 

disruptions in a supply network. With increased man-made and natural disruptions currently 

being experienced in global supply chains a two hub solution can mitigate disruption risk by 

transferring it to another hub. Hence, a two hub solution is currently more realistic as it provides 

options over how volume can be allocated but at the expense of slightly higher overall costs.  

6.2. Records of return rate 

The simulation program recorded the return rates between the supply and demand points and 

the five DC candidates. Table VIII presents the randomly generated proportions of reverse 

material flows as a percentage of the forward material flow. This analysis was conducted in 

order to understand the variation in location decision for changing return rates, as returns are 

often influenced by factors such as seasonality, marketing initiatives and quality related issues. 

 

Table VIII. Return rates between supply/demand points and DCs  

 A B C D E F 
1 0.35 0.01 0.5 0.42 0.76 0.72 
2 0.61 0.2 0.89 0.56 0.75 0.54 
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3 0.87 0.59 0.81 0.38 0.61 0.15 
4 0.49 0.75 0.79 0.17 0.47 0.01 
5 0.95 0.72 0.26 0.97 0.77 0.52 

 

6.3. Model solution for forward flows only 

By averaging the simulation run results from all the scenarios, we found that the results 

significantly vary when considering reverse flow. Table IX indicates the optimal location of the 

distribution centres for two separate scenarios-forward flow and closed-loop flow.  

 

Table IX. Comparison of optimal facility location including and excluding reverse flow 

Condition for 
consideration in model 

Coordinate of optimised location 
Longitude Latitude 

Forward flow 1.720W 53.049N  
Forward + Reverse flow 1.607W  52.880N 

 

7. Analysis of results 

7.1. Analysis of mixed method simulation model 

Figure 3 visualizes locations of supply and demand points for Argos on a geographic map of 

the UK. The diamond symbols represent the retailers (i.e. demand points), and the square 

symbols represent manufacturers (i.e. supply points). The circles represent the possible 

candidate locations for the DC identified from the modified COG method. The model solution 

for a facility location under a one hub condition is highlighted with an asterisk symbol in Figure 

3.  

The longest distance between the five candidates is around 49 kilometers. This shows 

that there is a significant difference between the possible facility locations when taking into 

account reverse flow. These possible location candidates appear aligned in a straight line in 

Figure 3. There are two possible explanations for this phenomenon: (1) Geographically, the 

United Kingdom is a narrow country, which means that the possible options for facility 

locations will shift along a vertical centre of gravity axis. (2) The shift in the position is due to 

reverse material flow and caused by different return rates for each link. Therefore, no matter 

how much the proportion of return rates change, all of the possible options will appear around 

a vertical line as in the figure 3. This assumption will now be further tested and evaluated in 

the next section. 
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Figure 3. Visualisation of supply/demand points and potential DC facility locations  

7.2. Comparison of the model solution for two flow conditions 

With regard to any supply chain strategy, operating multiple distribution centers decentralizes 

inventory and minimizes the risks of disruption and errors. Hence, it is sensible to evaluate the 

option of setting up two DCs simultaneously for these strategic reasons. Our proposed objective 

function allows simulating this condition and can therefore be applied to the situation where 

two DCs are considered. The simulation results in Table VIII show option 4 as the most 

optimized facility locations (in a two DC condition) with candidate number one and candidate 

number five. We believe that both the facility locations might have different operational 

capacities and utilization restrictions, which results in a multiple allocation problem of 

allocating suppliers and customers to one or both DCs. The results however show that the model 

is able to simulate dynamic matching for each supply and demand point and allocate them to 

the closest DC. The distance between the two distribution centers is 49.26 kilometers which is 

a relatively a small distance but with significant benefits over a one hub solution. A two hub 

DC solution will help in mitigating unexpected demand/supply risks arising from within the 

network bringing benefits over a single DC solution. Also it can be anticipated that the close 
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proximity of the two hub DCs would also enable better management of the forward and reverse 

flow of products. 

7.3. Comparison of the model solution for forward only and combined (forward and reverse) 

material flows 

The results for the simulation model under the two hub condition of including and excluding 

reverse material flow (Table IX) are presented in Figure 4. An asterisk symbol represents the 

optimized location for forward and reverse flows and a cross symbol marks the optimized 

location while only taking into account forward flows. 

 

 

Figure 4. Visualisation of optimised DC location including and excluding reverse flows 

The distance between these two locations considering two separate scenarios is 

approximately 43 kilometres. This suggests that there is a remarkable difference between the 

two optimized facility locations when taking into account combined flows. Furthermore, such 

consideration for the DC location decision can lead to several other improvements within 

internal operations. Transportation costs covering both forward and reverse logistics decrease 

due to the closer location of facilities for the individual supply and demand points. Optimized 

location change also promotes vehicle efficiency at a time when companies are being 

challenged by consumers and legislators to improve on issues of empty running vehicles and 

Co2 emission to meet sustainability agendas. Since the sample points selected are within the 
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UK, the shift in the optimal location is not significant. However, it is possible that examining 

our research objective in other European countries or the American continent would generate 

significant changes in the location decision when taking into account reverse flow in the CLSC 

network. 

8. Conclusion  

It is evident that online shopping is generating increasing product returns and hence 

significantly influencing the strategic decision of facility location. The study has proposed an 

approach to optimize the facilities location decision making problem by considering forward as 

well as reverses logistics flow. The paper develops a contemporary model that can take into 

account multiple factors while making the appropriate decision for performance on 

sustainability. Sustainable facility location modelling is important to understand the trade-off 

between the pillars of sustainability (Xifeng et al., 2013). The sustainable facility location is 

environmentally conscious as it minimizes the total distance covered in a CLSC network, thus 

supporting reductions in carbon emission. In addition, that the total costs of operations and 

transportation are reduced shows that the solution is cost effective. Furthermore, as the model 

can incorporate variable return rates, it can provide improved levels of customer service. The 

research utilises a mixed-method modelling approach by combining the COG and MILP 

approaches to the problem. The main advantage of the proposed hybrid model is its flexibility 

through incorporating different return rates in the reverse logistics scenario to replicate a real 

world returns scenario. The study contributes to the modelling and the practices of FLP by 

combining two established analytical techniques to construct an optimal solution. The research 

validates the critical need to take into account reverse flow in the uncertain and competitive 

environments of retail distribution. RL will have a growing influence on profitability (Peterson 

and Kumar, 2015) through product return policies. Specifically, the research offers an avenue 

whereby flexible return policies supported with robust closed loop supply chain networks could 

enhance the profitability of the organization. 

 

 Multiple assumptions such as capacity constraints, availability or feasibility of locations 

as well as unit cost structures limit the practicality of the proposed optimization approach. We 

believe that reducing uncertainty in the data would create several improvements to the model. 

For example, the return rate is set as a random parameter in the proposed model due to a lack 

of empirical data on customer returns behaviour. In particular, online businesses with 
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significant statistical data on product returns could generate accurate estimations of return rates 

and further enhance FLP decision making. Furthermore, it has to be acknowledged that in 

practice pre-existing facilities locations will be favoured largely as they are often perceived as 

hub locations. In practice the facilities allocation decision also depends on the infrastructural, 

geographic or political circumstances rather than linear programming optimization (Horner and 

O'Kelly, 2001). For example, the proposed model does not consider external factors such as 

speed limits and traffic congestion on roads, regional customer demand, etc. The hybrid model 

is not tested for its robustness by comparing results with other conventional modelling 

approaches. These are some of the limitations of the research.  

 Increasingly the growth of online retailing and associated high product return rates will 

significantly influence locating the facility in a CLSC network. This study offers SC Managers 

some guidance on the wider implications of increased reverse logistics. The study also guides 

SC Managers on adapting appropriate mitigation strategies, if facility location change is not an 

immediate option. The study provides a structured approach for single hub and two hub location 

decision making in a fast moving E-commerce environment. Based on varying product return 

rates, SC Managers can decide whether to choose a single or a double hub solution to meet their 

needs. The research recommends a two hub facility location approach to mitigate emergent 

supply chain risks and disruptions. The research also reconfirms that reverse logistics affects 

the company’s operations at both strategic and tactical levels.  

 There are several possible avenues for future research. First, the proposed model uses 

only current demand flows and could be extended by adopting fluctuating or dynamic demand 

flows. Second, product types could be categorised and considered as individual units to be 

distributed and stored, which could then be related to the capacity constraints of the warehouse. 

Regardless of possible alternatives to the research approach discussed here the FLP model 

proposed is a step forward in improving sustainability performance in supply chain distribution 

networks.  
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