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Emergent geometries and 
nonlinear-wave dynamics in  
photon fluids
F. Marino1,2, C. Maitland3, D. Vocke3, A. Ortolan4 & D. Faccio3

Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic 
description of light as a photon fluid. The observations are interpreted in terms of an emergent curved 
spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime 
geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-
induced background flow. In particular, as observed in real fluids, different points of the wave profile 
propagate at different velocities leading to the self-steepening of the wave front and to the formation 
of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our 
analysis offers an alternative insight into the problem of shock formation and provides a demonstration 
of an analogue gravity model that goes beyond the kinematic level.

Geometry plays a fundamental role in the description of disparate phenomena across different areas of physics, 
ranging from continuous mechanics and nonlinear dynamics to electromagnetism and high-energy physics. The 
paradigmatic example is General Relativity (GR) where, far from being merely a convenient representation, the 
language of differential geometry allows us to capture the essence of gravitational force. A recent active field of 
research in which geometrical concepts naturally comes into play is analogue gravity (for a review, see1). The gen-
eral idea is that the propagation of a scalar field on a curved spacetime can be reproduced in condensed-matter 
systems by studying the evolution of elementary excitations on top of a suitable background configuration. For 
instance, sound waves in flowing fluids propagate in an effective Lorentzian geometry (acoustic metric) which 
is determined by the physical properties of the flow2–4. Hence, by properly choosing the background flow, it is 
possible to mimic black holes and several aspects of quantum field theory in curved spacetime.

These studies are generally based on perturbative schemes, i.e. they consider the propagation of linearized 
fluctuations over a given background solution of the full nonlinear problem. So, while the curved spacetime 
determines the propagation of waves, it is not affected by the waves propagating on it. As such, the analoguey 
works only at the kinematical level: the geometrical description holds only for the fluctuations, whose evolution 
is governed by linear wave equations, while the background couples with the usual flat metric.

A new perspective was opened by Goulart in ref. 5. Under certain conditions, the nonlinear dynamics of a 
scalar field can be described in terms of an emergent spacetime geometry, which is generated by the field itself 
and determines its propagation. This result extends the analogue gravity approach as the emergent metric now 
includes the whole dynamics of the system (i.e. even the evolution of the background) and is not restricted to lin-
earized fluctuations. Remarkably, a similar situation occurs in GR: the metric on which a given scalar field propa-
gates is modified by the scalar field itself, thus being a dynamic structure. In this framework, the wave propagation 
becomes a intrinsically nonlinear problem due to the coupling (back-reaction) between the wave and the metric6.

We note that the emergent metric in nonlinear models does not depend on the scalar field via Einstein’s equa-
tions and thus they cannot be directly considered as models for Einstein gravity. Nevertheless, they encode in a 
geometric framework the dynamical interplay between the scalar field and the metric and so they could provide 
valuable insights into relevant dynamical features present also in GR such as back-reaction effects at a full non-
linear level7.

Compressible, non viscous fluids appear as the ideal candidates for this kind of investigation and in principle, 
can push the analoguey further. A first connection between nonlinear hydrodynamics and differential geometry 
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dates back to the Riemann’s work on discontinuous flows in 18608. Since then, there have been numerous con-
tributions, who laid the foundations of the modern mathematical theory of shock waves9,10. In the linear regime, 
hydrodynamic systems are the prototype model for studies on acoustic black holes1, Hawking radiation2–4 and 
superradiance11–14. Extending to the nonlinear regime, we find that causality is still governed by an acoustic 
metric15,16 and the evolution of nonlinear perturbations can be described through the analogue gravity for-
malism17. Acoustic geometries which dynamically depend on the fluid variables appear also in the context of 
black-hole accretion models18,19 and spherically symmetric outflows of nuclear matter20. Even more importantly, 
a precise correspondence exists between the gravitational field equations and suitably constrained nonlinear 
flows21. Therefore such systems could be exploited to mimic some aspects of black holes dynamics and spacetime 
singularities22.

As an alternative to actual flowing fluids, light beams propagating in defocusing optical media are promising 
models for analogue gravity experiments23–27. The optical field dynamics can be described as a fluid of interacting 
photons28,29 on which linear perturbations, i.e. sound waves, experience an effective curved spacetime determined 
by the field intensity and phase pattern.

Here, we report an experimental study of the dynamics of nonlinear acoustic disturbances in such photon 
fluids and we provide a geometrical interpretation of the results. We show that nonlinear density waves induce a 
background flow which, in turn, strongly modifies their propagation. In analoguey with GR, this self-interaction 
is interpreted in terms of an effective curved geometry generated by the wave itself. In particular, as observed in 
compressible, non viscous fluids, different points of the wave profile propagate at different velocities leading to 
the self-steepening of the wave front and the subsequent formation of a shock. This phenomenon is associated to 
a curvature singularity of the emergent metric.

Let us remark that this work is by no means an attempt to realize a perfect analogue of a realistic gravitational 
theory. Our backreaction, i.e. how the spacetime is modified by the waves propagating on it, is encoded in a 
set of nonlinear equations which have not the properties of Einstein’s equations. One of the crucial ingredients 
in GR is the invariance of the theory under diffeomorphisms. An aspect of such symmetry is the possibility of 
rewriting the equations of motion in a general covariant form, i.e. making them invariant in form under and 
arbitrary change of coordinates. Our system, and typically non-relativistic theories, do not possess such prop-
erty. Nevertheless, our geometrical analoguey allows us to describe the self-steepening effect as as the result of 
the backreaction on the wave by its own effective metric, although such gravitational-like interaction manifestly 
differs from that of GR.

Results
Photon-fluid model.  We consider the propagation of a monochromatic optical beam of wavelength λ, in 
a 1D defocusing medium. The slowly varying envelope of the optical field follows the Nonlinear Schrödinger 
Equation (NSE)

∂ = ∂ − ∆E i
k

E i k
n

E n
2 (1)z xx

2

0

where z is the propagation direction, k =  2πn0/λ is the wave number and ∂ Exx
2 , defined with respect to the trans-

verse coordinate x, accounts for diffraction. The term Δn(|E|2, x, z) describes the self-defocusing effect. In the case 
of thermo-optical media, the self-defocusing effect arises due to partial absorption of the light, which results in 
heating effects and, thus, to a decrease in the refractive index. Due to heat diffusion inside the medium, the non-
linearity can be can be highly nonlocal, i.e. the change in refractive index at any position depends not only on the 
local intensity, but also on surrounding field intensities23.

The nonlinear change of refractive index Δn can be described in terms of a response function R(x, z) so that

∫γ∆ = − ′ ′ ′ ′n x z R x x I x dx dz( , ) ( ) ( ) (2)

with γ being a normalisation factor and I =  |E|2 the field intensity. In general, R depends on the nonlocal processes 
in the material and by the boundary conditions. In most cases the response is well described by an exponential 
decay R(x) =  1/(2σ)exp(− x/σ), where the critical length σ defines the degree of nonlocality30.

When nonlocal effects are negligible (σ ≈  0), the nonlinear change of refractive index is Δn =  n2|E|2. 
In the Madelung formulation E =  ρ1/2eiφ, Eq. (1) can be recast into the continuity and Euler equation for a 
1D-Bose-Einstein condensate
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where the optical intensity ρ represents the fluid density, φ= ∂v c
kn x

0
 is the fluid velocity (c is the speed of light) 

and the propagation direction has been considered as a time coordinate =t zn
c
0 . In Eq. (4), the optical nonline-

arity ρnc
n 2

2

0
3

 corresponds to the repulsive atomic interactions, while the last term is the analogue of the quantum 
pressure31. By applying the ∂ x operator to Eq. (4) and neglecting the quantum pressure term, we obtain
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ρ
∂ + ∂ +

∂
=v v v P 0

(5)t x
x

where we have defined the bulk pressure ρ=P c n

n2
22

2

0
3 .

Equations (3)–(5) are exactly the Navier-Stokes equations in a 1D compressible, non viscous fluid. While in 
the limit of small amplitudes, density perturbations behave as sound waves (i.e. linear fluctuations of the mean 
fluid flow), in the full nonlinear problem (3)–(5) a density wave cannot propagate forever. The wave profile steep-
ens and eventually develops a discontinuity in a finite time9,10,32. The nonlinear term, v∂ xv, determines the steep-
ening rate of a wave. In real fluids this can be balanced by diffusion or viscosity, while in the photon fluids by the 
quantum pressure and nonlocality. If these terms are dominant over the nonlinearity, the self-steepening will be 
completely smoothed out. However, when these effects are sufficiently weak, a shock wave can form as the steep-
ening wave approaches the discontinuity, where wave breaking occurs.

Self-steepening regime.  As discussed in the previous section, our system differs from an ideal compressi-
ble, non viscous fluid due to the presence of quantum pressure and nonlocal terms. Therefore, in order to clearly 
observe the self-steepening of density waves, it is necessary to operate in a regime where the above effects are 
negligible. We shall see that this regime is tightly related to the so-called phononic behaviour in the dispersion 
relation of small amplitude fluctuations. Let us briefly recall some results. The dispersion relation can be directly 
obtained by linearizing the nonlocal Eq. (1) around an homogeneous background, ρ= φE ei

0 0
1/2 0 and by Fourier 

transforming23. We obtain

σ
ξ
π

Ω =



 +

+





c K
K
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1 4 (6)
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where K =  2π/Λ  is the wavevector of the mode, Ω its angular frequency, ρ=cs c n

n
2

0

2
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3

 is the wave velocity and 

ξ = λ
ρn n2 0 2 0

. Using the definition of bulk pressure given in the previous section, we have that ρ ρ=c dP d( )/s
2

0 . 
Hence, cs can be readily identified with the (constant) sound speed in the photon-fluid.

In the case of local media (σ =  0), Eq. (6) has the form of the Bogoliubov dispersion relation in a Bose gas, 
where ξ plays the role of healing length33,34. The characteristic length ξ, separates two different regimes. At low 
energies Λ  ≫  ξ, we find the linear dispersion Ω ≈  csK, typical of sound waves while at high energies the K2 quan-
tum pressure contribution is dominant. In the case of nonlocal nonlinearities (σ > 0), an approximate linear 
dispersion is recovered by requiring both Λ  ≫  ξ, and Λ  ≫  σ. While these considerations can be hardly extended 
to the case of strongly nonlinear waves, they roughly identify the operational regime where the effects of the 
quantum pressure and nonlocal terms are less significant.

Numerical simulations.  The hydrodynamic representation of the NSE suggests that many features of 
acoustic waves can be investigated in the photon fluid using a pump-probe optical setup. Here a wide, flat-top 
beam (the pump) is injected into a defocusing thermo-optic medium together with a smaller Gaussian beam 
(the probe) tilted at an angle with respect to the pump. The superposition between the two beams generates an 
interference pattern, whose wavelength and amplitude are respectively determined by the tilt angle and relative 
intensities of the two beams. In the photon-fluid context, the pump beam corresponds to an homegeneous back-
ground fluid with constant density and zero flow velocity, while the interference pattern induces a density wave 
propagating on such background.

We numerically solved the NSE Eq. (1) with input conditions similar to the experiments described below and 
those shown in ref. 23. A pump pulse of 532 nm and beam diameter 1 cm is injected in a nonlinear defocusing 
medium with nonlinearity n2 =  8 × 10−6 cm2/W. A probe beam is overlapped at the input with a small 0.02 deg 
angle. For the sake of clarity, here we use a narrow probe, so that our the envelope of our initial condition has a 
width comparable to the wavelength.

For a small input amplitude (less than ~ 10% of the pump), the density wave is in the linear regime. The initial 
condition splits in two parts propagating in opposite directions. As previously discussed, the evolution after sepa-
ration is governed by Bogoliubov dispersion relation23,27,29 which allows us to interpret these waves as Bogoliubov 
particles. At long-wavelengths, dispersive effects (quantum pressure) are negligible and density waves move at 
constant velocity (the sound speed) with no distorsion of their shape. An example of these dynamics is shown in 
Fig. 1(a). For higher probe powers the density waves enter into the nonlinear regime. After the separation, the 
density profiles steepen on the front edges and then breaks into higher frequency ripples, Fig. 1(b,c). This is due 
to the fact that the propagation velocity is now a function of the density, and therefore is different for different 
points in the profile. Since points of higher density propagate faster than points at lower densities, the profile 
increasingly steepens in the course of time. These results well reproduce the typical evolution of a density wave in 
ideal compressible, non viscous fluid up to the formation of flow discontinuities32.

As we will clarify later, the velocity of a point in the nonlinear wave profile is given by v ±  cs, that are now both 
dependent on the density. Figure 1(d) shows lineouts of the sound speed cs and background fluid velocity v corre-
sponding to the wave profiles displayed in Fig. 1(c). As can be seen, both speeds are significantly modified due to 
high amplitude of the propagating waves. In particular, the density wave induces locally a nonzero flow velocity.

We recall that in linear acoustic analogues, the spacetime curvature is determined by the fluid velocity and the 
sound speed profiles (spatially homogeneous flows provide a flat spacetime). Here the background flow is induced 
by the wave itself. In other words, the initially flat spacetime geometry is curved by the waves, which are then in 



www.nature.com/scientificreports/

4Scientific Reports | 6:23282 | DOI: 10.1038/srep23282

turn distorted by the spacetime metric. This suggests the possibility to achieve a geometrical description of the 
dynamics, as a kind of backreaction on the wave by its own effective metric.

Experiments.  The self-steepening of waves can be experimentally observed by using a similar setup to ref. 23 
(see Fig. 2(a)). A 532 nm, CW laser beam is divided in two parts and then recombined forming a Mach-Zehnder 
interferometer setup. The more intense pump beam (1 W/cm2) forms the background fluid and the weaker probe 
beam in injected at a small angle so as to create, by interference, a density wave in the photon fluid. Both the pump 
and probe beams are focused into the sample using a cylindrical lens pair to create an elliptical beam with a very 
wide major axis diameter of 1 cm and a minor axis diameter of 260 μm. The propagation dynamics occurs along 
the major axis and our system can be considered as one-dimensional. By controlling the relative angle and power 
of the two beams we created an interference pattern of the desired wavelength and modulation depth. This density 
wave is injected in a nonlinear sample, a 18 cm long cell filled with a methanol/graphene solution. Methanol has 
a negative thermo-optic coefficient but a low absorption in the visible. Nanometric graphene flakes (7 nm average 
size) are therefore dissolved in the medium in order to increase absorption. The absorbed energy is released in 
the form of heat, which in turn provides the defocusing nonlinearity via thermo-optic effect23. After the cell, the 
probe beam profile (i.e. the density wave) is isolated from the pump with a spatial filter, consisting of a pinhole in 
the far-field of the first lens of an imaging telescope and is then imaged onto a CCD camera.

As discussed in previous sections, a strong self-steepening effect can be observed if the quantum pressure and 
nonlocal terms play a marginal role, at least in the first stages of propagation. Therefore, the wavelength of the 
sound mode must be chosen such that Λ  ≫  ξ, and Λ  ≫  σ. The critical lenghts ξ and σ can be estimated by stud-
ying the propagation of small-amplitude fluctuations in our fluid for different pump powers (see measurements 
in ref. 23 and Methods for a description of the technique). For our experiment the nonlocal length σ over which 
the nonlinearity extends has been measured to be 110 μm and, for the chosen pump power, the healing length is 

Figure 1.  Numerical results: probe beam evolution in the presence of a flat-top pump beam obtained by 
numerical integration of Eq. (1). (a) (σ =  0) A weak probe beam (1% of the pump power, 0.02 deg input angle) 
splits into two beams corresponding to two Bogoliubov particles or density waves in the fluid propagating in 
opposite directions. (b) (σ =  0) At high probe intensities (same power as the pump) the density waves propagate 
nonlinearly and develop (supersonic) shock fronts that form ripples on the leading edges. (c) lineouts taken 
from (b): dashed line - input profile of the density wave. Thick solid line - density wave at z =  18 cm. Thin solid 
line - density wave at z =  18 cm for a nonlocal medium with nonlocal length σ =  110 μm. (d) Sound velocity, 
cs, in the photon fluid (black line) and fluid flow speed (blue line - positive direction speed, dashed red line - 
negative direction speed).

Figure 2.  Experimental results. (a) experimental layout. (b) measured density wave profile after spatial 
filtering for low powers (I = 0.02 W/cm2, linear density wave propagation) and high power (I = 1 W/cm2, 
nonlinear propagation). (c) Numerical simulation under the same conditions of the experiment, including also 
the nonlocal medium response, with nonlocal length σ =  110 μm.
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ξ =  85 μm23. Here, the probe beam is incident at a 0.02 deg. angle, giving rise to a density wave with a wavelength 
of about 1 mm. The beam width has been chosen in order to observe several periods of the density wave.

Typical profiles of the photon fluid density waves are shown in Fig. 2(b). For low amplitude input the wave 
evolves as a linear perturbation of the background and preserves the initial sinusoidal shape (blue curve). Given its 
long wavelength, the density wave evolves as a sound wave with a constant sound speed determined by the back-
ground density. This regime and the complete dispersion curve have been exhaustively characterized in ref. 23.  
Let us remark that even such a small-amplitude wave would eventually end up to steepen and produce a shock. 
This is simply due to the fact that nonlinear effects are cumulative as the wave propagates. However, the smaller 
is the amplitude of the wave, the larger are the propagation distances required to develop observable changes in 
the wave profiles. For the propagation distances in our experiments (tens of cm) and the above amplitudes (few 
percent of the pump), waves display a linear behaviour.

For higher input amplitudes (50% of the pump) the wave distorts and self-steepens (red curve). As expected, 
the self-steepening observed in the experiments (Fig. 2(b,c)) is less severe than that observed in the simulations 
in the case of local media (e.g. in Fig. 1(b)), while is qualitatively similar to that shown in (Fig. 2(c), where the 
nonlocal medium response has been included. This clearly show how self-steepening is affected by a nonlocal 
nonlinearity, which has the effect of smoothening out any sharp features in the nonlinear response. Numerical 
simulations with the initial condition used in Fig. 1 but including a nonlocal response with the same σ, indeed 
confirm this interpretation [thin black line in Fig. 1(c)].

Geometrical description.  The connection between the nonlinear fluid equations and a “dynamic” acoustic 
metric can be shown by writing Eqs (3–5) in terms of the Riemann invariants, ψ± =  v ±  2cs, where cs is the local 
speed of sound usually defined as ρ≡ =

ρ
cs

dP
d

c n

n
2 2

2

0
3

. In terms of these variables we obtain two advection 
equations

ψ ψ∂ + ∂ =± ± ±c ( ) 0 (7)t x

where ψ ψ= + = ±± ± 

c v c3/4 1/4 s. Eq. (7) simply state that the two variables ψ± are conserved along the 
characteristics curves defined by dx/dt ≡  c±. Therefore, in a nonlinear wave the constant quantities ψ± are propa-
gated in spacetime at the characteristic speeds c± =  v ±  cs, so they travel at the speed of sound relative to the 
flowing fluid. As in linear acoustic analogues, the characteristic curves demarcate the region of causally connected 
events. The acoustic line element can be written as

= = − + − −µν
µ νds g dx dx dx v c dt dx v c dt( ( ) )( ( ) ) (8)s s

2

and thus the characteristics of the fluid equations coincide with the null geodesic defined by the acoustic metric 
gμν, whose coefficients depends on the fields ψ±.

The solutions ψ± implicitly define the sound cone and so generate the above metric. However, depending on 
the initial consitions, they may generate other background structures. This is a difference with respect to GR, 
where spacetime metrics are the only background structures possessed by the theory and necessary to describe 
the dynamics. Other trivial solutions of Eq. (7) are: i) ψ± =  const, which corresponds to a fluid with constant 
density and constant flow. This would obviously modify the wave dynamics, while remaining globally unaffected 
waves propagating on it; ii) waves propagating in a single direction. These particular solutions fails to provide a 
metric, since they would define an incomplete sound cone. We could just define a single set of trajectories, the 
positive or the negative characteristics, by tracing the path in space-time of a hypothetical observer. In other 
words, we have not a causal structure that could be associated with a conformal class of Lorentzian metrics. 
However, for most of the initial conditions, Eq. (7) admit travelling wave solutions propagating in opposite direc-
tions, which thus generate a metric (8).

Notice that the advection equations (7) are weakly coupled through the coefficients c± =  c±(ψ+, ψ−), which 
depend on both Riemann invariants. Therefore, general wave solutions cannot be decomposed exactly into 
a sum of two independent left- and right-going waves as in the linear wave equation, where c+ =  − c− =  con-
stant. Nevertheless, it is possible to reconstruct an approximate solution which well describe the observed 
self-steepening dynamics up to the shock formation.

Consider an arbitrary density profile propagating on an uniform density state, ρ0, with zero flow (v =  0). 
After a short transient, the initial profile separates into two parts propagating in opposite directions, similarly 
to what observed in Fig. 1(b,c). When such right-going and left-going profiles are sufficiently well separated, 
they can be considered as nearly independent, in the sense that the right-going wave is not affecting the evolu-
tion of the left-going wave and viceversa. So, the complete solution is well approximated by the superposition 
of two components propagating in opposite directions. Such components, known as simple waves, can be thus 
independently calculated. Simple waves are particular solutions of Eq. 7 obtained by setting one of the Riemann 
invariants equal to a constant32. The known Riemann invariant allows us to eliminate one of the advection equa-
tions and thus to write the other in just one physical variable, either ρ or v. Consider the particular solution, 
v(ρ) =  2(cs(ρ) −  cs(ρ0)), i.e ψ− =  const. The corresponding advection equation is identically solved and that for 
ψ+ can be written as ∂ tρ +  (3(cs(ρ) −  2cs(ρ0))∂ xρ =  0. This equation describes a nonlinear wave propagating 
with velocity c+ =  (3(cs(ρ) −  2cs(ρ0)). Similarly, we can now consider v(ρ) =  − 2(cs(ρ) −  cs(ρ0)), i.e. ψ+ =  const. 
and obtain the nonlinear advection equation for a wave propagating in the opposite direction with velocity 
c− =  − (3(cs(ρ) −  2cs(ρ0)).

The complete solution can be reconstructed via linear superposition of these two elementary components. We 
remark that such reconstruction cannot provide an exact solution of the nonlinear problem. On the other hand, 
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when the wavepackets are sufficiently well separated their mutual coupling is negligible and then the solution is 
very well approximated by the superposition of the two independent simple waves calculated above.

Notice that any point in the wave profile (i.e. a point at a given density) propagates with constant velocity 
c±(ρ) =  v ±  cs, so the characteristics are now straight lines. Such waves can be conveniently regarded as a superpo-
sition of a density fluctuation propagating relative to the fluid, at the speed of sound and the movement of the 
fluid (induced by the wave itself) with velocity v. Since >+dc dr/ 0 for right-going waves (and viceversa for 
left-going waves), the propagation velocity of a given point in the wave profile increases with the density: points 
of higher density propagate faster than points of lower density leading to self-steepening of the wave front. In a 
finite time the wave front will become vertical, implying an unphysical multivalued solution. The time and posi-
tion in which the profile will exhibit such discontinuity is determined by the condition that ρ(x, t) has an inflec-
tion point with a vertical tangent line, i.e.

ρ ρ∂ ∂ = ∂ ∂ = .x x( / ) 0 ( / ) 0 (9)t t
2 2

The latter conditions have a geometrical interpretation in terms of the characterisitics/null geodesics. Since the 
velocities v ±  cs are functions of the density, two characteristics of the same family (right-going or left-going) 
emanating from two spacetime points are not parallel and intersect at a finite time. As the gradient of the solution 
profile becomes increasingly steep, two characteristics become closer and closer. At the point of intersection, the 
solution is multivalued and the gradients are infinite (gradient catastophe)32.

The resulting spacetime is not null complete. In fact, the family of half null geodesics, (i.e. geodesic curves 
which have one endpoint and have been extended as far as possible from that endpoint), having a finite proper 
length, can be parametrized by a finite affine parameter35. Consequently, propagating waves reach a singularity 
in a finite time.

The appearence of a singularity can be explicitly shown by direct calculation of the Ricci scalar R, which in 
two dimensions fully determines the spacetime curvature. Considering the superposition of the two independent 
simple waves calculated above, we have c+ =  (3(cs(ρ) −  2cs(ρ0)) =  − c−. Substituting into Eq. (8), the metric takes 
the diagonal form

ρ ρ= − − + = − +ds c c dt dx dt dx(3 ( ) 2 ( )) u (10)s s
2

0
2 2 2 2 2

In two dimensions the Ricci scalar is twice the Gaussian curvature , which for the above diagonal metric is given 
by

=





− ∂ + ∂






= − ∂−

u
u

u
u u u1

2
1 1

2
( )

(11)xx x xx
2

2
2 1/2 2 1/2

By using u1/2 =  ± (3(cs(ρ) −  2cs(ρ0)) and cs(ρ) ∝  ρ1/2 we get

ρ ρ
ρ= −

−
∂R 6

3 2 (12)
xx1/2

0
1/2

2 1/2

which, accordingly to Eq. (9), diverges at the shock formation point.
The fact that a multi-evaluated density (or flow velocity) would imply the divergence of R can be deduced from 

the definition of the acoustic metric, as already introduced in linear acoustic analogues. However, in linear mod-
els a singular spacetime can only be externally imposed, e.g by choosing a background with a topological defect. 
Here instead, a curvature singularity emerges spontaneously in a finite time, starting from a constant, homogene-
ous background. This is due to the nonlinear interplay between the propagating wave and the underlying metric, 
whose curvature is generated by the wave itself. Moreover, it is worth noting that since ρ0 =  const., R has the same 
spatial dependence of the “quantum pressure” term in Eq. (4), ρ ρ−∂~R /xx

2 1/2 1/2. This is an interesting point that 
warrants further investigation. In linear analogue models, the quantum pressure is usually neglected in the deri-
vation of the acoustic metric and, when is taken into account, is responsible for the high-energy breaking of 
Lorentz invariance. In a similar fashion, our geometrical analoguey has been established in the ideal pure nonlin-
ear system (quantum pressure neglected). As a result, the nonlinear interaction (self-steepening) is the manifes-
tation of the curvature of a dynamic spacetime metric generated by the wave. As time evolves, the wave (density) 
profile changes, thus modifying the curvature of the corresponding metric which, in turn, will affect the density 
profile. While at the initial stages of propagation the curvature/steepening is indeed negligible, it will forcibly 
increase in time and eventually will become infinite (singularity). It is known that in the presence of quantum 
pressure the singularity will never form: when the curvature becomes sufficiently strong, the quantum pressure 
comes into play and will eventually counterbalance the curvature. In this context, the fact that R has the same 
spatial and temporal dependence as the quantum pressure is not at all a coincidence. The perfect spatiotemporal 
matching between curvature (nonlinearity) and dispersive term (quantum pressure) is the unavoidable condition 
to have the compensation between the two effects, necessary to prevent the formation of the singularity. The 
resulting shock waves can be thus seen as spacetime structures of maximal –though finite– curvature.

In Fig. 3 we plot the numerically calculated characteristics, corresponding to the (x, =t n z c/0 ) trajectories of 
points with the same density ρ, for the case of the nonlinearly propagating acoustic wave of Fig. 1(c). Although 
the presence of quantum pressure and nonlocal effects prevent the formation of a singularity, the convergence of 
the characteristics is a clear indication of an increasing spacetime curvature, in agreement with the ideal picture 
based on the emergent metric.
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Discussion
Quantum fluids such as BECs, polariton fluids and photon fluids have been proposed as platforms to study ana-
logue gravity effects. To date these have focused on the propagation of weak amplitude density waves on top of a 
given background configuration. This has led to a series of important kinematic studies, including e.g. glimpses 
of Hawking radiation36. It is possible to extend these experimental models into the nonlinear regime where the 
background curved geometry determining the propagation of the waves is generated by the waves themselves. 
This self-interaction can thus be interpreted as kind of gravitational influence on the wave by its own effective 
metric. Such analogue nonlinear models are truer in spirit to general relativity, where mass distributions evolve in 
a spacetime metric that is modified by mass itself. However, as previously discussed, our backreaction is encoded 
in a set of nonlinear equations which are manifestly different from Einstein’s equations. In spite of this fact, in the 
presence of particular symmetries there is a precise correspondence between the gravitational field equations and 
the fluid dynamics. Therefore, suitably constrained photon-flows could be exploited to mimic the dynamics of 
gravitation black holes, spacetime singularities included22, and cosmological solutions37,38.

Methods
Here we briefly describe the technique to estimate the relevant system parameters, σ and ξ (notice that the sound 
speed, cs, and the healing length, ξ are not independent parameters: csξ =  πc/kn0. The characterization measure-
ments are reported in ref. 23.

As the beam propagates through the nonlinear medium, the phase velocity of the sound wave is determined 
by vph =  Ω/K with Ω given by Equation (6) and hence is a function of the system parameters. For low pump power, 
the nonlinear thermo-optic effect is negligible and the medium behaves essentially as linear optical system 
(cs ≈  0). In this limit, using Eq. (6) and the relation ξ π = c k n c/4 /4 s

2 2 2
0
2 2, we calculate the phase velocity 

vph0 =  (c/2kn0)K.
As the pump beam power is increased we therefore expect to observe a spatial shift of the sound wave pattern 

by ΔS due to the increase of the phase velocity. The shift is given by ΔS =  (vph −  vph0)Ln0/c, where L is the length 
of the medium, so the distance along which the wave has propagated. By using Eq. (6) and the above expression 
for ΔS we obtain

σ
π
ξ

∆ =






 +










+ −









S K
k K K

L
2

1
1

4 1 1
(13)

2 2

2

2 2

By measuring ΔS for different values of the pump power and for different wavevectors of the interference pattern, 
K, we may therefore use Eq. (13) to fit the data and estimate both σ and ξ. As a function of the wavevector K, one 
can recognize the finite limit ΔS →  π/kξ for K →  0. Therefore for long wavelengths, the shift is observed to saturate 
to this limit value. The local vs. non-local nature of the nonlinearity is instead visible for short wavelengths.
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