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Assessment of the Cost and Environmental Impact
of Residential Demand-side Management

George Tsagarakis, Student Member, IEEE, R. Camilla Thomson, Adam J. Collin, Member, IEEE, Gareth P.
Harrison, Senior Member, IEEE, Aristides E. Kiprakis, Senior Member, IEEE, Stephen McLaughlin, Fellow, IEEE

Abstract—A detailed study of the potential impact of low
voltage (LV) residential demand-side management (DSM) on the
cost and greenhouse gas (GHG) emissions is presented. The
proposed optimisation algorithm is used to shift non-critical
residential loads, with the wet load category used as a case
study, in order to minimise the total daily cost and emissions
due to generation. This study shows that it is possible to reshape
the total power demand and reduce the corresponding cost and
emissions to some extent. It is also shown that, when the baseload
generating mix is dominated by coal-fired generation, the daily
profiles of GHG emissions and cost conflict, such that further
optimisation of the cost leads to an increase in emissions.

Index Terms—Power system economics, energy management,
power demand, energy conversion, power generation.

I. INTRODUCTION

CUSTOMERS’ interest in the reduction of the cost of
their daily power demand has increased of late. This

cost describes not only the price of electricity, but also the
environmental cost, defined in this paper by the generation of
greenhouse gas emissions (GHG). One method of altering the
cost to the consumer is through load manipulation by means
of demand side management (DSM), which will impact on
multiple aspects of the supply of electrical energy.

Although there have been several studies on DSM strategies
and their impact on energy demand [1], they have focussed
on issues such as generation planning [2]–[4], or the effect on
the energy efficiency [5], [6], and there are comparatively few
studies directly connected to pricing and environmental factors
[7]–[9]. In the majority of existing DSM studies, the analysis
is performed at higher voltage levels, using mostly industrial
loads [10], with the loads treated as aggregate amounts of
energy, rather than as discrete appliances with operation cycles
[11]. However, the possibility of smart grid technologies
has increased interest of extending DSM to residential users
located within low voltage (LV) networks. As the approaches
applied for industrial DSM are not appropriate for the analysis
of LV networks, new methodologies must be developed and
implemented.
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At the LV level, the domestic energy demand depends on the
mixture of the individual electrical appliances, the behaviour
of the residential users and environmental aspects, such as
external temperature. It is the combination of these factors
which results in the stochastic nature of LV power demand
and requires more detailed simulation techniques than those
typically applied at the higher voltage levels. This generally
requires consideration of the specific loads available for DSM,
as load management must not impact on users’ quality of
life. The available loads, termed as ‘non-critical’, may be
rescheduled without affecting the users. This is demonstrated
in several studies that focus on specific load categories, such
as electric vehicles (EV) and heat pumps, and examine how
their manipulation could reduce the cost or the GHG emissions
[12], [13]. However, the analysis methods for EVs and heat
pumps assume that these devices allow for the interruption
of their operation. This is not the case for the majority of
existing domestic appliances and these techniques are not
directly transferable; for example, load categories such as wet
loads, operate in predefined, continuous cycles which have a
distinctive start and finish time.

In this paper, an approach for the implementation of DSM
on LV residential loads is presented, which includes considera-
tion of device operation cycles. This employs a multi-objective
optimisation algorithm which achieves the least economic and
environmental cost of the required daily energy of a group
of LV customers, and has been formulated to control the
weighting of the two drivers, with the minimum effort and
impact on customers’ lifestyle and comfort. In this analysis,
the effort is defined as the percentage of the load that is
required to be managed [14] and comfort is expressed as the
accumulated delay time of loads both for each household and
the total group. The selection of these quantifiable indices
allows for a clear picture of the effect of the approach.

As the concept of acceptable time delay will vary between
different users, a penalty factor is included within the optimisa-
tion formulation to account for a user-defined allowable delay
time of load operation. It is assumed that this functionality,
along with the ability for the user to be able to define a
priority list of DSM appliances on a centrally controlled smart
meter (SM), exists within the smart home framework. The
centralised system, represented by the optimisation routine
in this paper, would then decide which appliance(s) to delay
from the total group based on the combined user priority list.
The number of deferred loads per household is controlled
to ensure that the burden of energy management is equally
distributed among participating customers. Prioritisation of the
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loads prevents the algorithm from delaying the operation of
a second load in a household unless all the other customers
already have a postponed load cycle in the same day. This
also bypasses the need for the user to actively participate in
dynamic pricing response schemes, e.g. [15]–[17], and the
possibility of rebound effects when the load is reconnected.

To demonstrate the functionality of the developed optimi-
sation routine, the UK residential load sector is analysed for
four specific periods: winter 2008/2009, summer 2009, winter
2012/2013 and summer 2012. These have been selected to
investigate the effect of the sudden change in the price of coal
relative to gas during 2011 (possibly attributable to the US
shale gas revolution) on the price and GHG emissions profiles
of UK electricity and, thus, the result of DSM actions; high-
lighting the sensitivity of these profiles to international energy
markets. Summer and winter periods are both considered to
observe differences between minimum and maximum demand
conditions.

The paper is structured as follows: in Section II an overview
of the problem formulation is presented; Section III describes
the proposed methodology and the properties of the optimi-
sation algorithm; in Section IV, the case study is described
and the results of the application of the methodology are
presented and discussed; a sensitivity analysis on the penalty
factor parameter is used to highlight impact on optimisation
results in Section V; conclusions and suggestions for further
work are given in Section VI.

II. PROBLEM FORMULATION

The load management techniques in LV networks vary
according to the different load categories and the level of their
impact on people’s lives. LV residential load appliances can
be divided into two categories according to their necessity:
critical and non-critical loads, which should be user specified.
Although the use of critical loads cannot be modified without
changing the behaviour of household occupants, non-critical
loads can be deferred or shifted as part of load management
schemes. An example of a non-critical load category is wet
loads, including: dishwashers, washing machines, tumble dry-
ers and washer-dryers. The operation of these loads can be
postponed to another time of day, if needed, without noticeable
obstruction to the users.

However, these loads operate with preset cycles, suggesting
that the application of DSM in LV networks must facilitate
loads that use cycles of certain duration and power levels,
instead of theoretical bulk parts of daily energy ,to allow
for a more realistic study. In this paper, a multi-objective
optimisation routine is applied to schedule the use of user-
defined non-critical loads in order to obtain lowest combined
cost of both economic and environmental factors. This impact
has to be made explicit, as the reduction in cost and GHG
emissions are included in the main selling points of DSM
towards customers. The problem can be stated as follows:

Given a number of downstream loads with a user specified
priority list and associated time delay penalty factor, calculate
the optimum use of demand manageable resources in order to
obtain the lowest combined cost of price and environmental

impact of the aggregate demand for given price and emissions
profiles.

III. METHODOLOGY

The proposed methodology consists of a multi-objective
optimisation algorithm for shifting the load during the day.
The objectives of the study are to simultaneously minimise the
total daily cost of the power demand to the end-user and the
GHG emissions that derive from supplying the power demand.
In order to achieve these targets, the electricity price and GHG
emissions profiles are combined in the optimisation algorithm
and used as the drivers of the DSM actions on wet loads. A
significant output is the estimation of the minimum number of
shifted loads that are required for the best result.

A. Optimisation problem definition

The objective functions of the proposed algorithm can be
described mathematically by (1), (2) and (3).

min

tX
i=1

ccomb = min

tX
i=1

(x � cwi + y � emwi) � pen (1)

min(td) (2)

min(nswl) (3)

where ccomb is the combined cost and is calculated by cwi

and emwi which are the weighted values of the price and
GHG emissions respectively. The weighting factors x and y
are used to set the ratio of participation of the two criteria
in the calculation of the main driver. t defines the 1440 time
steps (24 hours at 1min resolution) and pen is the penalty
factor used to reduce the delay time td. nswl is the number of
shifted cycles.

The profiles of price and GHG emissions are weighted as
defined by the general equation in (4).

f =
(h � P )�min(h � P )

max(h � P )�min(h � P )
(4)

where f represents cw and emw and h can be replaced by c
and em, the price in £/MWh, the GHG emissions in tonnes
of CO2 eq./MWh respectively. P describes the active power
demand in MWh.

The constraints are defined in (5) - (9). The proposed load
management includes only load shifting and, thus, the daily
energy consumption should remain the same before (Eold) and
after (Enew) the manipulation (5), while (6) maintains the
operating cycle integrity of individual loads. Reduced peak
demand of the new aggregate load curve is enforced by (7),
and (8) avoids the possibility of concentrating all the shifted
load within a short period of time. The final limitation is that
the load cycle should not be reconnected during the two peak
demand time periods (9).

Enew = Eold (5)
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tendnew
� tstartnew

= tendold
� tstartold

(6)

Pmaxnew
< Pmaxold

(7)

Pmaxnew
� Pminnew

< Pmaxold
� Pminold

(8)

cycwl 62 [Tpeak] (9)

where Eold;new are the daily energy consumption before and
after DSM actions, tstartold;new

and tendold;new
are the appli-

ance cycle start and stop times before and after DSM actions,
Pmaxold;new

and Pminold;ned
are the peak and minimum values

of the aggregate active power profile before and after DSM
actions, cycwl is the time period of the shifted wet load cycle
and Tpeak include the periods of peak demand.

B. Optimisation algorithm

The price and emissions profiles are very important in the
load shifting process as they define the disconnection tdisc

and reconnection trec time step. Their direct correlation, even
after the conversion of the GHG emissions profile into an
equivalent cost, is not possible because of different scales.
In order to be able to control the level of effect of each driver,
both profiles are multiplied with the total power demand and
then normalised. The resulting profile is the combined cost
ccomb, as described by (1).

A heuristic and stochastic approach has been chosen. The
tdisc is set by the time of day when the maximum ccomb

occurs and the available load cycles at this time are selected for
shifting. The number of available load cycles is obtained from
a collated priority list, representing the DSM resource of entire
modelled population. The collated priority list is accessed
sequentially, beginning with highest ranked loads, ensuring
that participation is distributed between all households. If no
shiftable load is present during the time of maximum ccomb,
the nearest operation cycle is selected and used to define the
tdisc.

The time step of load reconnection trec is selected to achieve
the targets above without violating the constraints. To fulfill
this, the inverse of the ccomb is used to calculate the discrete
cumulative probability, and then the predefined penalty factor
is applied in order to minimise the total delay time. The trec

is selected stochastically based on this probability. This results
in the shifted loads being distributed more uniformly across
the periods considered as appropriate for reconnection, thus
avoiding the creation of a new peak.

IV. CASE STUDY

The methodology is applied to the UK residential load
sector in order to demonstrate the functionality of the optimi-
sation routine. For this study, 10,000 households (20 groups of
500 households, typical of highly urban networks in the UK)
were used to provide a good level of aggregation and allow
for marginal changes to be credible. Four specific periods,
Winter (December to February) 2008/2009, Summer (June
to August) 2009, Winter 2012/2013 and Summer 2012, for
reasons previously discussed, and five different combinations
of weighting factors (x and y in (1)) are considered to study
the sensitivity of the aggregate power demand to the economic

TABLE I
TEST CASE DEFINITION: OPTIMISATION DRIVERS

Test Financial criterion Environmental criterion
case contribution - x contribution - y

Case 1 1 0
Case 2 0.75 0.25
Case 3 0.50 0.50
Case 4 0.25 0.75
Case 5 0 1

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 

P
e

n
a

lt
y

 f
a

c
to

r
D e l a y  t i m e  ( h )

 S c e n a r i o  A
 S c e n a r i o  B
 S c e n a r i o  C

Fig. 1. Assumed penalty factor time delay values.

and environmental drivers. These are selected arbitrarily to
demonstrate the range of possible results when either finan-
cial or environmental considerations are prioritised, or some
combination of these drivers is chosen, with the weighting
factors for each case shown in Table I.

All scenarios use the wet load category as the demand-
manageable portion. Wet loads are responsible for a large per-
centage of the total daily power consumption (approximately
15%) of the annual UK residential demand [18] and exhibit
pronounced seasonal variations, with daily demand around
9% higher in the winter period. Therefore, the management
of such loads will potentially have an impact on the total
power demand, its cost to customers and the total daily GHG
emissions. This load category has to be managed differently
from the loads that have often been used in similar studies on
optimisation of load demand, because their operation cycles
should not be interrupted. In this analysis, the user-defined
priority list of shiftable loads is randomly allocated amongst
wet loads. This approximation is justified as the priority list
will be user input.

The optimisation time constraints are also consistent for
all presented analyses. Peak time (9) is defined in this paper
as the morning peak between 08:00 - 10:00 and the evening
peak, during 18:00 - 22:00, based on the typical UK residential
load curve. Three different scenarios of penalty factor value,
which sets the allowable maximum time delay of a given load,
are analysed in this paper. Three values of maximum delay
time are assumed: 6hrs, 12hrs and 24hrs, as shown in Fig. 1,
although any arbitrary value can be selected. In the analysis
presented in this section, only Scenario B is considered. The
impact of different penalty factors on the optimisation output
is discussed in detail in Section V.
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Fig. 2. Load model development work flow [19].
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Fig. 3. Power demand of wet loads and the total household demand.

A. UK residential load

The calculation of active power demand before and after
the load shifting requires the development of detailed power
demand profiles of individual households to identify the use
of ‘non-critical’ loads. In this paper, a previously developed
combined Markov chain Monte Carlo model is implemented
to generate the UK residential demand profiles [19]. The load
modelling approach is presented in Fig. 2 and is summarised
into three stages: user activity modelling; conversion of user
activities to electrical appliance use; aggregation of the elec-
trical appliances to build household power demand profiles
and load models. Other load models are compatible with the
presented optimisation methodology but they must be able to
generate individual appliances profiles for a given number of
households, e.g. [20].

The individual demand profiles have been selected to repre-
sent typical UK households based on the overall demographic
characteristics of the UK population for the analysed periods
[19]. Weekdays have been selected as they have the most
frequent use of wet loads [21]. The contribution of the wet
load category to the aggregate power demand of the selected
group is illustrated in Fig. 3. It can be seen that the two
daily peaks of the power demand of the wet load category
coincide approximately with the two daily peaks of the total
household demand during winter and are close to the peaks
during summer. This verifies that managing this load should
help to reduce the overall power demand peaks.

B. Generation price and GHG emissions

1) Generation price: Although the cost of electricity to the
end-user consists of a lot of factors, it is mostly derived from
the cost of generation. For the purposes of this paper, the
average electricity price is used. These values are derived from
market information published online by the balancing mech-
anism reporting agent [22]. This depends on the contribution
of all types of generation plants and remains constant due to
long term contracts. In the UK, the electricity price is largely
set by the power plants that work with fossil fuels, such as
oil and coal, because of their high marginal cost. Any load
shifting of this magnitude will create changes to the generation
of these plants as they respond faster to the demand changes.
Therefore, the average values of price can be used instead of
the marginal values.

In Fig. 4a, it can be seen that the profiles vary significantly
between the seasons and across the years. Winter profiles are
identified by a high peak early in the evening which is lower
in magnitude for 2012/2013 due to the drop in worldwide
coal prices, linked to the increase in fracking for shale gas
in the USA [23], [24]. The summer price profile of 2012 has
a similar trend to the summer of 2009, but the magnitude is
closer to those of winters. The general trend is summarised
as follows: the price of electricity increases during morning
load pick up and continues until around midday when it will
start to reduce, with significant early evening peaks observed
in the presented winter periods. In all analysed periods, the
electricity is cheaper during the night highlighting the need to
decongest the daytime load.

2) GHG emissions: The GHG emissions curves are the
short-term marginal emissions derived from operational and
market data for generation plants on the British grid [22].
Marginal data is required for this analysis because the shift
in non-critical loads will not affect the operation of baseload
plants, but only those operating on the margin, which tend to
have higher GHG emissions intensities. These curves represent
the average marginal emissions factor for the given time of
day across every day in the dataset for the considered period.
Corresponding curves of average emissions factor were also
calculated from the total emissions and output, which were
used to estimate the total GHG emissions before DSM was
applied. The calculation method is based on [25] and it is
described in detail in [26].

It can be seen in Fig. 4b that during both the summer
of 2012 and the winter of 2012-2013 the GHG emissions
fluctuated significantly, but with a trend of being higher at
times of low demand. This is likely to be due to high-emission
coal-fired plants providing both baseload and marginal genera-
tion at these times, while lower-emission gas-fired generation
provides a greater proportion of marginal generation during
times of high demand, providing a greater proportion of the
marginal generating mix when coal-fired plant are already
at full output. This relationship is mostly determined by the
relative prices of coal and gas, with coal-fired plant taking on
a higher proportion of the baseload when coal is cheaper than
gas. In contrast, it can be seen that during the summer of 2009
the trend of the GHG emissions was the inverse to that of 2012,
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Fig. 4. Daily profiles of price (a) and GHG emissions (b) per MWh [22], [26]
for the selected periods and the typical winter (W) and summer (S) profiles.

being higher at times of high demand, suggesting that gas-
fired plant was taking on a higher proportion of the baseload
generation, and that coal was more expensive. This was before
the drop in coal prices that has been reported since 2011.

3) Combined: Fig. 5 depicts the normalised combined cost
of the price of electricity and the equivalent cost of the GHG
emissions for each case according to (1) and (4). In the
majority of periods the price and GHG emissions profiles
conflict, such that they combine to produce a relatively flat
combined cost curve when price and emissions have the same
weighting (case 3), although the high peak in price in winter
evenings makes the price profile appear to dominate. In the
summer of 2009 the GHG emissions and price profiles did
not conflict, instead combining to create a clear curve.

C. Results and discussion: Cost

The results of cost optimisation for all time periods and
cases for the penalty factor B are presented in Fig. 6 to 9.
The curves of total daily cost of demand preserve the trend
of reducing the price, even when it is not used as a guide in
the optimisation algorithm. The characteristics of each year or
period generate some very interesting results; for example, it is
visible that the total daily cost of demand has decreased 20%
between winter 2008/2009 and 2012/2013 while it increased
18% between the summers of 2009 and 2012.

(a) Winter 2008/2009

(b) Summer 2009

(c) Summer 2012

(d) Winter 2012/2013

Fig. 5. Normalised combined cost profile for each case calculated using (1)
through (4) for the selected periods.
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(a) Total cost due to price

(b) Total GHG emissions

Fig. 6. Total price and GHG emissions during winter 2008/2009 after DSM
implementation.

(a) Total cost due to price

(b) Total GHG emissions

Fig. 7. Total price and GHG emissions during summer 2009 after DSM
implementation.

This can be explained by the change in generation mixture
between these two years (Fig. 4a). However, while the cost due
to price is following the total daily cost of demand, the GHG
emissions seem to reduce in volume after the introduction

(a) Total cost due to price

(b) Total GHG emissions

Fig. 8. Total price and GHG emissions during winter 2012/2013 after DSM
implementation.

(a) Total cost due to price

(b) Total GHG emissions

Fig. 9. Total price and GHG emissions during summer 2012 after DSM
implementation.

of fracking both in winter and summer by 17% and 20%
accordingly.

The results, summarised in Table II, also indicate that DSM
actions can have an impact on the cost due to price, with
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the maximum savings varying between 0.58% and 3.75%
depending on the season and price profile. The results also
demonstrate similar trends for each season (Figs. 6, 7, 8 and
9): in the winter there is a rapid decrease in total daily cost of
demand as the number of shifted cycles is increased to 3500,
beyond which it is either stabilised or decreases with a slower
rate; in summer the minimum combined cost is achieved at
the maximum number of shifted cycles - this is because the
power demand for electric heating and lighting is higher during
winter at reconnection time of the shifted loads, allowing for
more shifted cycles during summer.

Regarding the GHG emissions, different effects of the DSM
actions are observed for each of the four selected periods of
time. Table III shows the maximum GHG emissions savings
as a proportion of the emissions before any DSM actions (the
latter calculated from the average emissions factors), and it can
be seen that these are modest for all periods except summer
2009. When a large number of cycles are shifted, it was also
found that this could result in an increase in GHG emissions of
up 1.5%. Furthermore, it is observed that there are differences
between the same seasons of different years: in the winter
of 2008/2009, the emissions were found to increase at low
numbers of shifted cycles in cases 1 to 3, while they are
more constant in cases 4 and 5, where there is a weighting
in favour of the GHG emissions profile over the price profile.
Then, after approximately 4500 cycles, the emissions reduce
to the minimum values. In contrast, in the summer of that
year, the daily GHG emissions profile was very different, and
allowed for a much greater reduction by taking advantage of
all possible shifted cycles. In Fig. 7b, it can be seen that case
3 seems to provide the maximum emissions reductions.

This result can be explained by Fig. 5b and the fact that,
when both drivers are equally weighted in the combined cost,
they create a distinctive curve in favour of shifting loads to
the night time. As for the winter of 2012/2013 and summer
2012, it is interesting that the GHG emissions actually increase
as more cycles are shifted, due to the increased marginal
emissions at times of low demand as a result of cheaper coal.
For these years, the cases where the combined cost is based
on the GHG emissions profiles are the only ones that provide
some reduction in the emissions, but only for a limited number
of shifted cycles.

An important finding of this study is that it is difficult to
quantify the savings in GHG emissions and cost that can be
expected by the implementation of DSM, and that these are
highly dependent on the changing generation mix. Before the
US shale gas revolution, there were greater potential savings
due to DSM actions on wet loads; however, the increase in
shale gas production affected fuel prices and the generation
mix (and corresponding GHG profiles) in the UK, indicating
the global nature of the problem. As a result, after 2011, it can
be seen that the extensive use of DSM results in an increase
in GHG emissions, while the cost, to some extent, retains the
pre-fracking savings.

D. Results and discussion: Power demand
The effect of the reformed power curve of the wet load

category on the aggregate power curve for winter 2012-2013

TABLE II
PERCENTAGE SAVINGS AMONG PERIODS AND TEST CASES

Period Test Total daily cost Total cost Total GHG
Case of demand savings emissions savings

W08/09

Case 1 1.63 2.13 <0.01
Case 2 1.56 2.10 <0.01
Case 3 1.44 1.86 0.08
Case 4 1.29 1.46 0.18
Case 5 1.11 1.08 0.23

S09

Case 1 2.70 3.75 1.49
Case 2 2.91 3.57 1.76
Case 3 2.89 3.58 1.65
Case 4 2.43 2.87 1.82
Case 5 2.19 2.42 1.96

W12/13

Case 1 0.85 1.65 <0.01
Case 2 0.83 1.55 <0.01
Case 3 0.72 1.20 <0.01
Case 4 0.53 0.72 <0.01
Case 5 0.44 0.58 0.07

S12

Case 1 1.65 2.79 <0.01
Case 2 1.54 2.57 0.02
Case 3 1.30 2.09 0.04
Case 4 0.99 1.43 0.04
Case 5 0.78 1.02 0.07
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Fig. 10. Active power demand of total residential demand before and after
load shifting for minimum daily cost.

is illustrated in Fig. 10. The power during the peak hours
has reduced around 11.9% in the evening and 22.7% in the
morning which will help to alleviate stress in the electrical
network, and the duration of the morning peak has also been
reduced. The power demand during the night time has in-
creased significantly by 16.7 to 23.5%, depending on the case
and time. The power demand decreases or remains constant
during midday for case 1 and increases by up to 12.4% for
cases 3 and 5, showing the influence of the weighting between
the financial and environmental criteria. The ratio of max to
min load, defined in constraint (8), reduces from 2.54 for
the base case to 1.79, 1.97 and 2.10 for Case 1, 3, and 5,
respectively, clearly indicating a reduced variation in the power
demand profile.
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V. STUDY ON PENALTY FACTOR

In this section, further investigation on the impact of the
penalty factor, which represents a user-defined maximum time
delay limit, is presented. The same base case study is used data
but now a comparison is drawn between the total cost savings
and delay times obtained using the two extreme cases of the
penalty factor, denoted A and C (c.f. Fig. 1), and the average
penalty factor B. Penalty factor A places a more stringent
constraint on the optimisation process, while penalty factor C
will allow load reconnection to be deferred for up to 24hrs.

The results presented in Table III illustrate that the more
stringent constraint will return the lowest cost saving, although
it should be noted that a saving is still achieved. This can
be explained by the fact that, for this case study, the DSM
load portion (i.e. wet load category) is used consistently
throughout the day; therefore, short term load shifting will
only allow reconnection to periods with, possibly, equally as
high combined cost. Accordingly, not all load may be shifted.
All three figures show a large amount of households that have
either not used their wet appliance(s) or not participated in
the DSM implementation, i.e. the sum of summation of the
histogram is less than the total number of available DSM
resource within the modelled population.

As expected, the distribution of delay times becomes more
uniform as the penalty factor constraint is relaxed. This is
clearly visible in Fig. 11, which presents the cumulative delay
time experienced per individual household. As the values are
the total delay time per household, the total delay time can
be greater than the penalty factor specified for each individual
load. However, the majority of households experience a total
delay time less than individual load penalty factor; demon-
strating the correct implementation of the reconnection process
described in Section III-B.
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Fig. 11. Impact of penalty factor on the distribution of individual household
cumulative delay time.

TABLE III
INFLUENCE OF PENALTY FACTOR ON TOTAL COST SAVINGS

Period Test Penalty factor scenario
Case A B C

W’08/09

Case 1 1.39 1.63 1.18
Case 2 1.38 1.56 1.17
Case 3 1.32 1.44 1.12
Case 4 1.24 1.29 1.05
Case 5 0.17 1.11 0.14

S’09

Case 1 1.82 2.70 1.55
Case 2 1.89 2.91 1.61
Case 3 1.91 2.89 1.62
Case 4 1.82 2.43 1.55
Case 5 1.77 2.19 1.50

W’12/13

Case 1 0.68 0.85 0.58
Case 2 0.66 0.83 0.56
Case 3 0.65 0.72 0.60
Case 4 0.57 0.53 0.48
Case 5 0.42 0.44 0.36

S’12

Case 1 1.07 1.65 0.91
Case 2 1.01 1.54 0.86
Case 3 0.95 1.30 0.81
Case 4 0.86 0.99 0.73
Case 5 0.78 0.78 0.66

TABLE IV
IMPACT OF PENALTY FACTOR ON TOTAL DELAY TIME

Period Test Penalty factor scenario
Case A C

W08/09

Case 1 -46.5% 90.8%
Case 2 -47.0% 94.3%
Case 3 -45.7% 93.8%
Case 4 -45.8% 89.8%
Case 5 -41.3% 88.6%

S09

Case 1 -43.4% 90.7%
Case 2 -43.8% 87.2%
Case 3 -42.8% 86.4%
Case 4 -40.3% 88.0%
Case 5 -38.0% 93.1%

W12/13

Case 1 -42.0% 91.7%
Case 2 -41.0% 92.2%
Case 3 -41.6% 87.1%
Case 4 -40.2% 84.4%
Case 5 -39.8% 81.0%

S12

Case 1 -43.3% 94.0%
Case 2 -40.0% 90.0%
Case 3 -38.2% 90.8%
Case 4 -33.7% 92.6%
Case 5 -37.9% 91.3%

The total delay time is summarised in Table IV, displaying
the difference in total delay time of the aggregate population
for different penalty factor values. The total delay time experi-
enced by the aggregate group almost doubles for penalty factor
scenario C; but a consistent reduction of between 30 - 50% is
observed for the more stringent penalty factor scenario A.

VI. CONCLUSION

This paper has shown that management of LV loads can
allow for significant reductions in cost but is only effective in
reducing GHG emissions when coal is supplying the marginal
generation during the day. The study has combined daily
profiles of the average values of electricity price and marginal
GHG emissions with detailed models of LV residential loads,
through a multi-objective optimisation algorithm, including
customers’ comfort among the priorities. The results show
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that the financial factor has a greater impact in shaping
the combined total cost, suggesting that it is more difficult
to achieve GHG emissions savings than cost reductions by
shifting residential load. This may explain the current situation
of generation, where price is the main objective and GHG
emissions reductions are difficult. Also, the change in the
profiles and the generation mixture after the fall in coal prices
in 2011, had a substantial impact on the potential savings in
cost and GHG emissions. The resulting contradictive profiles
caused an increase in GHG emissions after an extensive
application of the DSM actions. This highlights the necessity
of using detailed power demand profiles and the difficulty of
forecasting the total impact of DSM actions without consid-
ering up-to-date cost and emissions profiles.

The presented methodology can be applied on contiguous
days’ demand profiles for forecasting and DSM planning
studies. The constrained reconnection periods, taken as peak
demand periods in this study, can be set to any arbitrary
time and can be coordinated with, for example, scheduled
short-term maintenance tasks. The calculated magnitude of
potential reductions suggests that DSM actions on non-critical
loads applied at both the LV level and at a larger scale can
lead to reductions in price and GHG emissions comparable
to those achieved by distributed generation (DG). This will
become more important if EVs become prevalent, as they
will present a considerable demand increase. Although the
presented methodology has been demonstrated on the wet load
category, it is more generally applicable and can be used to
coordinate the operation of any loads that operate in fixed
cycles, including first generation commercial EVs which do
not currently have the functionality to adjust their charging
current as assumed by several works in this area.
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