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Porosity and permeability calculations in a Biolithite using x-ray tomography images 
Adetomiwa Aderemi*, Elli-Maria Charalampidou, Zeyun Jiang, Heriot-Watt University. 
Erika Tudisco, Lund University. 
 
Summary 
 
Engineering energy storage/extraction for geoenergy 
applications (e.g., geothermal energy extraction, CO2 and/or 
Hydrogen storage) requires a very good knowledge of 
subsurface heterogeneities. One of the principal factors that 
influences the response of the underground system is the 
continuously evolving pore networks of the targeted rocks. 
This work aims to understand the pore network of a natural 
Biolithite (Figure 1), coming from a Greek outcrop, and to 
predict the permeability of lab-scale systems (due to 
diagenetic alterations and/or natural deformation) using x-
ray computed tomography (CT) images (3D) and stochastic 
model reconstructions. We emphasize on the importance of 
a reproducible image analysis workflow (Figure 2) during 
reservoir description, as an input to extracting pore network 
models that have representative geometrical and topological 
characteristics at core-plug scale. 
 
Introduction 
 
Successful characterization of carbonates starts from 
properly describing them by using globally defined 
classification standards (among others Folk, 1959; Dunham 
& Ham, 1962). Carbonates are susceptible to 
physicochemical reactions after deposition, though over a 
long period of time, these can alter the internal architecture 
of the rock creating complex pore networks and 
connectivity. 
 
X-ray CT is a method widely used in the non-destructive 
investigation of the internal architecture of rock fabric. 3D 
digital images can be used to create pore network models 
with the aid of novel extraction computer algorithms. 
 
The ability to reconstruct representative models of the pore 
network from x-ray CT images at different length scales 
unlocks a better understanding of spatial continuity of 
porosity and permeability and can be useful in deriving 
realizations of some rock and fluid properties in porous 
media such as capillary pressure, wettability, relative 
permeability, acoustic velocity, etc., which also control the 
behavior of lithological layers when subjected to stress or 
dynamic conditions (i.e., fluid production/injection). 
 
Image analysis workflow 
 
X-ray CT images (50μm resolution) were acquired (at Lund 
University) from three cylindrical Biolithite plug samples 
cored in three different directions (Figure 1). Higher 
resolution (10μm) images were further acquired on one of 

the samples – B23. The scanned samples had not been 
previously subjected to any lab-induced deformation. 
 
Table 1:  Summary of acquired image properties. 

 
 

 

 

 
Figure 1:  Biolithite samples and conceptual schematic of 
multilayered carbonate.  
 
 

 
Figure 2:  Workflow followed in this study. 
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The 3D digital images were pre-processed to reduce noise 
and facilitate the segmentation that followed-up. An 
important aspect of the pre-processing was the background 
subtraction. A study by Aaron, J., & Chew, T. 2021 defined 
the background in image analysis as any detected but non-
informative signal, whose presence may render subsequent 
analysis inaccurate or otherwise misleading due to un-even 
illumination in the background of the image during 
acquisition. 
 
A plot profile of the final conditioned 3D stack was used to 
understand relationships between the x-ray intensity, matrix, 
and pores. A normalized color scale on all samples, with 
modified display ranges, was used for better visualization of 
the internal architecture complexity of this Biolithite. Figure 
3 shows the importance of pre-processing on the quality of 
final image before analysis and interpretation. On all raw 
grayscale displays with examples in Figure 4, the matrix 
(lighter colors) has higher intensity, while the pores (in 
darker colors) have lower intensity. On the final processed 
display, two categories of pore-related features were 
observed on all images: magenta-cyan-navy blue, and a 
composite of black-red-green. The white and yellow color 
bands were correlated to the matrix. The rules set up for 
classification depend on the choice of grayscale ranges and 
determine the magnitude of porosity that is eventually 
calculated. The classification of trends and cluster analysis 
of the pores and matrix was performed using the Trainable 
Weka segmentation, a Java-based repository of machine 
learning algorithms. Labelled, binarized image volumes 
were then used to extract the pore network of each plug 
sample. Total porosity was calculated as the ratio of the area 
of each thresholded object to non-objects within a region of 
interest using the binarized 3D images. 
 
Pore anisotropy was investigated within a subset volume 
using the ‘OrientationJ’ plugin in Fiji – it uses a structure 
tensor calculated for each pixel in the image, by sliding a 
Gaussian analysis window - slice by slice throughout the 
whole stack (Clemons, et al., 2018). Local orientation 
properties were calculated and visualized as color images 
with the orientation encoded using a color map legend to 
indicate the axis when viewing a 2D slice (Figure 4b). 
Orientation magnitudes were crossplotted with Feret X & Y 
parameters to highlight the spatial position and relationship 
of pore clusters in the image stack (Figure 5c and d). The 
permeability tensor was calculated using the Pore Analysis 
Tools and the binarized images as input parameters. This 
calculation involves a) getting the 3D Euclidean distance 
map; b) voxel clustering; c) pore network space extraction; 
d) pore space partitioning; e) computing shape factor (Jiang 
et al., 2007). 
 
 
 

   
Figure 3:  B33 Raw and Final Images. 
 

 
Figure 4: Orientation in B23_HR (a) and B23 (b) samples. 
 

    
Figure 5:  An example of B23 sample interpretation. 
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Results & Discussion 
 
In the absence of additional information such as scanning 
electron microscope (SEM) images etc., we explored the 
textural/diagenetic features within this carbonate by 
combining them with the spatial geometrical relationship of 
the pore spaces and observations from previous works 
(among others Folk, 1959, Choquette & Pray, 1970 Lokier 
& Al Junaibi, 2016, Li, et al., 2020, Sun, et al., 2021, 
Ranjbar-Karami, et. al., 2021), which describes several pore 
facies with illustrations and images. An interplay of 
interparticle and moldic porosity is inferred based on x-ray 
CT data alone. 
 
The spatial relationship of interparticle and moldic porosities 
are inferred to be the main factor controlling permeability at 
this resolution; the smaller-sized pores contributing more to 
the permeability. The samples in this study have porosity 
between 18 and 30% measured from image analysis. 
Permeability varies between 0.1 and 70md. A plot of the 3D 
volume distribution of the extracted pore network shows that 
the sample is dominated by small sized pores. The larger, 
isolated pore sizes are estimated to be about 30-40% of the 
total porosity, while 60-70% is attributed to smaller, well-
connected pores. 
 
The pore geometry in sample B11 is elongated, and well 
sorted. B23 has similar characteristics but has a preferential 
alignment distributed along certain spatial clusters, which 
coincides with an increase in average pore size along the 
‘depth’ axes as seen in Figure 5c and d. No fractures, 
attributed to preferential alignment, are observed in this 
sample. It is unclear whether the observed pore anisotropy 
in sample B23 is due to local structural trends, depositional 
processes, or the direction in which the plugs were cut from 
the core. Zones which correlate to ‘porosity facies’ in each 
plug sample (Figure 6), were created using integrated 
density (Figure 5b) and mean intensity crossplotted with 
porosity. Higher correlation coefficients in each ‘pore facies’ 
are related to lower variability of pore sizes as observed for 
samples B11 and B23. B33 shows lower correlation 
coefficients with pores more randomly distributed, while 
crossplots of Feret X-Y with various properties in the z-scale 
show no trend.  
 
The choice of data preprocessing steps, gray value ranges - 
derived from pore/matrix feature characteristics, cropping to 
a region of interest before image analysis, etc. were observed 
to have an impact of up to ±30% uncertainty of porosity 
results in these samples. Although results from different 
binarization methods (Table 2) reveal that Kz has the highest 
magnitude in all cases, lower magnitudes of permeability 
were calculated in sample B33 using zones from the porosity 
correlation (Figure 6). ‘Plug-scale layering’ is also observed 
in the B33 sample because of alternate porosity and 

permeability variations. However, this effect is not apparent 
when looking at the physical sample. 
 
Table 2: Example of uncertainty from segmentation methods. 

 
 

 
 
The observed pore-throat structure derived from the image 
extracted pore network model are characterized by two pore 
throat frequency peaks with minor differences between them 
(Figure 7b). The range of properties (porosity, permeability, 
average pore throat radius) used in categorizing pore throat 
structures are similar to the wide bimodal type described by 
(Li, et al., 2020). Good correlation between coordination 
number and pore radius is observed as smaller pores have 
smaller coordination numbers. 
 
 
 
 
 

 

 
Figure 6: Correlation of calculated porosity across all samples.  
 
 

 
Figure 7: Permeability results from (a) Pore Analysis Tools 
(PAT) and (b) pore size distribution of B33 sample. 
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Pore Architecture Reconstruction (PAR)  
 
Acquiring x-ray CT data may not always be readily 
available. Additionally, when the pore geometry becomes 
more complex, extracting the pore network model might 
require high performance computers. PAR software 
stochastically reconstructs realizations of a 3D image using 
its 2D slices. When realizations of the reconstructed image 
replicate the pore network geometry and topology (GT), 
acquisition and processing costs, time and effort will be 
saved. A short sensitivity analysis on three cases was 
performed and a summary of the results are in Table 3. 
 
Table 3:  Comparison of PAR reconstructed models with original 
digital images. 

 
 

 
Figure 8:  Cross section across B33 input (50μm) and B33 stochastic 
modeled output – “Case 3”. (Blue = pores, and white = matrix) 
 
For case 1 at slice 502, the output model porosity and 
permeability of B23_HR was not representative. A smoother 
image was created with more connected pores in the output 
than the input. Sensitivities on different file setups other than 
just the default template setup may be necessary to identify 
suitable parameters for reconstruction of an image. 
 
Case 2 at slice 207, and case 3 at slice 670 (Figure 8) had 
better comparisons of permeability ranges than case 1. The 
process of averaging and interpolation when resizing a full 
stack image introduces uncertainties into the statistics of a 
resized volume during reconstruction. 
 
Results from Table 3 show that a simplified method that will 
potentially produce better realizations for this Biolithite 
sample will be to reconstruct arbitrary volumes from 2D 
slices within the same zone / layer, preferentially using 
binarized images generated from machine learning 
algorithms.  

 
Conclusions 
 
This workflow contributes to an improved sampling strategy 
in heterogenous pore systems as it enriches the data density 
and resolution of information that can be derived when 
characterizing a reservoir using core data. The sub-core scale 
textural heterogeneities in this Biolithite controls its porosity 
and permeability distribution. In sample B23, and B11, pore 
sizes are observed to increase along the height of the sample 
(the ‘depth’ axes). 
 
Permeability in three orthogonal directions was calculated 
for each core plug. Kz is higher than Kx and Ky in all our 
samples (Table 2). This trend can be explained by the fact 
that some pores exhibit smaller voids at shallower heights in 
the sample but become enlarged with increasing depth, as 
seen in a 3D projection within a smaller region of interest. 
Anisotropy in the B23 is controlled by preferential 
orientation of some pores which increased the Ky - 
component. The lower magnitude of Kz in B33 is believed 
to be due to the layering effect observed on the derived log. 
 
Upscaling & integration of image analysis derived properties 
into field-scale 3D reservoir models will help to optimize 
reservoir management strategies for different applications, 
e.g., in carbon capture and storage, geothermal energy, 
monitoring subsurface water contamination, and transport 
phenomena in geologic disposal of radioactive waste, 
unconventional and conventional oil & gas applications. 
 
Further work can incorporate results from other techniques 
such as: mercury injection capillary pressure (MICP), 
nitrogen gas adsorption, scanning electron microscope 
(SEM) analysis and corresponding mineralogical 
interpretation from thin section analysis, etc. to complement 
the results presented based on this image analysis workflow. 
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