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A B S T R A C T

In the context of a resilient energy system, accurate residential load forecasting has become a non-trivial
requirement for ensuring effective management and planning strategy/policy development. Due to the highly
stochastic nature of energy load profiles, it is difficult to predict accurately, and usually, predictions are
error-prone. This paper explores the potential of Empirical Mode Decomposition (EMD) in simplifying the
dynamics of complex demand profiles. The simplified components are then embedded within a deep learning
model, specifically Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM), to forecast
short-term residential loads. The novel modelling framework integrates Bayesian optimisation strategy, feature
decomposition technique, feature engineering phase, and percentile-based bias correction algorithm to enhance
model accuracy. The model is developed using a case-study residential dwelling located in Fintry (Scotland),
and the model performance is assessed over four forecast horizons. The overall efficiency of framework is
also investigated for three algorithms: random forest, gradient boosting decision trees (GBDT), and an LSTM
network. While EMD and feature engineering were found to greatly improve prediction accuracy, the number
of IMFs used was shown to significantly impact the model’s performance and computational complexity. The
model was tested on two further case studies from Fintry.
1. Introduction

The UK government is committed to the Paris Agreement and its
goal of limiting global temperature increase to well below 22 ◦C (Stef-
fen et al., 2018). Scotland, in specific, must reach this ambitious target
by 2045 (Committee on Climate Change, 2019). To meet this target,
the UK’s energy sector is expected to endure a dramatic transformation
by 2050. Besides climate change, other factors such as technological
advancements, political turbulence, and cultural changes are expected
to contribute to this transformation. Each factor impacts the other,
creating an uncertain future that makes the energy demand analytics,
simulation and forecasting a complex and challenging problem.

On the other hand, smart metres have become increasingly common
over the last decade. By the end of March 2022, 28.8 million smart
and advanced metres are installed in homes and businesses across the
United Kingdom. Smart metres are used by 48% of all domestic elec-
tricity metres managed by significant energy suppliers (Kerai, 2022).
As a result, researchers have access to a massive amount of demand
data. Researchers have used this data to improve energy efficiency
and sustainability in a variety of fields, including community energy
modelling, energy management, and energy forecasting. In this context,
the ability to accurately estimate energy demand could serve numerous

∗ Corresponding author.
E-mail addresses: al146@hw.ac.uk (A. Lotfipoor), s.patidar@hw.ac.uk (S. Patidar), d.p.jenkins@hw.ac.uk (D.P. Jenkins).

objectives, including optimising resource utilisation and recognising
potential risks, which is critical for sustaining a robust and resilient
energy system.

While numerous conventional machine learning approaches have
been utilised for energy demand forecasting, the fundamental novelty
of this research comes in its capacity to synergistically integrate several
existing components to create a comprehensive framework.

This paper is an attempt towards applying existing and widely
used ML approaches in a systematic fashion to improve the predictive
capabilities of underpinning ML approaches. The key novelty aspect of
the paper is in the development of a distinct framework or pipeline that
integrates various established data science methodologies. The archi-
tecture of the novel framework is based on the principle of combining
power of different approaches and thus integrates widely used data
science approaches for performing a systematic data preprocessing,
modelling, and post processing tasks. The framework employed in this
context is considered innovative due to its distinctive combination of
many data science methodologies. This framework has been specifically
developed to examine the hypothesis that the utilisation of demand
decomposition through Empirical Mode Decomposition (EMD) as a
preprocessing technique, combined with LSTMs and CNNs, along with
https://doi.org/10.1016/j.eswa.2023.121355
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a strategic post-processing scheme, can enhance the accuracy of de-
mand forecasting. One notable characteristic of the paper is that the
framework has been trained using a high-resolution demand dataset
obtained from Fintry, Scotland. In this context, the paper tested the
hybrid structure (designed by the authors) for improving the predictive
capabilities of underpinning ML approaches applied for high-resolution
dataset.

Generally, smart metres are used to collect data on energy usage,
which may contain outliers, missing numbers, and noises resulting
from a variety of external conditions. Existing methods frequently
employ benchmark datasets that have been collected and prepared for
modelling in a controlled manner. This leads to misleading results and
inhibits the adoption of these methods in the real world. To tackle these
issues, a pre-processing step is considered in the methodology to fill
missing values, handle outliers and perform log transformation on a
real-world case study.

The proposed forecasting models in literature frequently employ
standard multi-step forecasting strategies (i.e. direct or recursive) that
have multiple limitations, such as error amplification and ignoring the
interdependence between inputs and outputs variables. Deep learn-
ing is one of the few modelling tools that can natively implement
multi-output regression tasks. This paper uses a deep neural network,
specifically a CNN-LSTM (Convolutional Neural Network and Long
Short-term Unit), for multi-output forecasting of energy demand. The
model considers the relationship between each input and outperforms
the direct or recursive strategies.

On the other hand, deep neural networks have many hyperpa-
rameters that control their performance, which makes their training
procedure complex and obtaining the optimal combination of hyperpa-
rameters is vital for producing optimal results. Many researchers have
successfully employed Bayesian hyperparameter optimisation for quick
hyperparameter search in various domains as an alternative to widely
applied grid search and random search for hyperparameter search (Ha-
jializadeh, 2022; Passos & Mishra, 2021; Riyad, Khalil, & Adib, 2021).
This paper will also use a Bayesian hyperparameter optimisation to
train the model.

While the methods presented in the literature increase forecasting
accuracy for different case studies, they often model the original de-
mand profile directly without considering the inherent data characteris-
tics. Secondly, such an approach requires a complex model architecture
to learn the patterns in the dataset for producing accurate forecasts,
which raises convergence difficulty and forecasting error. To address
these issues, a hybrid modelling framework with an integrated decom-
position module, specifically Empirical mode Decomposition (EMD), for
data pre-processing and a separate module for conducting deep learning
procedures has been proposed as a potential novel solution.

Further, the proposed architecture employs a bias correction module
to improve energy demand forecasts and signal processing techniques
to create a feature map based on the original demand profile to im-
prove the forecasting model’s accuracy without the usage of external
information, such as climate data. All these novel elements are inte-
grated thoughtfully at different stages of model development to attain
optimum results.

Finally, to ensure the robustness and reliability of the proposed
modelling framework, an extensive set of experiments are conducted to
evaluate and validate the outcome of the proposed framework. These
involve using of unseen datasets from additional case studies in the
study area. In every instance, the framework achieves the lowest error
levels.

Thus, the proposed novel modelling framework will first time (to
the best knowledge of authors) integrates the potentials of EMD with a
CNN-LSTM along with Bayesian optimisation for generating short-term
forecasting of energy demand prediction at a temporal resolution of
30 min.

The primary objective of this research is to provide a comprehensive

framework for forecasting energy demand. Additionally, this research
aims to fill gaps in the current body of literature by proposing a
unique solution that overcomes restrictions that have been neglected
by earlier methodologies. By combining existing components from
literature, strategic design, and rigorous validation, this study aims to
surpass traditional limitations and propose an innovative framework for
forecasting energy consumption. The key steps are:

• Step 1 To handle the missing values and outliers in the datasets
and a log transformation for reducing the dataset’s variability.

• Step 2 Using EMD for decomposing load profile into numerous
intrinsic mode functions (IMFs) that detangles a complex signal
while extracting distinct underlying patterns.

• Step 3 Introducing a feature engineering pipeline for adding
new features to the input data for improving the overall model’s
learning capabilities.

• Step 4 Training a CNN-LSTM neural network, applied to all IMFs.
• Step 5 Finally, the prediction results of all IMFs are combined, and

an advanced percentile-based bias correction is used to produce
an aggregated output for load forecasting.

The proposed model framework can be utilised for a range of
applications such as shaping energy usage patterns, preventing outages,
extraction of useful information to support decision-making, future
planning, and taking proactive actions to tackle undesirable events.

The paper is organised as follows: The literature review section gives
a brief discussion on the technical details of the existing approaches for
demand forecasting; The methodology section introduces the different
elements of the methodology and approach for combining workflow;
the experimental setup section reports critical aspects of the research,
including model training, optimisation procedure and selection of eval-
uation metrics for accessing model performance; result and discussions
section to reports the key findings, and finally, conclusion section to
summarise the critical discussion on overall success and potentials of
the proposed methodology for future applications.

2. Literature review and related works

Various models for electrical load forecasting have been proposed
in the literature (Kuster, Rezgui, & Mourshed, 2017). These models
can be categorised as univariant or multivariant depending on the
number of variables factored in the modelling structure. Univariate
models involve a single variable, e.g. prediction model uses historical
observation to learn the dynamics of a process to generate forecasts,
whereas multivariate models could involve several related variables,
i.e. temperature, temporal characteristics, etc. along with any lagged
values to develop the model structure (Hong & Fan, 2016). A more
fundamental classification in forecasting models is the distinction be-
tween single-step and multi-step forecasting models. Single-step models
can predict for only one future time step for a given input matrix,
whereas multi-step models can generate predictions for multiple time
steps (user-specified number).

2.1. Multi-step forecasting strategies

There are two main approaches for multi-step time series forecast-
ing: the recursive and the direct strategies. In the recursive strategy, a
single model is trained to perform one-step forecasting. The recursive
strategy is sensitive to accumulated errors, as any error generated in the
initial forecast value will be naturally propagated forward to the next
forecast value. However, a recursive strategy utilising a single model
considerably reduces the computational effort required to forecast the
entire horizon.

In contrast, a direct technique utilises different forecasting models
for generating forecasts at each step of the forecasting horizon. Such an
approach is computationally expensive, and various models applied at

each step work independently and could perform variably in practice.



�(�[�S�H�U�W �6�\�V�W�H�P�V �:�L�W�K �$�S�S�O�L�F�D�W�L�R�Q�V ������ ������������ ������������A. Lotfipoor et al.
Fig. 1. Multi-input multi-output forecasting model.

For these potentially independent models, subsequent forecasts will
likely be based on different weights and biases (Taieb & Hyndman,
2012). Despite their differences, recursive and direct multi-step fore-
casting algorithms have one thing in common: they model a multi-input
single-output mapping from data. Researchers have demonstrated that
multi-output models perform better for long-term forecasting tasks
since the relationship between each step is considered in the model de-
velopment (Ben Taieb, Sorjamaa, & Bontempi, 2010). The multi-output
strategy involves developing a single model capable of predicting an
entire forecast sequence as output, and such an approach is widely
appreciated by researchers (An, Zhao, Wang, Shang, & Zhao, 2013;
Xiong, Wang, Fang, & Ma, 2019; Zhou, Chang, Chang, Kao & Wang,
2019; Zhou et al., 2019). Fig. 1 shows a graph of how such a strategy
works.

2.2. Machine learning for demand forecasting

Considering underpinning methodology, ASHRAE classifies energy
forecasting models as either physics-based or data-driven models
(Owen, 2009). The data-driven models can be constructed using sta-
tistical and/or machine learning approaches. The academic literature
encompasses a diverse range of statistical demand forecasting models
that employ various approaches. These models include Regression
models (Al-Hamadi & Soliman, 2005; Lam, Tang, & Li, 2008), the
decomposition approach (Zhou & Chen, 2019), and ARIMA (Bakhat &
Rosselló, 2011; de Oliveira & Cyrino Oliveira, 2018; Mitkov, Noorzad,
Gabrovska-Evstatieva, & Mihailov), which is particularly significant
in the field. Recently, machine learning based algorithms, have gar-
nered considerable interest. A comprehensive study evaluating the
performance of some of the widely applied approaches in demand fore-
casting, such as linear regression, support vector regression, AdaBoost,
bagging regression, gradient boosting, random forest, multilayer per-
ceptron (MLP), and K-nearest neighbour (KNN) can be reviewed else-
where (Robinson et al., 2017). A few interesting studies are discussed
here, including a comparison of the performance of Support Vector
Machine (SVM) and Recurrent Neural Networks on the day-ahead half-
hourly electricity consumption prediction for a group of households,
which can be referred elsewhere (Theile et al., 2018). Johannesen,
Kolhe, and Goodwin (2019) compared the performance of three algo-
rithms, random forest, KNN and Linear Regression, for 30 min and 24-h
forecasts of urban area electrical energy demand using the dataset of
the Sydney region. Huang, Yuan, Chen, Wang, Guo, and Ahmad (2019)
used XGboost, an Extreme learning machine and MLP for 2-h ahead
heating load forecasting at a temporal resolution of 30 min for a heat
pump in a residential community.

Although all of these techniques perform reasonably, they have
had limited success in providing dependable multi-step forecasting.
Because of the aforementioned reasons, forecast accuracies decrease
over time. As a result, most researchers adopt deep learning methods

for developing multi-step forecasting models.
2.3. Deep learning for demand forecasting

The objective of deep learning approaches is to discover feature
hierarchies in which higher-level characteristics are composed of lower-
level features (Bengio, 2009). Deep feedforward networks or multilayer
perceptrons are the foundational concepts of deep learning (Goodfel-
low, Bengio, & Courville, 2016). Layers are the building blocks of deep
learning models, among which fully-connected (FC) layers, Convolu-
tional Neural Networks (CNN) layers and Recurrent Neural Networks
(RNN) are the most important ones.

LeCun, Bottou, Bengio, and Haffner (1998) created and trained
convolutional networks using the error gradient, achieving cutting-edge
performance. Convolution retains the pixel relationship by learning
image features from small squares of the input data. Local connec-
tions and tied weights are used, followed by some sort of pooling
(Average/Maximum), resulting in translation-invariant features. Time
series forecasting, like computer vision applications, seeks to extract a
small number of low-level characteristics with a small receptive field
throughout the entire input. This strategy can significantly enhance
prediction system accuracy while maintaining calculation costs within
an acceptable range. CNNs have been used variety of tasks recently,
namely in image recognition (Sharma, Jain, & Mishra, 2018), mal-
ware detection (Shaukat, Luo, & Varadharajan, 2023) and time series
forecasting (Le et al., 2019).

Recurrent neural networks are the most successful sequence models
in deep learning and the LSTM and gated recurrent units are examples
of this (GRU) (Goodfellow et al., 2016). Hochreiter and Schmidhu-
ber (1997) proposed the LSTM architecture to address the problem
of vanishing gradients (Hochreiter, Bengio, Frasconi, & Schmidhuber,
2001) by introducing self-loops to produce paths where the gradient
can run for a long duration. A critical modification has been to make
the weight on this self-loop context-dependent rather than fixed (Gers,
Schmidhuber, & Cummins, 2000). With LSTMs, information travels
through a mechanism known as cell states, and the cell states allow
LSTMs to selectively allow information through. Those gates act on the
signals they receive, and, like the nodes of a neural network, they block
or pass on information based on its strength and import, which they
filter with their own weights.

Many recent research have shown that CNNs and LSTMs outperform
conventional Deep Neural Networks (i.e. MLP) across a wide range
of applications (Bhunia et al., 2019; Ding, Fang, Luo, Love, Zhong, &
Ouyang, 2018; Huang & Kuo, 2018; Núñez, Cabido, Pantrigo, Mon-
temayor, & Vélez, 2018; Zhao, Mao, & Chen, 2019). CNNs, LSTMs,
and FC layers all have complementing modelling capacities. CNNs are
good at decreasing frequency variations, LSTMs are good at sequence
modelling, and FCs are effective at mapping features to a more sep-
arable space (Sainath, Vinyals, Senior, & Sak, 2015). Some examples
that utilise the potential of deep learning algorithms include the work
of Amarasinghe, Marino, and Manic (2017). Their work investigated
the effectiveness of the CNN in generating multi-step energy load
forecasting at the individual building level. Sajjad et al. (2020) pro-
vided a review of using CNN and Gated Recurrent Units (GRU) for
accurate prediction of electricity consumption profiles using the IHEPC
dataset (Individual household electric power consumption). Moustris,
Kavadias, Zafirakis, and Kaldellis (2020) explored the potential of
MLP for multi-step medium, short and very short-term forecasting
of electricity load. Their study utilises the human thermal comfort-
discomfort biometeorological index as one of the critical features in
forecasting. Kim and Cho (2019) proposed a CNN-LSTM model using
the combination of CNN and LSTM for predicting energy demand on
the IHEPC dataset. Mustaqeem, Ishaq, and Kwon (2021) developed an
ensemble deep learning architectures using CNN, stacked LSTM and
bi-directional LSTM for hourly and daily demand forecasting. They
created their model using the IHEPC dataset and then evaluated it
using a local Korean dataset. Somu, Gauthama, and Ramamritham

(2021) developed a deep learning framework for energy consumption
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Fig. 2. (a) Energy demand profile, (b) Demand distribution.
forecast that consists of a CNN-LSTM component for capturing spatio-
temporal properties in consumption data and a clustering component
for analysing the trend in consumption data. Khan et al. (2021) pro-
posed a hybrid deep neural network for multi-step power consumption
forecasting, including hourly, daily, weekly and monthly. Their work
incorporated a dilated convolutional neural network (DCNN) with bidi-
rectional long short-term memory (BiLSTM) in a prediction model.
First, they used a pre-processing step to remove noise, normalise the
data and handle the missing values.

2.4. Pre-processing for demand forecasting

Models that use signal decomposition techniques are shown to
improve forecasting accuracy in the prediction of time series (Alharbi
et al., 2023; Chen, Ding, & Zhai, 2022; Fentis, Rafik, Bahatti, Bouattane,
& Mestari, 2022; Yang, Zhou, Wu, Liu, & Wang, 2022). Often it is useful
to decompose time series into distinct processes/components, each rep-
resenting a different underlying pattern. As a result of this, the process
complexity diminishes, and forecasting accuracy improves (Gao, Wang,
Zhang, & Li, 2022; Meng, Xu, & Song, 2022; Wei et al., 2022). Re-
searchers have used various decomposition approaches for improving
the accuracy of time series forecasting models.

Considering the use of decomposition strategy as a pre-processing
step for short-term forecasting, several variations can be cited, namely,
singular spectral analysis (SSA), empirical mode decomposition (EMD),
variational mode decomposition (VMD), and wavelet decomposition
(Ahmed et al., 2022; Pham, Yang, Kuo, Tseng, & Yu, 2021; Saraiva,
Carvalho, Santos, Barreto, & Freire, 2021). Huang, Shen, Long, Wu,
Shih, Zheng, Yen, Tung, and Liu (1998) introduced the empirical mode
decomposition (EMD) method for signal decomposition that applies to
both nonlinear and non-stationary time series. Several studies have
investigated the potential of the EMD approach for improving the
prediction of time series-based processes/applications.

Agana and Homaifar (2018) presented a hybrid predictive model
that integrated a denoised EMD with a deep belief network (DBN)
for drought forecasting. They first decompose the data into several
IMFs and then reconstruct the data by considering only relevant IMFs.
Elsewhere, an ensemble empirical mode decomposition (EEMD) is com-
bined with LSTM units for multi-step predictions of leakage flow of
reactor coolant pumps in nuclear power plants (Nguyen, Baraldi, & Zio,
2021). Zhang, Meng, Wei, Chen, and Qin (2021) reported the use of
EMD to train a deep neural network for sugar price forecasting. An
example demonstrating the application of an EMD approach in energy
demand modelling can be found in the work of An et al. (2013). They
studied the potential of EMD with a feedforward neural network for
improving multi-step forecasting of half-hourly demand profiles for a
Table 1
Statistical Characteristic of Observed Dataset (Site 12
in Fintry).

Statistical Characteristics

Number of Observations 15541
Mean 183.16
Standard Deviation 307.02
Minimum 0
25th Percentile 41
50th Percentile 64
75th Percentile 163
Maximum 3583

residential building. They used EMD for denoising the demand profiles
and predicted the electricity demand for an entire week.

Feature engineering, which researchers have utilised to improve the
accuracy of forecasts, is another technique for identifying patterns in
the data. Ayub et al. (2019) proposed a two-stage forecasting model
consisting of a feature engineering step and an SVM to accurately
forecast day and week-ahead electricity load. In another study, Xue,
Jiang, Zhou, Chen, Fang, and Liu (2019) compared the performance of
two multi-step forecasting strategies, direct and recursive, using three
algorithms, SVM, XGboost and a deep learning model. In their pre-
processing step, they used a feature engineering module to convert
categorical features to numerical ones. Zulfiqar, Gamage, Kamran, and
Rasheed (2022) utilised a Bayesian neural network with a feature engi-
neering module that uses the random forest and Relief-F algorithms for
feature selection. They used an hourly dataset to predict the day-ahead
forecast using their proposed network.

3. Data description

To develop the proposed methodology, smart metre data from the
Fintry village was selected. Fintry is a small village based in Stirling-
shire, Scotland. Fintry is comprised of about 350 households. Electricity
demand data from 115 participating houses in the community were
collected from May 2016 to April 2018 as part of the SMART Fintry
project, which was sponsored by the Scottish Government Local Energy
Challenge Fund (LECF) (Smith, 2018). For this case study, residential
building 12 with half-hourly demand data is used. The case study
was chosen based on the availability of sufficient electricity demand
datasets that are continuous over a long enough period of time to
capture temporal and seasonal variations.

The dataset’s statistical characteristics of site 12 are presented in
Table 1. In Fig. 2 two graphs are presented, the first graph (a) shows
the dynamics of electricity demand for the case study dwelling for
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Fig. 3. Proposed forecasting framework for energy demand.
Fig. 4. Fintry project - data outliers (resolution: 30 min).
the stated collection period, and the second graph (b) shows the dis-
tribution of demand data. Two additional buildings were chosen for
validation purposes and to evaluate the framework’s performance on an
unseen dataset from the same residential community. Details regarding
these two buildings are provided in the validation section.

4. Methodology

The proposed framework consists of five steps, three pre-processing
steps, one modelling step, and one post-processing step (Fig. 3). In
the initial pre-processing step, the demand data passes through three
modules: missing value infilling, outlier handling, and log transfor-
mation. The dataset is then decomposed into many IMFs using the
EMD approach. From this point on, each IMF is separately processed
and modelled. Each IMF undergoes the feature engineering module
and emerges with 46 features and target values for neural network
modelling. Next, the model is fed the features for generating a demand
forecast. Here, multi-output strategy for forecasting is used to develop
the model. In this model, the parameters are only trained once per IMF.
In the final step of the framework, each IMF’s forecasts are merged,
inverted with the log bias correction, and the final forecasted values
are produced.

4.1. Data pre-processing

Data pre-processing is important to ensure the overall success of
any machine learning project. The quality of the input data determines
the accuracy of the final forecasts along with the overall reliability
and robustness of the model for wider applications. Thus, to reduce
the forecasting error, the first step is to screen the input data and
perform a data quality assessment. Real-world datasets, like energy
consumption profiles collected from households, contain noise, missing
values and inconsistent observations due to a variety of reasons. The
proposed modelling pipeline performs a thorough pre-processing of the
dataset that includes infilling missing data, dealing with outliers, and
transforming demand data into an appropriate form.
4.1.1. Data cleaning
Missing data is a common issue, and a variety of factors, such

as collection and storage errors, contribute to this problem. Missing
values drastically impact the learning abilities of any machine learning
algorithm, and it needs to be addressed before any further processing.
There are various approaches for handling missing values, namely
mean imputation, forward fill, hot-deck, and many machine learning
algorithms.

The dataset used in this study are collected for an extended period
of time, and a close scan identified several long gaps of missing data.
Developing a suitable data imputation model is not the scope of this
paper; therefore, a sufficiently long block of the observation with
almost no missing values (i.e. < 1%) is selected to train the model,
in this case, the entire year of 2017 is used. In rare situations where
some missing observations were detected, the last valid observation was
propagated forward to fill in the gaps (forward fill method).

Outliers are well-known to skew the results and limit the model’s
accuracy if they are not appropriately addressed/accounted in. In-
terquartile range (IQR) was used to identify outliers in the dataset.
The IQR is a measure of statistical dispersion and is calculated as the
difference between the 75th and 25th percentiles. One technique to
detect the outliers is looking at the range of IQR where values fall in
the range of −1.5 to 1.5 IQR. The typical value for this factor is the
value 1.5; a factor of 3 or more can be used to identify values that
are extreme outliers (Tukey et al., 1977). Here a factor of 1.5 was
used. After identifying the outlier values, This study used the quantile-
based flooring and capping technique to deal with these values. In this
technique, the 2nd percentile value is used for flooring the lower values
and for capping the higher values, the 98th percentile value is used.
The objective of using flooring and capping techniques is not solely
focused on eliminating outliers, but rather on preserving the integrity
of the core demand patterns that underlie the data. The criteria that
have been chosen aim to achieve a compromise between modifying the
data and preserving its integrity. The boxplot graph of the values before
and after this technique is presented in Fig. 4.
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Fig. 5. Decomposition using EMD.
4.1.2. Log transformation and bias correction
From adding constants to multiplying, squaring, raising to a power,

converting to logarithmic scales, there is a plethora of data transfor-
mation approaches available for different applications (Osborne, 2002).
This paper used a log transformation approach which is a widely used
method to address skewed datasets. In addition, Log transformation is
generally used for ensuring normality and reducing the variability of
data (Changyong, Hongyue, Naiji, Tian, Hua, & Ying, 2014).

In machine learning applications, log transformation is commonly
used for variables with high magnitude. In the proposed methodology,
log transformation is used after the data cleaning, details are shown
in Fig. 3. Notably, using log transformation can often produce biased
predictions. Earlier studies discussed this bias within the context of
a simple regression-based model (Beauchamp & Olson, 1973; Koch &
Smillie, 1986; Newman, 1993; Sprugel, 1983).

Researchers commonly overlook this form of bias, which is often
seen to impact the predicted values in specific ranges substantially,
i.e. bias is large in certain ranges of value than the others (Patidar,
Jenkins, Peacock, & McCallum, 2021). Given the complexity of deep
neural networks, in this paper, a novel percentile-based bias correction
method (developed by the authors and detailed below) is used as a
post-processing step to fine-tune the prediction results:

Step 1: Estimate all percentiles from 0th to 100th at a unit step for
both observed and predicted series.

Step 2: Calculate the difference.
Step 3: Each predicted demand value, depending on the percentile

range they fall in, is biased corrected using the respective percentile-
based biased correction difference term.

4.2. Empirical mode decomposition (EMD)

EMD is a signal processing algorithm that is used for signal de-
composition in a variety of domains for analysing nonlinear and non-
stationary data (Huang, Shen, & Long, 1999; Huang et al., 1998).
The approach is based on the notion that time series are comprised
of several simple intrinsic oscillation modes, referred to as the In-
trinsic Mode Function (IMF). Each IMF is associated with a specific
frequency range derived from the original data. In other words, IMFs
are Amplitude-Modulated-Frequency-Modulated (AM-FM) signals that
represent specific frequency bands of the original time series, ranging
from high (first IMF) to low frequencies (last IMF) (Flandrin, Rilling, &
Gonçalvés, 2004).

Each of the IMF extracted for a time series dataset must meet two
requirements: the number of local extrema and zero crossings in the
entire dataset must be equal or should not differ by a unit, and the
average of the envelope outlined by the native maxima and minima
must be zero (Agana & Homaifar, 2018). The fundamental advantage
of EMD over other methods is that it involves an adaptive decompo-
sition process that decomposes the time series into a finite number of
IMFs and a monotonic residue without the need for predefined basic
functions (Nguyen & Kim, 2016).

Each IMF in the data reflects a separate oscillatory mode, thereby
isolating distinct frequency components and underlying patterns. This
inherent decomposition aligns well with the temporal and structural
nuances of energy demand data, effectively simplifying the data’s com-
plexity. IMFs give a more interpretable and controllable representation
of the signal by reflecting it in its natural modes, making subsequent
processing and analysis more focused and coherent. Following the data
pre-processing step, the EMD is applied to decompose the original
signal into several components. The number of IMFs is selected to
minimise the model’s forecasting error and computational cost. The
EMD decomposition of this case study is illustrated in Fig. 5.

4.3. Feature engineering (FE)

Feature engineering is the process of extracting features from raw
data and converting them into formats that the machine learning
model can use. The selection of critical features of the underlying
process/system can contribute to high performance and accuracy in
the final results (Zheng & Casari, 2018). In real-world applications
access to contextual information is often challenging. Thus, the pro-
posed modelling schematic only utilises the time series of observed
demand datasets i.e. a vector of input variables includes lagged obser-
vation, temporal features extracted from the timestamp of the observed
demand series, statistical features, and features extracted by Fourier
transformation.
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Table 2
The output of the feature engineering pipeline.

Type Features Description Features Description

Lagged Observation

lag_1 Value at time t lag_6 Value at time t-5
lag_2 Value at time t-1 lag_7 Value at time t-6
lag_3 Value at time t-2 lag_8 Value at time t-7
lag_4 Value at time t-3 lag_9 Value at time t-8
lag_5 Value at time t-4 lag_10 Value at time t-9

Temporal Features

hour Hour of timestamp day_part Custom function for segmenting a day
minute Minute of timestamp weekday Indicator for what day it is
day_cos Cosine of hour is_weekend Indicator for weekend days
day_sin Sine of hour is_holiday Indicator for Holidays
month Month of timestamp

Statistical Features

ts_mean Average rolling_mean_30 Rolling mean of last 30 values
ts_std Standard Deviation rolling_mean_40 Rolling mean of last 40 values
ts_min Minimum expanding_mean Expanding average
ts_max Maximum expanding_min Expanding minimum
ts_maxmin_diff Max-Min expanding_max Expanding maximum
ts_median Median ts_skewness Skewness
ts_IQR Interquartile range ts_kurtosis Kurtosis
rolling_mean_10 Rolling mean of last 10 values ts_energy Energy of Signal
rolling_mean_20 Rolling mean of last 20 values ts_peak_count Number of Peaks

Fourier Transform

fft_mean Average fft_IQR Interquartile range
fft_std Standard Deviation fft_skewness Skewness
fft_min Minimum fft_kurtosis Kurtosis
fft_max Maximum fft_energy Energy of Signal
fft_maxmin_diff Max-Min fft_peak_count Number of Peaks
fft_median Median
Fig. 6. Autocorrelation function and partial autocorrelation function for the past 96
observations.

In time series forecasting the main feature used for modelling is the
previous observations of the series. The number of lagged observations
used for modelling is selected using autocorrelation and partial auto-
correlation functions. Autocorrelation measures the extent of a linear
link between lagged values of a time series. The partial autocorrelation
at lag k is the correlation that remains after any correlations caused
by intervening data are removed. The autocorrelation function (ACF)
and partial autocorrelation function (PACF) of data for 96 lagged
observations (2 days) are presented in Fig. 6. It is important to highlight
that when data is seasonal, autocorrelations for seasonal lags will be
greater than for other lags, which the graphs clearly illustrate. It can
be concluded from the ACF and PACF that the past ten observations
in the dataset show high levels of significance with observation at the
current time. Thus, the past ten values were selected as the lagged input
features. The choice of ten lags is based on a balance between capturing
meaningful historical context and avoiding excessive dimensionality
that could potentially lead to overfitting.

Several features were added to the input dataset to enrich the
temporal characterisation of the dataset. This includes hour of the
day, minute of the day, cosine of the hour, sine of the hour, weekday
indicator, weekend indicator, month, and holiday indicator. Features
such as ‘‘cosine of hour’’ and ‘‘sine of hour’’ are derived from time-
of-day data, with the goal of capturing the cyclic patterns in energy
consumption caused by diurnal changes. The model effectively captures
the cyclical nature of energy use by portraying the hour of the day in a
circular fashion using trigonometric functions. In addition, an indicator
for time of day, highlighting a specific segment of the day to which
demand load could be attributed, is also added. For this function, the
24 h of a day were divided into 8 segments: dawn (4, 5), early morning
(6, 7), late morning (8, 9, 10), noon (11, 12, 13), afternoon (14, 15, 16),
evening (17, 18, 19), night (20, 21, 22), midnight (23, 0, 1, 2, 3). This
feature serves as a categorical indicator to capture variations in energy
demand across different times of the day.

Next, a set of statistical features were calculated from 96 previous
observations in the data to help the developed model capture the under-
lying pattern in the previous two days better. As shown in Fig. 6, there
is a correlation between the past 96 observations. 96 previous values
were chosen for subsequent feature engineering based on this pattern.
The statistical features used here are, average demand, standard devia-
tion, minimum, maximum, median, IQR, skewness, kurtosis, the energy
of the series, and the count of peaks in the series were calculated. Peaks
were selected using a peak prominence of 0.8. Prominence measures a
peak’s height and location compared to other peaks. A low, isolated
peak might be more prominent than a high, unremarkable peak.
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Fig. 7. Model Architecture.
Fig. 8. Input features and target.
Peaks were selected using a peak prominence of 0.8. Prominence
measures a peak’s height and location compared to other peaks. A low,
isolated peak might be more prominent than a high, unremarkable
peak. The number of peaks feature counts the number of local maxima
within a given time interval. This feature improves the model’s sen-
sitivity to abrupt spikes or surges in energy consumption caused by a
variety of causes such as extreme weather, events, or specific operating
practices. By taking peak frequency into account, the model becomes
more adaptable to rapid changes in energy use patterns. The moving
average for a window of 10, 20, 30, 40, the average, minimum and
maximum of expanding window were also added as features.

The Fourier transform decomposes a function of time series into its
constituent frequencies. Fourier transform provides a different perspec-
tive for analysing time signals because some signal properties can be
fully explored in the frequency domain. For exploring these properties
of the time series, the dataset was analysed with Fourier transform.
The Fourier transform was performed on the previous 96 observations
for each timestep, and the same statistical functions (as mentioned
above) were calculated to capture the underlying patterns in the series.
The details of these features, along with previously discussed ones,
are presented in Table 2. In total, 48 features were engineered for the
dataset.

During this phase of the framework, many features were added to
feature inputs and evaluated using a random forest model. The inherent
ability of random forest to quantify feature importance is a useful
tool for determining the relevance of each feature to the prediction
task. The model can rank the features based on their contribution to
prediction performance. As a result, this data guides the decision on
which features to keep, resulting in a principled approach to feature
selection. Only those specified in Table 2 were deemed beneficial for
enhancing the overall accuracy and efficiency of the model.
4.4. Model architecture

Fig. 7 shows the complete architecture of the developed model. CNN
layers are specialised layers for extracting features from the input data.
As a result, feeding the entire feature designed in previous stages does
not improve the network’s ability to learn, if not increases the error.
LSTMs are known for learning the relation between input sequences,
and here, there is no relation noted between the features, except for
the lagged observation. Thus, a multiple-input architecture is used for
developing the neural network.

Two convolutional layers are used in the model structure to extract
features from lagged observations. A max-pooling layer is added after
each convolutional layer to avoid over-fitting and reduce computa-
tional cost by limiting the number of parameters to learn. Max pooling
is a sample-based discretisation technique that seeks to minimise the
dimensionality of the input vector (Kulkarni & Satapathy, 2019). The
procedure utilises a pooling layer in the architecture to return features
with the highest value and importance.

After flattening the output of convolutional layers, the information
is passed to the two Bi-LSTM layers to detect patterns in both direc-
tions. Bidirectional LSTMs which are a subset of LSTM units have two
independent units together. At each time step, this structure allows the
networks to have both backward and forward knowledge about the
sequence.

Finally, after going through a dropdown layer, the first input array
arrives at a node to combine with engineered features. The engineered
features will go through three dense layers before arriving at this node.
The output of this node will then pass onto the two fully connected
dense layers for making the prediction. For the CNN layers, the filter
size of 128 was selected as the optimum number with a kernel size
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of 2. The activation function for these layers was the linear rectifier
unit (ReLU) function which is the default recommendation (Goodfellow
et al., 2016). As explained earlier, for the pooling phase of the network,
the max-pooling was selected with a pool size of 2.

The first three dense layers have 128 neurons each, and the last
two layers, which are responsible for mapping the input data to the
forecasted values have 50 and 25 neurons, respectively. These layers
used the ReLU function as their activation function. Besides the drop-
down layer used in the network, L2 regularisation was used. The L2

arameter, commonly known as weight decay, drives the weights closer
o the origin by adding a regularisation term to the objective func-
ion (Goodfellow et al., 2016). For compiling the model, the Adaptive
oment Estimation (Adam) (Kingma & Ba, 2014) algorithm was used

s the gradient-based optimiser for the architecture. The learning rate
as obtained by utilising the Bayesian optimisation.

Mean square error (MSE) was used as the loss function for training
he model. Furthermore, an early stopping method was used to prevent
he model from overfitting. The model was trained in 200 epochs with
batch size of 128. The model was developed using Keras’s functional
PI with TensorFlow 2.1.0 backend in Python.

. Experimental setup

This section presents the experimental setup for the proposed model.
he setup encompasses three main areas: input features and target
efinition, the use of Bayesian Optimisation for hyperparameter tuning,
nd the selection of models for comparison and error calculation.

.1. Input features and target

As mentioned in the Dataset section, the demand profile of a resi-
ential building in Fintry Village in Scotland was used for training and
esting this forecasting system. Fig. 8 shows the input features and their
apping to the final output of the model. The detailed information

bout each feature was presented in Table 2. The methodology dis-
ussed in the previous section was implemented to generate predictions
or a short-term period. For target values, four forecast horizons were
onsidered, five timesteps (2 h and 30 min), six timesteps (3 h), ten
imesteps (5 h) and finally fifteen timesteps (7 h and 30 min). In
ach training session, the model attempted a multi-input, multi-output
apping of the input characteristics to the predicted horizon, as shown

n Fig. 8 for the six timesteps horizon.

.2. Bayesian optimisation

A common feature of machine learning approaches is that they
re parameterised by a collection of hyperparameters that must be
et optimally by the user to maximise the usefulness of the learning
pproach (Claesen & De Moor, 2015). Manual hyperparameter search
ould be practically challenging due to the sheer number of hyperpa-
ameters involved in the calibration of deep neural networks. Similarly,
onventional hyperparameter optimisation approaches (i.e. grid search
r random search) are time-consuming and computationally expensive.

Bayesian hyperparameter optimisation was introduced by Wu et al.
2019) to improve the efficiency of machine learning algorithms. Here,
he hyperparameter tuning problem can be framed as an optimisa-
ion problem and Bayesian optimisation is used to solve the problem.
he search space, from which parameters can be sampled, the objec-
ive function, and the surrogate are the components of this method.
ayesian hyperparameter optimisation creates a probability model of
he objective function and uses it to identify the most promising hyper-
arameters for evaluating the true objective function.

Iteratively, the Bayesian optimisation process unfolds, with the
urrogate model guiding the selection of hyperparameter configurations

or evaluation. The surrogate model steadily refines its understanding
Table 3
Bayesian Optimisation - Hyperparameter Tuning Range.

Hyperparameter Range

Learning rate 10e-5 to 10e−1
L2 0.1 to 1
LSTM Units 32 to 256
Dense Units 32 to 256
Dropout rate 0.3 to 0.7
Batch size 32, 64, 128, 256, 512, 1024
Optimiser Adam, RMSprop, Adagrad
Activation Function ReLU, Leaky ReLU, Tanh

of the objective function landscape, efficiently closing in on hyperpa-
rameters that offer the most promising outcomes. Bayesian optimisation
differs from standard methods in that it can converge to optimal designs
with fewer objective function evaluations.

For the model, hyperparameters include learning rate, dropout rate,
batch size, etc. (shown in Table 3). The chosen hyperparameters for the
network were mentioned in the previous section. Bayesian optimisation
is a critical component of this study’s approach for predicting energy
demand using deep learning models. This strategy displays its effec-
tiveness in increasing the model’s predictive abilities while limiting the
computational expense associated with exhaustive search strategies.

5.3. Models for comparison and error calculation

The performance of the developed network is evaluated against
three established machine learning algorithms, namely random forest,
GBDT, and an LSTM network. GBDT (Friedman, 2001; Hancock &
Khoshgoftaar, 2020; Shwartz-Ziv & Armon, 2022) is a powerful and
widely used machine learning algorithm that has gained significant
popularity in recent years (Ibrar, 2022). In Python, two popular li-
braries commonly used for GBDT implementations are XGBoost (Chen
& Guestrin, 2016) and LightGBM (Ke, Meng, Finley, Wang, Chen, Ma,
Ye, & Liu, 2017).

The values of the hyperparameters were tuned using Bayesian Opti-
misation so that the maximum performance of the individual models
was achieved. All the model variants were trained using an 80/20
ratio for splitting the dataset into training and testing sets; however,
the train/validation/test configuration was used to develop the neural
networks (20% of train data was used as a validation set). As mentioned
earlier, the multi-output strategy was selected and used to develop the
random forest and the deep neural networks for multi-step forecasting.
However, the GBDT model was developed using the LightGBM package,
which does not support multi-output regression models. Thus, for the
GBDT model, a direct forecasting strategy was used.

The predicted values generated by the proposed model were evalu-
ated using three performance metrics, i.e. mean absolute error (MAE),
MSE and root mean square error (RMSE). These metrics provide quan-
titative measures of the forecasted values’ deviation from the actual
values, allowing the performance of different forecasting models to be
quantitatively compared and the most accurate and reliable approach
to be identified. MAE measures the average magnitude of the errors
in predicted values, without considering their direction. MSE is the
average squared difference between the predicted values and the actual
values. And RMSE is the standard deviation of the residual errors. They
are calculated as follows:

𝑀𝐴𝐸 = 1
𝑛

𝑛É

𝑖=1
𝑎𝑏𝑠(𝑦𝑖 − 𝑥𝑖) (1)

𝑀𝑆𝐸 = 1
𝑛

𝑛É

𝑖=1
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(𝑦𝑖 − 𝑥𝑖)2 (3)
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Fig. 9. Forecasts for three random samples from the Dataset for four forecast horizons.
Table 4
Analysis of Forecast Horizon.

Forecast Horizon RMSE

Five timesteps (2 h and 30 min) 95.26
Six timesteps (3 h) 98.82
Ten timesteps (5 h) 121.18
Fifteen timesteps (7 h and 30 min) 145.73

6. Results and discussions

Four scenarios were utilised to evaluate model performance: first, an
examination of the performance of the developed framework for var-
ious forecast horizons, second, a comparison of the developed frame-
work with stated ML approaches, and third, the effect of the number of
IMFs on forecasting performance. Finally, using two additional house-
holds in the village of Fintry, the performance of the framework is
validated.

6.1. Analysis of forecast horizon

This section examines the performance of the framework for various
forecast horizons. Concerning the prediction horizon, the question is
how many timesteps the developed framework can effectively predict
before the error becomes unacceptable. Four scenarios were created
to investigate this topic. Forecast horizons of five, six, ten, and fifteen
steps were investigated for forecasting using the same input attributes.
The results were achieved using the developed framework for energy
demand multi-step forecasting. For each forecast horizon, the same
input features and network architecture were used as mentioned in
Table 2.

In addition, Bayesian optimisation was employed to tune the model
for each forecast horizon. The furthest the developed model could
forecast with a reasonable accuracy was six steps; beyond that, the
error increases rapidly (Table 4). Fig. 9 depicts the results of forecasting
for three randomly selected windows from the dataset. Based on the
graphs, it can be stated that as forecast horizons lengthen, the model’s
ability to produce accurate results reduces, especially for peak values.

6.2. Comparative experiments

The developed framework, a CNN-LSTM network with Bayesian
Optimisation and a pre-processing phase with EMD, was evaluated for
forecasting six timesteps against benchmark models for comparative
analysis. Table 5 summarises the performance indicators (MAE, MSE
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Fig. 10. Example of forecasting for fintry dataset (6 timestep forecast horizon).
Table 5
Performance of different algorithms on the Fintry dataset.

Without FE With FE

MAE MSE RMSE MAE MSE RMSE

RF Train 64.93 32127.10 179.24 53.10 29461.28 171.64
Test 60.43 28810.18 169.73 50.12 26502.17 162.79

GBDT Train 50.76 21353.58 146.12 47.74 19246.38 138.73
Test 47.17 18907.89 137.50 44.31 17020.03 130.46

LSTM Train 56.01 25981.81 161.18 61.54 23006.63 151.67
Test 58.71 23267.18 152.53 57.72 20877.74 144.49

CNN-LSTM Train 47.74 19246.38 138.73 44.88 17412.79 131.95
Test 46.03 18157.06 134.74 43.17 16258.39 127.50

EMD-CNN-LSTM Train 36.19 12043.46 109.74 33.60 10599.60 102.95
Test 34.45 11049.77 105.11 32.05 9767.05 98.82

and RMSE) obtained from all the algorithms for training and testing
sets. The following conclusions could be drawn from the analysis of
the data shown in Table 5:

1. It can be seen that the EMD-CNN-LSTM network provides the
lowest values for all the three evaluation metrics ensuring a near
accurate forecast, thus outperforming all other models. In Fig. 10,
examples of forecasting accuracy of the developed model can be seen
for several randomly selected windows.

2. In Fig. 10, it can be seen that the model, in some cases, struggles
to forecast the peak values accurately. This need to be addressed in
future work by adding new features to capture the pattern of peak
values.

3. Furthermore, it can be argued that the CNN-LSTM network can
be generalised best to unseen data due to the low difference between
RMSE for train and test datasets, increasing the model’s robustness
and generality. The reason for this could be all the measures that
were implemented to prevent the model from overfitting, such as the
use of max-pooling layers, dropout layer, L2 regularisation, and early
stopping.

4. The random forest model has the worst performance in two
metrics compared to all other methods. Its performance for MAE is
slightly better than the LSTM model. The second worst model is the
LSTM network which performs poorly in this experiment. This can
be attributed to the fact that the LSTM units cannot find the vital
information for an accurate forecast due to the complex patterns in the
fine-resolution demand dataset.

5. The GBDT model was developed using the LightGB package,
which enables the development of boosted decision tree-based models
for a variety of tasks. The results obtained using this approach are
comparable to the CNN-LSTM network designed specifically for this
task. However, when comparing the performance of the framework
using EMD, feature engineering, and bias correction, the framework’s
performance is significantly improved. It is worth noting that the beta
version of this library now includes support for multi-output regression;
hence, in the future, with the use of this method, improved results may
be obtained.

6. All algorithms performed better with the engineered features, as
seen in Table 5. At this fine resolution, the demand observations include
so many hidden patterns that just feeding the lagged observations could
not create reliable forecasts in multi-step forecasting. The engineered
features assist the algorithms in learning these underlying patterns and
producing accurate projections.

7. The EMD-based approach has better prediction accuracy than the
base model without EMD. The following section presents a study on the
number of IMFs for modelling.

6.3. Impact of number of IMFs

As explained in the methodology section, after processing the dat
aset in pre-processing phase, the dataset is decomposed into several
IMFs, and then the feature engineering module, modelling and bias
correction are applied to each IMFs. This means that for a decomposed
time series of ten IMFs, the training and testing of the deep neural
network is done for ten distinct cycles. Thus, the number of IMFs
decomposed with the EMD method significantly impacts the model’s
performance. It also impacts the computational cost of the training in
such a framework. In this section, the objective is to determine the
optimal number of IMFs to employ in the framework.
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Fig. 11. RMSE of the developed model in terms of the number of IMFs used.
Fig. 12. Forecasting error for each IMF.

Fig. 11 shows the performance of the model (RMSE) in terms of
the number of IMFs used in training the model. From the graph, it can
be concluded that the RMSE is relatively large for the low number of
IMFs (around 4), and then it decreases on a gentle slope by adding
each IMF. The problem with using too many IMFs is that a new model
needs to be trained for each IMF. For the Fintry dataset, the optimum
number of IMFs used for training the model, in terms of accuracy and
computational cost, is seven, resulting in an RMSE value of 98.82.

In Fig. 12 the error values of the developed model on each IMF is
reported. High-frequency IMFs, which are IMFs 1 to 4, are the most
challenging for the model to learn and forecast, as it is evident from
the values reported in Fig. 12. As the decomposition proceeds, the error
in forecasting decreases. Higher IMFs have low fluctuations and clear
linear and cyclic patterns. That is why a machine learning algorithm
has more success in finding and learning these patterns.

6.4. Model validation

To validate the performance of the framework on new data, two
additional households from the Fintry dataset were chosen for further
examination. To investigate if the model can only forecast similar
demand profiles or if it can be generalised to diverse profiles, one
household with a similar demand profile and one with a dissimilar
demand profile was chosen. The kernel density estimate (KDE) plots
of each site were plotted to select new datasets. A KDE plot is a
method for visualising the distribution of observations in a dataset. In
Fig. 13, a distribution plot of eight sites is presented. By comparing the
distributions and the statistical characteristics of each site, two new
sites were chosen. Site 25 is the site with a similar demand profile,
and site 75 is the site with a dissimilar demand profile. The statistical
characteristics of these two households are presented in Tables 6 and
7.

As anticipated, site 25, which has a similar usage pattern to the
original dataset (site 12), demonstrated comparable results to the origi-
nal dataset in multi-step forecasting (six timesteps) using the developed
framework. No additional step was required in this process to achieve
these results. This was expected due to the similarity in the underlying
patterns in the demand profile for both buildings. However, for site
75 which had a different usage pattern than site 12, the forecasting
framework did not perform well at first.
Table 6
Statistical Characteristic for site 25.

Statistical Characteristics

Number of Observations 15539
Mean 172.92
Standard Deviation 344.88
Minimum 0
25th Percentile 32
50th Percentile 58
75th Percentile 156
Maximum 4980

Table 7
Statistical Characteristics for site 75.

Statistical Characteristic

Number of Observations 15541
Mean 867.15
Standard Deviation 507.65
Minimum 0
25th Percentile 438
50th Percentile 745
75th Percentile 1214
Maximum 4970

Table 8
Forecast Errors for all three sites, in terms of RMSE for test set.

Site RF GBDT LSTM CNN-LSTM EMD-CNN-LSTM

Site 12 162.79 130.46 144.49 127.50 98.82
Site 25 203.68 135.65 172.60 145.12 108.74
Site 75 328.74 256.91 293.72 269.62 229.86

It was necessary to upgrade the CNN-LSTM network by retraining
it on the new dataset. Bayesian optimisation was also used for hyper-
parameter tuning of the model. After training the network with data
from site 75, the error fell within an acceptable range. There was no
additional modification required for the framework to function here.
The forecasting error is presented in Table 8 for all three case studies.

7. Conclusion

To optimise resource utilisation and provide a resilient energy
system, it is necessary to accurately predict energy demand. Numerous
studies have been undertaken to establish an accurate energy demand
forecasting model. This study was carried out to assess the performance
of a CNN-LSTM model for producing energy demand predictions using
EMD and feature engineering. The model presented here was developed
and evaluated using a demand load dataset (30-minute intervals) from
a residential building in Fintry village, Scotland. The proposed frame-
work’s innovative structure includes a pre-processing phase, an EMD
module, a feature engineering step, a CNN-LSTM model with Bayesian
Optimisation, and finally a log bias correction step.

By testing the proposed framework for four distinct forecast hori-
zons, this study established that five and six timesteps have the lowest
forecasting error. In addition, the framework showed difficulty predict-
ing peak values for longer forecast horizons. This can be addressed in
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Fig. 13. Kernel density estimate plot of eight households in Fintry.
future research by adding features to the dataset to help the model
capture the peak pattern.

In addition, the model’s performance was compared to that of the
random forest, LGBM, and an LSTM network to determine if the CNN-
LSTM architecture is favourable in this application. The results were
obtained in two conditions, one with feature engineering step and one
without. The acquired results confirmed the proposed architecture’s
efficiency in exceeding all well-established models. EMD-CNN-LSTM
has a lower RMSE value assessed on test data than the other methods
explored herein. Furthermore, the EMD and feature engineering stages
significantly increase predicting precision.

Next, the effect of the number of IMFs utilised in the framework
was examined. It was demonstrated that seven IMFs are optimal for
producing correct results at a reasonable computing cost. Using a loss
curve from the deep learning model, it was determined that lower IMFs
are more challenging for the model to learn than higher IMFs, for which
the loss function converges at earlier epochs.

To validate the framework on unseen datasets, two additional case
studies from the Fintry dataset were chosen. Results demonstrated that
the framework can generate reliable predictions for the case study with
a distribution similar to the original dataset. The deep learning model
had to be retrained and optimised for the second case study, which had
a different distribution. However, after making these adjustments, the
error fell within an acceptable range.

In terms of limitations, the proposed framework in this study was
evaluated using a specific dataset from a dwelling in Fintry village,
Scotland. As a result, the findings’ applicability to other regions or
different types of building may be limited. To ensure the model’s
robustness and application, future research should try to incorporate
a more wide range of datasets from other regions and building types.
Exploring transfer learning techniques to adapt the designed framework
to different households with diverse consumption patterns could lead
to a more widely applicable energy demand forecasting system in the
future.
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