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Abstract

Many numerical algorithms on matrices or tensors can be
formulated in a blocking style which improves performance
due to better cache locality. In imperative languages, block-
ing is achieved by introducing additional layers of loops in a
nested fashion alongside with suitable adjustments in index
computations. While this process is tedious and error-prone,
it is also difficult to implement a generically blocked version
that would support arbitrary levels of blocking.

At the example ofmatrixmultiply, this paper demonstrates
how rank-polymorphic array languages enable the specifi-
cation of such generically blocked algorithms in a simple,
recursive form. The depth of the blocking as well as blocking
factors can be encoded in the structure of array shapes. In
turn, reshaping arrays makes it possible to switch between
blocked and non-blocked arrays. Through rank-polymorphic
array combinators, any specification of loop boundaries or
explicit index computations can be avoided.
Firstly, we propose a dependently-typed framework for

rank-polymorphic arrays. We use it to demonstrate that all
blocked algorithms can be naturally derived by induction
on the argument shapes. Our framework guarantees lack
of out-of-bound indexing, and we also prove that all the
blocked versions compute the same results as the canonical
algorithm. Secondly, we translate our specification to the
array language SaC. Not only do we show that we achieve
similar conciseness in the implementation, but we also ob-
serve good performance of the generated code. We achieve
a 7% improvement compared to the highly-optimised Open-
BLAS library, and 3% compared to Intel’s MKL library when
running on a 32-core shared-memory system.

CCS Concepts: • Theory of computation→ Data struc-

tures design and analysis;Algorithmdesign techniques;
• Software and its engineering→ Source code genera-

tion; Functional languages; Data types and structures.
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1 Introduction

Blocked implementations of numerical algorithms are com-
monplace in high performance computing. Blocking makes
it possible to keep data that is necessary for the computation
within fast(er) levels of the memory hierarchy, ameliorat-
ing the effect of memory bottlenecks. Typically, deriving a
blocked version of a given algorithm is a non-trivial task.
Especially in the context of imperative languages such as
Fortran or C where one has to talk explicitly about nested
loops, references to memory and index computations. Many
numerical algorithms have gone through extensive analyses,
leading to highly tuned codes containing several blocking
variants alongside with inline assembly code to enable the
highest possible levels of performance. Using such imple-
mentations through libraries such as OpenBLAS or MKL,
while being convenient, may leave us feeling uneasy for
mainly two reasons. Firstly, it is difficult to verify that such
highly-tuned blocked versions actually implement the orig-
inal algorithm. Secondly, any modification of the blocked
implementation that introduces further levels of blocking or
that change blocking factors are non-trivial and error-prone.
It turns out that the task of deriving blocked algorithms

becomes significantly easier if we view this problem from
within a rank-polymorphic array theory. By equipping ar-
rays with a multi-dimensional indexing structure described
through shapes, blocking algorithms appear almost auto-
matically by induction over the shapes. Modifications of
the blocking structure boils down to reshaping argument
arrays prior to applying the algorithm. We find this result
aesthetically pleasing, and with this paper, we take you to the
journey through the envisioned framework where blocked
algorithms can be defined, proven correct, and turned into
code that runs efficiently on state-of-the-art parallel archi-
tectures.
We use a dependently-typed system to introduce the ar-

ray theory, implement the algorithm and its blocked version

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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using shape recursion, and we prove that these two versions
compute the same results. We use Agda for the actual im-
plementation, but any implementation of Martin-Löf type
theory can be used instead. After that, a dependently-typed
formulation is turned into a SaC program. SaC is an array lan-
guage that admits rank-polymorphic architecture-agnostic
specifications, yet its compiler is capable of generating highly
optimised parallel code.
We use blocked matrix multiplication as a running ex-

ample to demonstrate the process. Some stages are fully
automated, others are performed manually. The latter in-
dicate immediate future work. While not being anywhere
near a “press-button” tool chain, we manage to match per-
formance of hand-optimised state of the art libraries such as
OpenBLAS or MKL from high-level specifications, without
ever writing a single line of assembly.
The main contributions of this paper are:

• The observation that rank-polymorphism enables very
elegant specifications of shape-guided blocking;

• The specification of blocked matrix multiplication as
a shape-recursive program within
a rank-polymorphic array theory;

• A formal proof that blocking preserves the semantics
of the canonical algorithm;

• A shape-recursive blocked matrix multiplication in
SaC;

• Performance analysis and tuning of the SaC version so
that it matches performance of OpenBLAS and MKL.

2 Blocked Matrix Multiplication

Suppose � is an " ×  matrix and � is an  × # matrix.
Then the canonical definition of their product is given by
the following formula:

(��)8, 9 =
∑
?< 

�8,? · �?,9 .

The product �� represents the composition of the linear
functions that � and � represent.
Now, if we can split � and � into blocks, we can define

a blocked version of the same algorithm. Assuming that
" = "̂1" ,  =  ̂1 and # = #̂1# , we can subdivide � in
submatrices of size 1" × 1# , � into blocks of size 1# × 1 
and �� into blocks of size 1" × 1 . In this case, matrix
multiplication is given as:

©­­«
�0,0 · · · �

0, ̂
...

. . .
...

�"̂,0 · · · �"̂, ̂

ª®®¬
©­­«
�0,0 · · · �

0, ̂
...

. . .
...

� ̂,0 · · · � ̂,#̂

ª®®¬
=

©­­«

∑
?< ̂ �0,?�?,0 · · ·

∑
?< ̂ �0,?�?,#̂

...
. . .

...∑
?< ̂ �"̂,?�?,0 · · ·

∑
?< ̂ �"̂,?�?,#̂

ª®®¬

The interesting observation here is that we can iterate
this process by applying blocking within the inner matrix
multiplications. We can do this up to the moment we get to
the matrices of size 1 × 1, in which we can stop and use a
regular element product to compute the result. Putting these
observations together we obtain a recursive algorithmwhere
the base case is a regular product, and the recursive step is
the blocked decomposition described above.

3 Discovering Blocked Algorithms

The initial point of our framework is a dependently-typed
language. We use Agda, but none of the constructions pre-
sented below are Agda-specific, so any implementation of
Martin-Löf type theory can be used instead. Our formalisa-
tion introduces a minimalist rank-polymorphic array theory,
derives blocked matrix multiplication and proves its cor-
rectness. This section is written in literate Agda, so all the
expressions have been typechecked. We assume some famil-
iarity with Agda syntax, otherwise consider folllowing any
of these1 tutorials.
When working with dependent types it is important to

chose the right encoding for the data that we are reasoning
about. A well-chosen encoding can either make all further
reasoning pleasant or turn it into a nightmare.
In our case, we have to chose representation for multi-

dimensional arrays. We want to be able to reason about
rank-polymorphic functions on these arrays and guarantee
safe indexing. We are not interested in capturing low-level
implementational details such as memory allocation or syn-
chronisation of threads. For such cases, it is a common prac-
tice to represent arrays as functions. For the purposes of
rank-polymorphism, we have to chose a convenient repre-
sentation for array shapes and array indices.
Array shapes are sequences of natural numbers. While

these can be represented as lists, we encode them as finite
binary trees, where leaves are natural numbers. Such encod-
ing makes it possible to describe non-trivial traversal of the
shape sequence inductively. We call the data type for shapes
S, and we define it inductively using two constructors.

data S : Set where
] : N→ S
_⊗_ : S → S→ S

Leaves of the shape tree are constructed with ] which takes
one argument. The _⊗_ constructor creates a tree out of
two subtrees which are the arguments of the constructor.
Note that underscores in _⊗_ specify the positions where
the arguments go, therefore ⊗ is a binary infix operation.

Array indices (positions) are given by the dependent type
P which is indexed by array shapes. A position for the given
shape has exactly the same tree structure as the shape, but all

1The list of introductory tutorials to Agda can be found here: h�ps://agda.
readthedocs.io/en/v2.6.3/ge�ing-started/tutorial-list.html
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the leaves are natural numbers that are bound by the shape
leaf. Again, P is given inductively using the following two
constructors.

data P : S → Set where
] : Fin n→ P (] n)
_⊗_ : P s→ P p → P (s ⊗ p)

The type of arrays is indexed by the element type and the
shape. We use a C-like syntax with square brackets after the
element type. Objects of this type are functions from array
indices into array elements.

_[[_]] : Set → S→ Set
X [[ s ]] = P s→ X

There is no need for special syntax for creating arrays, as
this can be achieved by a lambda term. Neither there is a need
for the syntax for array selections, as this can be achieved
with function application. Yet, for aesthetic purposes, we add
a C-like syntax for array selections:

_[_] : X [[ s ]] → (P s→ X)
a [ ix ] = a ix

Summation. As a prerequisite for defining matrix multi-
plication, we have to define array summation. We define a
1-dimensional version of summation called sum1. After that,
we will generalise it to arbitrary shapes.

We start with a few helper operations: ]suc increases the
given 1-dimensional index by 1; hd is the head (first element
of the 1-dimensional array); tl is the tail (the 1-dimensional
array without the first element).

]suc : P (] n)→ P (] (suc n))
]suc (] i) = ] (suc i)

hd : X [[ ] (suc n) ]] → X

hd a = a [ ] zero ]

tl : X [[ ] (suc n) ]] → X [[ ] n ]]

tl a i = a [ ]suc i ]

With these operations in place, sum1 is defined recursively.
The function has two arguments: the binary function, the
initial element and the 1-dimensional array that we sum.
For the empty array we return the initial element, and for
non-empty arrays we add the head of the array to the sum
of the tail.

sum1 : (X → X→ X) → X→ X [[ ] n ]] → X

sum1 {n = zero} f e a = e

sum1 {n = suc n} f e a = f (hd a) (sum1 f e (tl a))

Array Combinators. It is useful to invest a little time
in defining common array combinators. As our arrays are
functions, we can easily define: K x to produce an array
where all the elements are G ; map f a to apply 5 to all the
elements of 0; and zipWith f a b to apply the binary operation
5 to arrays 0 and 1 point-wise, given that 0 and 1 are of the
same shape.

K : X→ X [[ s ]]

K x i = x

map : (X → Y) → X [[ s ]] → Y [[ s ]]

map f a i = f (a [ i ])

zipWith : (X→ Y→ Z)→ X [[ s ]] → Y [[ s ]] → Z [[ s ]]

zipWith f a b i = f (a [ i ]) (b [ i ])

The nest and unnest combinators make it possible to treat
the same array as a nested one (array of arrays); or as an array
of a product shape. Note that both operations change the
order of the shape components because our array notation
(_[[_]]) is a postfix operation.

nest : X [[ s ⊗ p ]] → X [[ p ]] [[ s ]]

nest a i j = a [ i ⊗ j ]

unnest : X [[ p ]] [[ s ]] → X [[ s ⊗ p ]]

unnest a (i ⊗ j) = a [ i ] [ j ]

Generalised Sum. We define sum for arbitrarily shaped
array by induction on the shape. For 1-d case, we use sum1.
For product shapes we apply sum to all the sub-arrays and
sum all the partial results.

sum : (X→ X→ X) → X→ X [[ s ]] → X

sum {s = ] x} f e a = sum1 f e a

sum {s = s ⊗ p} f e a = sum f e $ map (sum f e) $ nest a

Note that this definition of sum traverses the array bottom-
up, and it adds the neutral element after each 1-dimensional
traversal. We do not impose any restrictions on the binary
operation or the initial element in this definition.

Canonical Matrix Multiplication. Having the sum op-
eration at hand, we define a canonical version of matrix mul-
tiplication. In order to keep matrix multiplication generic,
we parametrise it by the types - , . and / and the opera-
tions (_⊠_ : X→ Y→ Z), (n : Z) and (_⊞_ : Z→ Z→ Z) that
correspond to multiplication, initial element and addition.

mm-canon : X [[ s ⊗ p ]] → Y [[ p ⊗ q ]] → Z [[ s ⊗ q ]]

mm-canon a b (i ⊗ j) =
sum _⊞_ n _ k→ a [ i ⊗ k ] ⊠ b [ k ⊗ j ]

For now, there is no assumptions about the properties of
_⊠_, n or _⊞_. Note that mm-canon is not restricted to two-
dimensional arrays where the shape is a product of two
singletons (e.g. ] m ⊗ ] n), it is rank-polymorphic after all.
We come back to this question later in this section.
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Blocking. The essence of blocked algorithms comes from
the ability to “block” arrays into smaller sub-arrays. That
is, we cut the matrix into sub-matrices that preserve all the
local neighbours within the block. For example, consider an
array of shape 4 × 6 blocked into an array of shape 2 × 2

where each element is a 2 × 3 block.

©­­­«

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

ª®®®¬
⇒

©­­­«

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

ª®®®¬
For our arrays, we can define conversion functions that per-
form blocking over rows and columns as presented above.

block : X [[ (s ⊗ p) ⊗ (q ⊗ r) ]] → X [[ (s ⊗ q) ⊗ (p ⊗ r) ]]
block a ((i ⊗ j) ⊗ (k ⊗ l)) = a [ (i ⊗ k) ⊗ (j ⊗ l) ]

unblock : X [[ (s ⊗ q) ⊗ (p ⊗ r) ]] → X [[ (s ⊗ p) ⊗ (q ⊗ r) ]]
unblock = block

Note that block is a self-inverse, but we will will define the
unblock to indicate the intention.
Next, we can make a cut over the columns of the matrix.

For the example above of shape 4 × 6, we get an array of
shape 3 where the elements are blocks of shape 4 × 2

©­­­«

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

ª®®®
¬
⇒

©­­­«

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

ª®®®¬
We call this operation blockE (vertical cuts), and similarly to
block it is a self-inverse, but we still introduce unblockE to
indicate the intention.

blockE : X [[ s ⊗ (p ⊗ q) ]] → X [[ p ⊗ (s ⊗ q) ]]
blockE a (i ⊗ (j ⊗ k)) = a [ j ⊗ (i ⊗ k) ]

unblockE : X [[ p ⊗ (s ⊗ q) ]] → X [[ s ⊗ (p ⊗ q) ]]
unblockE = blockE

Finally, we can block over rows (horizontal cuts), and for
our 4 × 6 example we have an array of 2 where elements are
blocks of shape 2 × 6.

©­­­«

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

ª®®®¬
⇒

©­­­«

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

ª®®®¬
In this case, the function is not a self-inverse as we have to
rearrange the structure of the shape

blockℎ : X [[ (s ⊗ p) ⊗ q ]] → X [[ s ⊗ (p ⊗ q) ]]
blockℎ a (i ⊗ (j ⊗ k)) = a [ (i ⊗ j) ⊗ k ]

unblockℎ : X [[ s ⊗ (p ⊗ q) ]] → X [[ (s ⊗ p) ⊗ q ]]

unblockℎ a ((i ⊗ j) ⊗ k) = a [ i ⊗ (j ⊗ k) ]

Note that while our pictures are two- and four-dimensional,
the blocking functions are rank-polymorphic. Free variables
s, p, q and r can be of arbitrary ranks.

Blocked Matrix Multiplication. We are ready to define
blocked matrix multiplication that we call mm and that has
the following type for some shapes B , ? and @:

mm : X [[ s ⊗ p ]] → Y [[ p ⊗ q ]] → Z [[ s ⊗ q ]]

Now we define mm by pattern-match on the structure of
B , ? and @. This gives us 2 · 2 · 2 = 8 variants that are given
below. The base-case of our algorithm is the variant where
B , ? and @ are all singletons, in which case we simply apply
the canonical matrix multiplication.

mm {s = ] m} {] n} {] k} = mm-canon

In all the other cases, we block the input matrices in such
a way that the shapes of the blocks are appropriate for the
subsequent mm calls. Then we apply mm to these blocks and
reduce partially-multiplied blocks using sum that is adjusted
to add arbitrarily-shaped arrays.We use the colon (:) notation
to annotate the type of the reblocked arrays before applying
mm recursively. Finally, we have to unblock the result that
we get from the recursive call.

mm {s = ] m} {] n} {p ⊗ q} a b =
let b’ = nest $ blockE b : Y [[ ] n ⊗ q ]] [[ p ]]

c’ = map (mm a) b’ : Z [[ ] m ⊗ q ]] [[ p ]]

in unblockE $ unnest c’

mm {s = ] m} {p ⊗ q} {] n} a b =
let a’ = nest $ blockE a : X [[ ] m ⊗ q ]] [[ p ]]

b’ = nest $ blockℎ b : Y [[ q ⊗ ] n ]] [[ p ]]

in sum (zipWith _⊞_) (K n) _ k → mm (a’ [ k ]) (b’ [ k ])

mm {s = ] m} {p ⊗ q} {r ⊗ w} a b =
let a’ = nest $ blockE a : X [[ ] m ⊗ q ]] [[ p ]]

b’ = nest $ block b : Y [[ q ⊗ w ]] [[ p ⊗ r ]]

c’ = _ (i : P r)→ sum (zipWith _⊞_) (K n)
_ k→ mm (a’ [ k ]) (b’ [ k ⊗ i ])

in unblockE $ unnest c’

mm {s = s ⊗ p} {] m} {] n} a b =
let a’ = nest $ blockℎ a : X [[ p ⊗ ] m ]] [[ s ]]

c’ = map (flip mm b) a’ : Z [[ p ⊗ ] n ]] [[ s ]]

in unblockℎ $ unnest c’

mm {s = s ⊗ p} {] m} {q ⊗ r} a b =
let a’ = nest $ blockℎ a : X [[ p ⊗ ] m ]] [[ s ]]

b’ = nest $ blockE b : Y [[ ] m ⊗ r ]] [[ q ]]

c’ = (_ { (i ⊗ j)→ mm (a’ [ i ])
(b’ [ j ]) }) : Z [[ p ⊗ r ]] [[ s ⊗ q ]]

in unblock $ unnest c’

mm {s = s ⊗ p} {q ⊗ r} {] m} a b =
let a’ = nest $ block a : X [[ p ⊗ r ]] [[ s ⊗ q ]]

b’ = nest $ blockℎ b : Y [[ r ⊗ ] m ]] [[ q ]]

c’ = _ (i : P s)→ sum (zipWith _⊞_) (K n)

4
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_ k→ mm (a’ [ i ⊗ k ]) (b’ [ k ])
in unblockℎ $ unnest c’

mm {s = s ⊗ p} {q ⊗ r} {u ⊗ w} a b =
let a’ = nest $ block a : X [[ p ⊗ r ]] [[ s ⊗ q ]]

b’ = nest $ block b : Y [[ r ⊗ w ]] [[ q ⊗ u ]]

c’ = _ { (i ⊗ j)→ sum (zipWith _⊞_) (K n)
_ k→ mm (a’ [ i ⊗ k ])

(b’ [ k ⊗ j ]) }
in unblock $ unnest c’

It is satisfyingly surprising that all these cases appear natu-
rally by following the structure of the argument shapes.

Correctness. While there is a strong evidence that blocked
mm implements matrix multiplication, we would like to
prove this formally. We introduce an equivalence relation on
arrays, which is defined as point-wise equality of the array
elements.

_≈0_ : X [[ s ]] → X [[ s ]] → Set
a ≈0 b = ∀ i→ a [ i ] ≡ b [ i ]

We can formulate and prove our main theorem called
blocked-ok that says: for any two matrices 0 and 1 (of the
matching shapes) mm 0 1 computes the same array as mm-
canon 0 1.

blocked-ok : (a : X [[ s ⊗ p ]]) → (b : Y [[ p ⊗ q ]])
→ mm a b ≈0 mm-canon a b

For space purposes, we omit the proof itself, but it can be
found in the sources of this paper [25]. The proof itself is
straight-forward, as the representation of our arrays have
very good computational properties. Term normalisation
inlines most of the operations, and typically, all we have to
do is to apply the following lemma:

sum-commutes : (a : Z [[ p ]] [[ s ]])
→ sum (zipWith _⊞_) (K n) a

≈0 _ i→ sum _⊞_ n _ j → a [ j ] [ i ]

It says that for the nested array a, it does not matter whether
we apply sum with the operation lifted by zipWith and the
inital element lifted by K, or we apply the non-lifted sum to
all the “columns” along the ? shape. The proof of this lemma
follows the definition of sum.

From this proof we see that blocking does not depend on
the properties of the operations used inmatrix multiplication.
If the definition of the sum is fixed, blocking does not change
the order in which the elements are multiplied and added.

Blocking Factors. The blocking behaviour of mm is fully
determined by the shape structure of s, p and q. These sub-
shapes encode the blocking factors, forcing us to use arrays
of ranks that are larger than two. We can always obtain
such arrays from regular matrices by choosing multipliers
for rows and columns and organising these multipliers into
sub-shapes. For example, the (rank 4) matrix of shape (] m

⊗ ] n) ⊗ (] k ⊗ ] l) is isomorphic to the (rank 2) matrix of
shape ] (m * n) ⊗ ] (k * l). We can define conversion functions
flatten-2d and unflatten-2d that make it possible to switch
between the matrices.

flatten : S→ N
flatten (] n) = n

flatten (s ⊗ p) = flatten s * flatten p

]flatten : S → S
]flatten s = ] (flatten s)

pflatten : P s→ P (]flatten s)
punflatten : P (]flatten s)→ P s

The flatten function computes the product of all the leaves
in the shape tree, performing multiplications in the order
that is determined by the tree structure. Index translations
pflatten and punflatten perform multiplication or division
with remainder (bodies of these functions are omitted).

Array flattenings simply apply index translations con-
travariantly.

flatten-2d : X [[ s ⊗ p ]] → X [[ ]flatten s ⊗ ]flatten p ]]

flatten-2d a (i ⊗ j) = a (punflatten i ⊗ punflatten j)

unflatten-2d : X [[ ]flatten s ⊗ ]flatten p ]] → X [[ s ⊗ p ]]

unflatten-2d a (i ⊗ j) = a (pflatten i ⊗ pflatten j)

With these functions we can turn any matrix of rank 2, into
the matrix of a higher rank by choosing blocking factors
for its rows and columns. Then we can obtain blocking be-
haviour by applying mm on the matrix of a higher rank. We
know from block-ok that we will obtain the same elements as
if wewere applyingmm-canon that does not do any blocking,
but it uses all the blocking factors at summation.

If we want to guarantee that blocked algorithm computes
the same result as the canonical one applied to the rank 2
matrix, we have to guarantee that _⊞_ is associative and n is
the neutral element. Here is the key theorem that captures
this fact. We omit the proof for space purposes, but it can be
found in [25].

– Assuming that ⊞ is associative, and n is ⊞-neutral
mm-flat-ok : (a : X [[ s ⊗ p ]]) (b : Y [[ p ⊗ q ]])

→ mm-canon (flatten-2d a) (flatten-2d b)
≈0 flatten-2d (mm-canon a b)

Pre-blocking. We can ask ourselves whether it is possible
to separate the blocking steps from the actual recursive ma-
trix multiplication. That is, would it be possible to pre-block
the array, apply matrix multiplication recursively, and un-
block the entire array back. To do so, we need to construct
an evidence that the arrays are blocked in a such a way so
that all the recursive calls of mm become applicable. In other
words, we have to capture recursive unfolding of the mm for
the given arrays.

5
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To illustrate this, we define a relation that captures one
particular blocking style — the last case of mm, where block-
ing happens on both the rows and the columns. Additionally,
we chose the outer shape to always be of the form (] m ⊗ ]

n) to prevent further decomposition on the outer side. We
capture these assumptions in the inductive relation called R.

data R : S → S → S → Set where
] : R (] m ⊗ ] n) (] n ⊗ ] k) (] m ⊗ ] k)
f : R s p q

→ R ((] m ⊗ ] n) ⊗ s) ((] n ⊗ ] k) ⊗ p) ((] m ⊗ ] k) ⊗ q)

This relation describes all the valid shapes of the two in-
put matrices and the output matrix, in case they were pre-
blocked in the way we have described above. The base case ]
says that any singletons shapes of the form< × = = × : and
= × : satisfy our assumption. The f case says that if B , ? and
@ are related by R, then we can use matrices of the shape
< ×= = ×: and = ×: , where the elements are of the shape B ,
? and @ correspondingly.
In this case, if we have a witness for the inner structure

of the argument shapes as described above, we can define
the blocked matrix multiplication inductively as follows:

mmx : R s p q→ X [[ s ]] → Y [[ p ]] → Z [[ q ]]

mmx ] a b = mm-canon a b

mmx (f r) a b = let
a’ = nest a
b’ = nest b
c’ = _ { (i ⊗ j) → sum (zipWith _⊞_) (K n)

_ k’→ mmx r (a’ [ i ⊗ k’ ])
(b’ [ k’ ⊗ j ]) }

in unnest c’

Essentially, we assume that arrays 0 and 1 are pre-blocked
(witnessed by the first argument of mmx) such that we al-
ways take the last case of mm in the non-pre-blocked sce-
nario.

Pre-blocking correctness. In order to see that the pre-
blocked version mmx and mm compute the same results, we
have to define conversion functions between the original
arrays and the pre-blocked ones.
For the given shapes B , ? , and @ that are related by R (i.e.

for pre-blocked arrays), we can compute the product shapes
B′, ?′ and @′ that will be suitable for mm. Also, we compute
the conversion functions from B to B′ ⊗ ?′, from ? to ?′ ⊗ @′,
and from B′ ⊗ @′ into @.

toinv : ∀ s p q→ R s p q

→ Σ[ (s’ , p’ , q’) ∈ S × S × S ]
( (∀ {X}→ X [[ s ]] → X [[ s’ ⊗ p’ ]])
× (∀ {X}→ X [[ p ]] → X [[ p’ ⊗ q’ ]])
× (∀ {X}→ X [[ s’ ⊗ q’ ]] → X [[ q ]]))

toinv (] m ⊗ ] n) (] n ⊗ ] k) (] m ⊗ ] k) ] =
(] m , ] n , ] k) , id , id , id

toinv (] m ⊗ ] n ⊗ s) (] n ⊗ ] k ⊗ p) (] m ⊗ ] k ⊗ q) (f r) = let
(s’ , p’ , q’) , s⇒s’p’ , p⇒p’q’ , s’q’⇒q = toinv s p q r
in (] m ⊗ s’ , ] n ⊗ p’ , ] k ⊗ q’)
, (_ a→ unblock $ unnest $ map s⇒s’p’ $ nest a)
, (_ a→ unblock $ unnest $ map p⇒p’q’ $ nest a)
, (_ a→ unnest $ map s’q’⇒q $ nest $ block a)

With the given conversions available, we can show that
switching between the pre-blocked version and the blocked
one does not affect the computation.

mmx≈mm : (r : R s p q) (a : X [[ s ]]) (b : Y [[ p ]])
→ let _ , fromA , fromB , toC = toinv s p q r

in mmx r a b ≈0 toC (mm (fromA a) (fromB b))

You can find the proof in [25]. Technically, we have to com-
pute the conversions in the other direction, but these con-
versions are actually isomorphisms. In order to show this
formally we would have to extend our framework a little
further. We do this in the proof, but not in the paper.

4 Shape Recursion in SaC

We now port this formally proved, blocked algorithm manu-
ally into the array language SaC, in hope that the optimising
compiler sac2c will produce efficiently executable, parallel
code. We assume some familiarity with SaC syntax, other-
wise consider [20, 31] as an introduction to the language.

In SaC array shapes are represented as 1-dimensional ar-
rays. While we can access all the components of the shape
using selection, we cannot encode an arbitrary splitting pat-
tern as we did in Agda specification — SaC shapes are flat-
tened trees. However, as SaC makes it possible to overload
functions based on shapes, it is easy to define regular shape-
recursive traversals such as the one that consumes shapes
sequence left-to-right or right-to-left. This is exactly what is
needed to implement our running example.

4.1 Blocking

We replicate blocking across rows and columns, similar to
block/unblock in the specification. To do so, we have to
make an assumption about the structure of the array shape
that we are dealing with. For matrices 0 and 1 of shapes<×=

and = × : correspondingly, we assume that<, =, : can be
split into equal number of multipliers. We illustrate this idea
with three multipliers, but the number can be arbitrary:

G~I =< DEF = = B?@ = :

In this case we can reshape 0 into an array of shape [G ,~, I,D,
E ,F] and 1 into an array of shape [G , ~, I,D, E ,F]. Reshaping
preserves all the elements and their order under row-major
flattening. In SaC, such reshapes have zero overhead at run-
time, as all the SaC arrays are flattened. These new shapes
will be only used to guide the recursion.

6
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New shapes always have the even number of elements.
Blocking splits the shape “in the middle”, picks the first ele-
ment from each part, and moves them to the front. Unblock-
ing will perform the same operations in reverse.
We can define such blocking/unblocking operations con-

cisely, if we consider shapes having a multi-dimensional
structure. The following combinatorswill help to view shapes
as 2-dimensional arrays:

// [x,y,z,...,u,v,w,...] => [[x,u],[y,v],[z,w],...]

int[.,.] cut_half(int[.] s)

{

return transpose(reshape ([2, len(s)/2], s));

}

// [x,u, y,v, z,w,...] => [[x,y,z,...] ,[u,v,w ,...]]

int[.,.] cut_pairs(int[.] s)

{

return transpose(reshape ([len(s)/2, 2], s));

}

As blocking/unblocking operations do not change the rank
of the array, it only shuffles the shape components. We can
define a helper operation that we call ptranspose that is
similar to the dyadic transpose in APL:

int[*] ptranspose(int[.] pv, int[*] a)

{

return { iv -> a[invpermute(pv, iv)]

| iv < permute(pv, shape(a))};

}

The function takes the permutation vector of the shape of
the second argument. As every permutation has an inverse,
we can trivially compute the mapping between shapes and
indices.
Our strategy in implementing blockings is to compute

the permutation mask using 2d view of the array shape and
pass this mask to ptranspose. The block operation cuts the
shape “in the middle”, makes a 2d array of two halves and
splits on the first column, which is moved to the front.

// [x,xs,y,ys] => [x,y,xs,ys]

double[*] block(double[*] a)

{

ijs , ivs = takedrop(cut_half(iota(dim(a))), 1);

m = flatten(ijs) ++ flattrans(ivs);

return ptranspose(m, a);

}

Unfortunately, in SaC, block is not a self-inverse, because
GB and ~B can be vectors of arbitrary lengths.

The unblock function splits the shape after the first two
elements. The left-hand side is prepended to the first column
of the 2d view of the right-hand side.

// [x,y,xs,ys] => [x,xs ,y,ys]

double[*] unblock(double[*] a)

{

ijs , ivs = takedrop(iota(dim(a)), 2);

m = flattrans ([ijs] ++ cut_half(ivs));

return ptranspose(m, a);

}

Finally, we can create pre-blocking and its inverse (as
computed by toinv) needed for the mmx version of matrix

multiplication. We apply cut_half and cut_pairs as fol-
lows:

// [x,y,z..., u,v,w,...] => [x,u, y,v, z,w,...]

double[*] preblock(double[*] a)

{

m = flatten(cut_half(iota(dim(a))));

return ptranspose(m, a);

}

// [x,u, y,v, z,w,...] => [x,y,z,..., u,v,w,...]

double[*] unpreblock(double[*] a)

{

m = flatten(cut_pairs(iota(dim(a))));

return ptranspose(m, a);

}

Note that all the blockings presented above simply rear-
range array elements according to the changes in the shape.
After compiler optimisations, we end-up with computations
of offsets into the arrays that we are reshaping. Therefore,
there are many equivalent ways to specify these. In the tra-
dition of array languages, we express these transformations
in a combinatorial style.

4.2 Matrix Multiplication with In-place Blocking

Per our assumption, we are always blocking on rows and
columns. Therefore, mm specification reduces to recursive
application of a single case (the last case in the pattern-
matching). No other cases are applicable to the chosen shape
structure.
In the SaC implementation of mm, we use function over-

loading to drive the recursion over shapes. We assume that
we start with already reshaped arrays, in which case mm can
be expressed as follows:

double[*] mm(double[*] a, double[*] b)

{

a = block(a);

b = block(b);

c = {[i,j] -> sum({[k] -> mm(a[i,k], b[k,j])})};

return unblock(c);

}

As SaC arrays have the notion of the distinct empty shape,
the base case of the matrix multiplication can be given for
arrays of the empty shapes (also known as scalars).

double[] mm(double[] a, double[] b)

{

return a*b;

}

4.3 Matrix Multiplication with Pre-blocking

A version of the algorithm that operates on pre-blocked ar-
rays (mmx in the specification) can be implemented as follows:

double[*] mmx(double[*] a, double[*] b)

{

return {

[i,j] -> sum({[k] -> mmx(a[i,k], b[k,j])})

};

}

7
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The notation of the outer array comprehension implicitly
implies that 8 and 9 are scalars. Summation happens over the
array comprehension indexed by : , which is also a scalar.
Each recursive calls “chops off” the first two dimensions
from the 0 and 1 shapes.

As we assume that shapes of 0 and1 are of the same length,
and they have even number of elements, the base case for
mmx is when both arrays are of the empty shape. As before,
we use regular multiplication for the empty-shaped matrices.

double[] mmx(double[] a, double[] b)

{

return a * b;

}

We also notice that pre-blocking can be expressed in a
shape-recursive manner by repeated application of block/un-
block as follows.

// [x,y,z,... u,v,w,...] => [x,u, y,v, z,w,...]

double[*] preblock(double[*] a)

{

return {[i,j] -> preblock(block(a)[i,j])};

}

double[] preblock(double[] a)

{

return a;

}

In this case shape recursion is left-to-right, and the base case
is the identity function.
Inverse of pre-blocking is given as follows:

// [x,u, y,v, z,w,...] => [x,y,z,..., u,v,w,...]

double[*] unpreblock(double[*] a)

{

return unblock ({[i, j] -> unpreblock(a[i, j])});

}

double[] unpreblock(double[] a)

{

return a;

}

This is right-to-left shape recursion, and the base case is the
identity function. Such a blocked pre-blocking is likely to
have a better runtime behaviour, as some of the operations
get better cache locality.

Algorithm Application. We consider applying both al-
gorithms (mm and mmx) to the matrices 0 and 1 of respective
shapes [<,=] and [=, :]. We assume that<, = and : can be
split into equal number of multipliers. We use three multi-
pliers just as an example:

G~I =< DEF = = B?@ = :.

In this case, we start with reshaping of 0 and 1:

a1 = reshape ([x,y,z,u,v,w] a);

b1 = reshape ([u,v,w,s,p,q] b);

After that, mm can be applied to 01 and 11, but the obtained
result needs to be reshaped into the expected shape [<,:]:

c = reshape ([m,k], mm(a1, b1));

Application of mmx requires pre-blocking 01 and 11, and
unpreblocking the result. Finally, the result needs to be re-
shaped into the expected shape [<,:]:

c = reshape ([m,k], unpreblock(mmx(preblock(a1),

preblock(b1))));

Weak Typing. Note that we cannot express most of the
assumptions about the structure of array shapes in the type
system of SaC. Instead, we have to maintain them using
programming discipline.

5 Runtime Evaluation

In the previous sections we demonstrated generic specifica-
tions of the blocked matrix multiplication. Now, we want
to apply these algorithms on a particular architecture and
demonstrate, explain how to chose blocking factors and com-
pare our results with state of the art implementations: Open-
BLAS [32], BLIS [30] and MKL [11].

5.1 Experimental Setup

We use a multicore machine consisting of two 16 core AMD
EPYC 7313 CPUs running at a 3.0 GHz frequency. The ma-
chine has private 32KiB L1D and 1MiB L2 caches. Every four
cores share a 16 MiB L3 cache. We use OpenBLAS version
0.3.20, SaC 1.3.3 with GCC version 11.3.0, BLIS 0.9.0 and In-
tel MKL version 2020.4.304. The peak performance of this
machine is 1536 Gflops/s.

Each core can do two 32 byte reads and one 32 byte write
per clock cycle. That means that the L1 read bandwidth is
3 · 2 · 32 · 32 = 6144 GB/s. The L2 bandwidth is half this, 3072
GB/s. Every clock cycle a L2 cache can load in 32 bytes from
L3, so the L3 bandwidth is 3 · 32 · (32/4) = 768 GB/s. We
have 8 times 16 GB of RAM, running at 3200 MT/s over 8
channels, resulting in 204.8 GB/s bandwidth between RAM
and CPU.

Bandwidth vs Compute Rate. The execution speed is
limited by how fast we can do operations, and by how quickly
we can get data from RAM into the CPU registers. For our
machine the latter is:

204.8GB/s

8B · 3Ghz
≈ 8.5 doubles (8 bytes) per clock cycle

Our machine can do 32 · 4 · 2 · 2 = 512 flops (cores, SIMD, fma,
instructions per clock). So if we only use each double once,
we can expect no more than 8.5

512
≈ 1

60
th of the peak perfor-

mance. Therefore, in order to achieve peak performance we
are forced to reuse each double we obtain from the memory
multiple times. For example, if we reuse each double 30 times,
we get half of the peak performance, etc.

In principle we have an intensity of 2" # /(" +  # )

flops per double which tells us the problem is compute bound.
Of course in practice it is hard to achieve this performance
because we cannot store the entire matrix in registers. For
this reason we look at the reuse of elements before they

8
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are evicted from their respective level in the memory hi-
erarchy. So the unblocked implementation will have an ef-
fective intensity of less than 2· 

 
= 2 as each calculation

(��)8 9 =

∑ 
?=0�8?�? 9 will see the 9th column of � being

evicted from cache.

5.2 Blocking Factors

In order to achieve peak performance, we use the approach
from [7, 30] to find the block sizes that agree with the cache
sizes for multiplying � ∈ R"× by � ∈ R ×# . When choos-
ing block sizes we took measurements ranging from filling
about half of the cache to the entire cache. We then picked
the point where increasing the block size did not further
improve runtimes. This way the inner blocks stay small, and
we have some more leeway when choosing the outer blocks.

First Blocking. We are going to chose our block sizes in
a bottom-up fashion. We specify the size of a matrix as a
superscript. Firstly, we notice that the matrix of size 6 × 8

can be stored entirely in SIMD registers. Our machine has 16
YMM registers, 32 bytes (4 doubles) each. Also, this leaves
us at least three registers to do other operations. This means
that for a multiplication of a 6 × : and : × 8 matrix, we
store only 48 doubles on 2 · 6 · 8 · : flops. For �6×: and �:×8

we get a 6-fold reuse of � and an 8-fold reuse of �. Our
processor can execute 2 fma instructions per clock cycle, and
the L1, L2 cache can provide these operands in 2 and 4 cycles
respectively. As 6 and 8 are larger than 4, it suffices to have
our matrices in either L1 or L2. Shapes so far: [6, 250] for
A and [250, 8] for B.

Second Blocking. The second blocking level stacks all the
�6×: (denoted�′ here) into�< ·6×: , performing the following
operation:

�< ·6×:
=

©­­
«
�′
1

...

�′
<

ª®®¬
�� =

©­­«
�′
1
�
...

�′
<�

ª®®¬
.

We chose< and : such that � fits into L1 and � fits into L2.
At the same time, we want to chose< such that � can be
streamed into L1 (i.e.< · 6 > 60) so that we can make the
next blocking step. We chose< = 15 and : = 250. Shapes
so far: [15, 1, 6, 250] for � and [1, 1, 250, 8] for �.

Third Blocking. After that, we consider stacking previ-
ously defined blocks �90×250 and �250×8 (denoted �′ and �′)
into column and row vectors:

�� =

©­­«
�′
1

...

�′
:

ª®®¬
(
�′
1

· · · �′=
)

or (��)8 9 = �
′
8�

′
9 .

Each of these matrix-multiplications is a smaller
matrix-multiplication described above, and this can be calcu-
lated at peak compute rate whenever�′

8 is in L2 cache and �
′
9

can be streamed into L1 fast enough. As each element of �′9
is reused 90 > 60 times, this should be the case. However, we
cannot guarantee that the entirety of �′9+1 will be prefetched
while we are calculating �′

8�
′
? . Also, loading in a block of �

has some latency. So in practice we should to stack only as
many blocks of � and � as we can fit into L3 cache in order
to accelerate loading these blocks into L1 and L2 cache. We
choose to stack 125 such blocks of � and 3 of �. Shapes so
far: [3, 1, 15, 1, 6, 250] for � and [1, 125, 1, 1, 250, 8] for �.

Remainder. Formatrices larger than�270×250 and�250×1000,
we compute a ‘normal’ matrix-multiplication in terms of
these blocks (denoted �′ and �′):

�� =

©­­­
«

�′
1,1 · · · �

1,  
250

...
. . .

...

�′
"

270
,1

· · · �′
"

270
,  
250

ª®®®¬
©­­­«

�′
1,1 · · · �

1, #
1000

...
. . .

...

�′
 

250
,1

· · · �′
 

250
, #
1000

ª®®®¬
Final shapes: [ "

270
,  
250

, 3, 1, 15, 1, 6, 250] for� and [  
250

, #
1000

,
1, 125, 1, 1, 250, 8] for �.

5.3 Adjustments

Our initial experiments demonstrated the following two
problems. Firstly, when SaC is making a recursive call with
a submatrix, it does not detect read-only access to the sub-
block, and makes a copy. Secondly, neither SaC, nor the
underlying C compilers can generate the matrix multiplica-
tion kernel that operates in registers. Sadly as it can be, we
have to introduce the following workarounds.

Good Kernel. We use the FFI mechanism of SaC and im-
plement the kernel using GCC vector extensions [6, 23]. This
gives us a nice and easy formulation of the kernel that is
portable across all the architectures supported by GCC.

// MR = 6; KC = 250; NR = 8

typedef double vect

__attribute__ (( __vector_size__ (32), aligned (8)));

void matmul(double **cp, double *a, double *b,

int offset_a , int offset_b)

{

double *c = malloc(MR * NR * sizeof(double ));

*cp = c; a = a + offset_a; b = b + offset_b;

real (*as)[MR][KC ] = (real (*)[MR][KC ])a;

vect (*bv)[KC][NR/4] = (vect (*)[KC][NR/4])b;

vect (*cv)[MR][NR/4] = (vect (*)[MR][NR/4])c;

vect zero = {0. ,0. ,0. ,0.};

vect c00 = zero , c01 = zero;

vect c10 = zero , c11 = zero;

vect c20 = zero , c21 = zero;

vect c30 = zero , c31 = zero;

vect c40 = zero , c41 = zero;

vect c50 = zero , c51 = zero;

for (size_t k = 0; k < KC; k++) {

vect b0 = (*bv)[k][0];

vect b1 = (*bv)[k][1];

real a0 = (*as)[0][k];

real a1 = (*as)[1][k];

real a2 = (*as)[2][k];

real a3 = (*as)[3][k];

9
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real a4 = (*as)[4][k];

real a5 = (*as)[5][k];

c00 += a0 * b0; c01 += a0 * b1;

c10 += a1 * b0; c11 += a1 * b1;

c20 += a2 * b0; c21 += a2 * b1;

c30 += a3 * b0; c31 += a3 * b1;

c40 += a4 * b0; c41 += a4 * b1;

c50 += a5 * b0; c51 += a5 * b1;

}

(*cv )[0][0] = c00; (*cv )[0][1] = c01;

(*cv )[1][0] = c10; (*cv )[1][1] = c11;

(*cv )[2][0] = c20; (*cv )[2][1] = c21;

(*cv )[3][0] = c30; (*cv )[3][1] = c31;

(*cv )[4][0] = c40; (*cv )[4][1] = c41;

(*cv )[5][0] = c50; (*cv )[5][1] = c51;

}

Bad Memory. We eliminate the need of copying by a
slight modification in the implementation of mmx. We call this
version mmy: instead of passing a sub-block as one argument,
we pass the main array and the index into the block. The
overloading of mmy happens on the last two arguments that
increase on each recursive step by two elements. We know
that we are dealing with 8-dimensional array, so the base
case of our overloading calls our kernel.

inline double[*]

mmy(double[*] a, int[.] ia,

double[*] b, int[.] ib)

{

sha = drop(shape(ia), shape(a));

shb = drop(shape(ib), shape(b));

shco ,shci = takedrop(mmshape(sha , shb), 2);

return { [i,j] -> with { // Inlined sum

([0] <= [l] < [sha [1]]):

mmy (a, (ia ++ [i,l]),

b, (ib ++ [l,j]));

}: fold(+, genarray(shci , 0d))

| [i,j] < shco};

}

inline double[.,.]

mmy(double[*] a, int[6] ia,

double[*] b, int[6] ib)

{

return matmul(a, b,

row_major(ia++[0,0], shape(a)),

row_major(ib++[0,0], shape(b)));

}

This problem has been encountered before and studied
in [19]. The authors believe it should be possible to extend
this optimisation to be applicable to matrix-multiplication
as well.

5.4 Timings

We have measured a multiplication of a 8640 × 10000 matrix
by a 10000 × 10000 matrix. We provide two SaC versions.
The first one is blocked as described in Subsection 5.2, with
a handwritten kernel for the two-dimensional computation.
The second one does not use a handwritten kernel. As GCC
cannot use blocking at the register level, we use squarish
blocks: 40× 40 blocks to target L1, and 240× 200 for�,� and

200× 200 for � to target L2. We compare it to the state of the
art implementation OpenBLAS. The timings are averaged
over 10 runs, and we draw error bars from the slowest to the
fastest run. These results are summarised on the left-hand
side of Figure 1. The axes are log-scaled, so linear speedup
is also linear in the graph. The fastest programs are rather
close to each other, so we also graph the efficiencies for
these (on the right-hand side of Figure 1) compared to the
sequential performance to OpenBLAS. The astute reader may
have noticed that OpenBLAS and MKL perform better than
the 48 Gflops/s theoretical peak performance on one core.
It could be due to Strassen’s algorithm as explained in [10],
but we have not found a confirmation of this in the literature
or OpenBLAS’s codebase. The alternative is that the actual
clock speeds are higher than 3 GHz, even though we have
verified that the settings cap it at 3 GHz.

OpenBLAS achieves 55Gflops/s on one core,MKL achieves
53 Gflops/s and SaC with kernel 48 Gflops/s. A reason that
the SaC kernel is slower, is that it allocates memory for the
6 × 8 block of� instead of directly writing to the memory of
� . MKL and OpenBLAS, opposed to the SaC version, does
not have blocks stored in contiguous memory, so they need
to pack these blocks. We see that this causes the SaC ver-
sion to scale better and catch up to OpenBLAS higher core
counts: 1305 Gflops/s on 32 cores for SaC, 1218 Gflops/s for
OpenBLAS, and 1272 Gflops/s for MKL. The reason this only
happens at higher core counts is that packing takes a little
bandwidth, which is more contested the more cores are used.
SaC in contrast does not have to pack, as we have bench-
marked the preblocked version. The SaC version without a
kernel is about a factor four slower, and has less speedup
going from 16 to 32 cores. On 32 cores, compared to the
fastest sequential time by OpenBLAS, we have efficiencies
of 69%, 72%, 74%, 18% for OpenBLAS, MKL, SaC with kernel,
SaC without kernel, respectively. The unblocked version is
unsurprisingly very slow, 12 Gflops/s on 32 cores, a factor
100 slower than SaC with kernel, and 27 times slower than
the blocked SaC version without kernel. We reuse each el-
ement once before it is evicted from cache, so we cannot
expect more than 1532

60
≈ 26 Gflops/s. Combined with the

strided access of �, it gives the poor result.
For BLIS we use use OpenMP for the backend and thread-

binding strategy OMP_PROC_BIND=close and
OMP_PLACES=cores as recommended by the authors. It does
well up to including 8 cores, and then experiences slowdown.

5.5 Blocking and Unblocking

The SaC compiler is not required to materialize�, � in mem-
ory, block them, and then run the matrix-multiplication. In-
stead, it could immediately generate �, � in blocked form.
For this reason we did not include the blocking cost in Fig-
ure 1. In the following table we list those times for cases
where the SaC compiler cannot immediately generate�, � in
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Figure 1. Performance of computing�� for matrix� of size 8640× 10000 and � of size 10000× 10000. On the left-hand side the
absolute figures are presented, on the right hand side we show the efficiencies (per core) compared to OpenBLAS’s sequential
performance. The SaC version uses four-level blocking described above.

blocked form. As before we use �8640×104 , �10
4×104 splitting

the runtime between blocking, matrix-multiplication, and
unblocking in seconds, averaging the time over 10 runs.

Proc Block f Matmul f Unblock f

1 5.317 0.118 38.78 0.19 2.799 0.081

2 2.675 0.011 19.60 0.06 1.494 0.010

4 1.439 0.208 9.98 0.05 0.770 0.022

8 0.714 0.044 5.00 0.02 0.417 0.055

16 0.464 0.009 2.53 0.01 0.246 0.022

32 0.302 0.007 1.44 0.01 0.124 0.029

6 Related Work

The idea to use blocking to improve performance of numer-
ical algorithms dates back to the 1960s [15], roughly coin-
ciding with the introduction of memory hierarchies. Since
then, a large body of research has investigated [12, 13] ways
on how to implement blocked linear algebra operations effi-
ciently. This work provides guidelines on how to structure
blocked algorithms, assuming manual implementations. The
canonical results in this area are described in [7] which con-
stitutes the basis for today’s state of the art hand-written
libraries such as OpenBLAS [32] and BLIS [30]. In contrast
to our work, the manual encodings in low-level languages
of these approaches raises potential concerns about their
correctness and their maintainability.
Another area of research in the context of blocking aims

to enable compilers to introduce blocking into blocking-free
implementations. This work is based on dependency anal-
yses such as the ones in [1] and the polyhedral model [16]

which provides a mathematical framework for analysing and
transforming loop nests. More recent work in this context
[5] includes possible data layout transformations as well,
which, at least in principle, enables compiler-driven transfor-
mations into code very similar to the code that is generated
from our shape-generic specification.
One of the key challenges of the compiler-introduced

blocking approach is the need to find suitable parameters.
Analytical models have been proposed [14], but there are
also attempts to tune the parameters based on exhaustive
experiments or by applying some form of machine learning.
ATLAS [2] is an implementation of BLAS that automatically
tunes architecture specific parameters. Further examples of
autotuning can be found in [35] and [28]. Lift [27] uses auto-
tuning, by applying rewrite rules to a high-level functional
specification of the algorithm. While our approach does not
solve the parameter finding problem either, it is possible
for the programmer to experiment with different blocking
scenarios without rewriting the rank-polymorphic matrix
multiply at all. This is similar in spirit to approaches such
as those of Halide [17] or FLAME [34], which offer the pro-
grammer to specify separately which transformations should
be introduced by the compiler. Here, the key difference is
that our approach allows the blocking to be encoded in the
array shapes and, thus, in the source language itself. Another
difference is that the dependently typed setting offers for-
mal correctness guarantees which are not available in the
aforementioned approaches.
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Closer to our work is the work on Multi-Dimensional
Homomorphisms [18]. The formulation as homomorphisms
provides identity guarantees similar to ours and the tiling
can be steered by the injection of tiling operators. The main
difference to our work is the dependently typed setup in our
case which enables further guarantees such as the absence
of out-of-bounds accesses.
Elliott proposes [3] a Haskell framework that uses struc-

tured views on data to give rise to natural functional specifi-
cations. This work is also very close to our approach; how-
ever, we can also guarantee correctness of our transforma-
tions by using dependent types. Furthermore, Elliott’s work
focusses on the specification aspects, but does not elabo-
rate on how to generate high-performance code. Sequoia [4]
is a language that allows for a specification close to ours,
the main difference being that Sequoia does not have rank-
polymorphic arrays, and hence requires explicit creations of
subarrays in the recursive call. Some advanced type system
for array languages have been proposed [9, 26]. However,
these do not capture the rank-polymorphism that is crucial
to our approach. Dependent types for array languages have
been proposed in [29, 33]. The closest-related treatment of
arrays within a dependently-typed setting is proposed in [21]
where arrays are described as polynomial functors.

Finally, this work relates to earlier work on shape-guided
parallel implementations of scan operations described in [31].
The difference is that here we use the shape to guide the
blocking instead of the parallelism, and we start from a de-
pendently typed specification.

7 Conclusion

This paper proposes to implement blocked numerical algo-
rithms through rank-polymorphic functions on arrays. This
allows for a concise formulation of arbitrary blocking lev-
els, enabling programmers to encode the desired blocking
factors through array shapes. Besides conciseness, the abil-
ity to express arbitrary blocking through a single generic
algorithm gives the opportunity to prove the correctness of
all possible blocking variants mechanically. We demonstrate
this idea at the example of matrix multiplication. Starting
from a high-level specification in Agda, we verify that all
possible blocking variants compute the same result as the
canonical, unblocked version. A simple manual transliter-
ation into SaC demonstrates that it is possible to generate
very efficient parallel code from such a generic specification.

While several manual steps are required to achieve the
transition from Agda to code that is competitive with hand-
tuned high-performance implementations, a mechanisation
of this approach seems within reach. Dependent types prove
to be a good starting point of the specification. We can en-
code rank-polymorphism, shape algebras, guarantee lack
of out-of-bound indexing, and prove correctness of block-
ing. Additional invariants concerning the structure of the

array or its shape, in principle, are expressible. The standard
Martin-Löf type theory is powerful enough, and we do not
need quotients or higher inductive types. Treating arrays as
functions is very powerful for verification purposes.

Currently, the translation from Agda to SaC is performed
manually. In [22] we show a way to automate such a trans-
lation using reflection mechanisms of Agda. Mainly, this
translation is a technical task, but two aspects require fur-
ther investigation: (i) how to avoid runtime representation
of types that are not needed; (ii) how to control excessive
inlining of arrays triggered by normalisation. Quantitative
type theory seem to be a good answer for the former. Effect
systems or the ideas from [8] should help with the latter.
SaC-like array languages seem to be a good choice for

the “backend”. Being a functional rank-polymorphic array
language, dependently-typed specifications can be trans-
lated into SaC programs almost one-to-one, by stripping out
most of the type guarantees and the proof-related parts. Our
generically blocked algorithm is expressed with less than 10
lines of code. The SaC compiler leverages shape specialisa-
tion and advanced optimisation techniques to achieve the
high-performance parallel code. However, the availability
of further guarantees in Agda, at least in principle, opens
up possibilities for providing the compiler with invariance
properties that could help improving the code generation
further. Ideally, we would want to formally verify that the
SaC programs preserve semantics of the original specifica-
tion, but this would require not only a verified Agda to SaC
translation, but also a verified SaC to C compiler as well as a
verified C compiler. This would take enormous efforts which
seems out of reach at this time.
When striving for the highest levels of performance, we

see that some further optimisations within the SaC compiler
would be desirable. Specifically, the ability to implement sub-
array selections without copying elements seems crucial in
this context. While this mainly constitutes an engineering
challenge, the paper shows that we can achieve these effects
by means of a workaround in the form of a re-write and
a 40-line kernel written in C. Jointly, these tweaks lead to
parallel performance that is competitive with state-of-the-art
libraries BLIS, OpenBLAS and MKL.

Data-Availability Statement

Both, the Agda proof and scripts for repeating our experi-
ments are available as artefact [24]. A description on how to
use the artefact can be found in the appendix of this paper.
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A Artefact

A.1 Abstract

This artefact describes the experiments that were conducted
for the FHPNC’2023 paper Rank-Polymorphism for Shape-

Guided Blocking.
The following workflow makes use of scripts to compile,

run, and evaluate presented benchmarks in Figure 1 and the
blocking table of section 5. The figure showing performance
relative to the peak is not reproduced as this depends on the
machine that is used for running the experiments.

A.1.1 Agda Specification Check-list.

• Agda version: 2.6.3, available at
h�ps://agda.readthedocs.io/.

• Agda standard library: version 1.7.2, available at
h�ps://github.com/agda/agda-stdlib.

A.1.2 Runtime Experiments Check-list.

• Compilation: GCC C compiler 11.3.0, sac2c compiler
v1.3.3-1079-1 (h�ps://sac-home.org/download:main),
make. Optionally: a SLURM environment.

• Hardware: a multithreaded machine.
• Libraries: OpenBLAS 0.3.20, BLIS 0.9.0,
MKL 2020.4.304.

• Output: a Latex installation that supports pgfplots
and tikz.

A.2 Description

The artefact is hosted on the following GitLab server in-
stance: h�ps://gitlab.sac-home.org/sac-group/2023-array.
Files that are related to the Agda specification are in the

root directory. Files that are needed to reproduce runtime
figures are in the directory named artefact.

A.3 Reproducing Proofs

The paper is written using literate Agda, which means that
all the definitions in the code have been type-checked. The
Agda file that corresponds to Section 3 can be found in the file
model.lagda. Some additional proofs such as of mmx≈mm
in Section 4 can be found in the file proof.agda. We intro-
duce inductive reshapes which make the proofs easier to
articulate but which are are orthogonal to the content of the
paper.
Reproducing the proofs requires to pass the agda/lagda

files to the agda binary as follows:

1. agda model.lagda

2. agda proof.agda

A.4 Reproducing Runtime

1. Ensure that all the dependencies listed in the check-list
are installed.

2. Clone the repository and enter the artefact directory
$ cd 2023-array/artifact

3. Replace $HOME/sac2c/build/sac2c_d in the Make-
file with your build of the SaC compiler.

4. If using SLURM: Replace the lines
#SBATCH –account=csmpi

#SBATCH –partition=csmpi_fpga_long

with your SLURM setup using e.g.
$ sed -i ’s/csmpi_fpga_long/PARTITION/g’ *.sh

$ sed -i ’s/csmpi/ACCOUNT/g’ *.sh

5. Build the binaries with make if not using SLURM, and
sbatch build.sh is using SLURM.

6. Run the following scripts, using sbatch only if using
SLURM.
$ [sbatch] ./bench_blis.sh 8640 10000 10000 1 32

10

$ [sbatch] ./bench_openblas.sh 8640 10000 10000 1

32 10

$ [sbatch] ./bench_mkl.sh 8640 10000 10000 1 32

10

$ [sbatch] ./bench.sh 1 32 10

$ [sbatch] ./bench_naive.sh 1 32 10

$ [sbatch] ./split.sh 1 32 10

If on a system with less or more than 32 cores, you can
replace 32 with your maximum number of cores.

7. Build the graphs with
$ pdflatex graph.tex

The result will be in a pdf file graph.pdf.
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