The effect of aquifer/caprock interface on geological storage of CO2

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.egypro.2014.11.588

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Energy Procedia

Publisher Rights Statement:
© 2014 The Authors. Published by Elsevier Ltd.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The Effect of Aquifer/Caprock Interface on Geological Storage of CO₂

Seyed M. Shariatipoura,*, Gillian E. Pickupp, Eric J. Mackayb

a Coventry University, Priory Street, Coventry CV1 5FB, UK
b Heriot Watt University, Riccarton, Edinburgh EH14 4AS, UK

Abstract

The migration of CO₂ stored in deep saline aquifers depends on the morphology of the top of the aquifer. Topographical highs, such as anticlines, may trap CO₂ and limit the distance migrated, or elevated ridges may provide pathways enabling CO₂ to migrate further from the injector. For example, seismic data of the Utsira formation at the Sleipner storage site indicates that a branch of the CO₂ plume is moving to the north [1]. It is therefore important to study the interface between the aquifer and the caprock when assessing risk as CO₂ storage sites.

Undulations in the top surface of an aquifer may either be caused by sedimentary structures [2], or by folding. In addition, irregularities may be generated by faulting [2]. Large-scale features are detected using seismic data (i.e. structures with amplitudes greater than 10 m), and such structures will generally be included in reservoir or aquifer models. However, smaller-scale features could also have an effect on a CO₂ plume migration, and this is the topic of our study. We have conducted simulations in models with a range of top-surface morphology, and have examined the distance migrated and the amount of dissolution.

The results from this study suggest that the effects of sub-seismic variations in the topography of the aquifer/caprock interface are unlikely to have a significant impact on the migration and dissolution of CO₂ in a saline aquifer, compared with tilt or permeability anisotropy. The results were most sensitive to the kᵣ/kₘ ratio during the injection period.

© 2013 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of the Organizing Committee of GHGT.

Keywords: CO₂ storage; interface between caprock and storage formation

* Corresponding author. Tel.: +44-0247-765-8745; fax: +44-0247-688-8679
E-mail address: Seyed.Shariatipour@Coventry.ac.uk
1. Introduction

Carbon Capture and Storage (CCS) is one of several possible options for the reduction of CO₂ emissions to the atmosphere and it has the possibility to allow a huge decrease in CO₂ emissions arising from large point sources of CO₂ emissions [3].

Often simulations assume a distinct and smoothly undulating boundary between the aquifer and the caprock [4]. However studies of outcrops show that a variety of types of interface may arise in nature, depending on the depositional setting. For example, [5] have shown that there may be a gradual transition from sand-rich facies in the aquifer to mud-rich facies in the caprock. [2] have investigated the impact of top-seal morphology on CO₂ storage capacity and migration patterns, and concluded that it is important to model geological details in order to predict CO₂ migration. Therefore, when appraising any reservoir or aquifer for CO₂ storage, it is important to characterise the interface and to ensure that it is modelled adequately.

In this study the interface between caprock and storage formation is examined.

2. Model Specifications

This section describes a systematic study of the effect of parallel and perpendicular ridges to determine their effect on up-dip and lateral CO₂ migration. A set of numerical simulations was conducted to investigate the impacts of the transition zone, top morphology, tilt and \(k_v/k_h \) on the CO₂ storage. For this reason two types of models were created. The first type was created to study the impact of aquifer/caprock morphology. The second type was created to study the impact of transition zone (referred to as “trans”). In the former two main scenarios were considered. In the first one, ridges are perpendicular to the tilt (“perp” models). In the second one ridges are parallel to the tilt (it is called “para”).

Equation (1) was used to make top surfaces for the ridges. A simple model was chosen for the top surface, so that the properties could be studied methodically.

\[
Z = Z_0 + A(Sin\left(\frac{2\pi x}{\lambda}\right)) + x(tan \theta)
\] \hspace{1cm} (1)

where,

\(A \) refers to amplitude of the ridges (m)

\(x \) denotes distance along the X (horizontal) direction (m)

\(\lambda \) refers to wavelength which is 1000m here

\(\theta \) refers to tilt angle.
As depicted in Fig. 1 the sizes of all the models are 8 km × 8 km × 100 m. One injector was placed on the left hand side of model and CO2 was injected through perforations at the bottom of the aquifer (bottom 50 layers). The models represented part of a larger aquifer, and the pore volume of the outer column of cells on the opposite side of where injector was placed, was multiplied by a factor of 10E+9, to take account of this.

![Fig.1. Schematic top view (left picture) and cross section (right picture) of model. The injector is placed at the edge of models on the left side.](image)

Table 1 shows all the scenarios (144 models) that were used in this study. All models have the same dimensions and the same grid cell sizes (100 m × 100 m × 1 m). In all the models, the sandstone was homogeneous with constant porosity (0.2) and constant permeability (500 mD) and the shale (or mudstone) layers in the trans models were impermeable. The datum depth was set to 1500 m to ensure that none of the tilted models rose above 800 m, in order to keep injected CO2 in the supercritical phase.

<table>
<thead>
<tr>
<th>Perp/Para/Trans</th>
<th>Amplitude (m)</th>
<th>Angle (θ)</th>
<th>k_I/k_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perp</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>Para</td>
<td>3</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Trans</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
It should be noted that amplitude in the trans models refers to the half of thickness of the transition zone. Sequential Gaussian simulation was used to generate the facies distribution and the permeability and porosity were correlated with that.

The CO₂ injection rate was chosen to be half of the CO₂ emissions of a 500 MW coal-fired power plant which is around 2 million tons of CO₂ per year. The well was controlled by surface rate with a maximum pressure limit of 220 bars. However, in all models studied here the same amount of CO₂ was injected into the models, as the pressure did not reach the maximum bottom-hole pressure. The injector was shut in after 6 years and the simulation was continued for 100 years. (This injection period is shorter than a typical project to limit the time simulation time.)

The models are described by four parameters:
The first part is the type of the model, which could be para, perp or trans.
The second one is the amplitude (A).
The third one is the tilt (D).
The forth one is k_v/k_H ratio (K).

For instance, Model Perp-A9-D5-K001 refers to a simulation with perpendicular ridges, amplitude of 9 m, a tilt of 5 degrees and a k_v/k_H ratio of 0.01. Fig. 2 shows the top morphology of models with amplitudes equal to 9 metres and different tilts (0-5, degrees).

![Fig. 2. Top morphology of perp models with amplitudes equal to 9 metres and different tilts (D0-D5).](image-url)
3. Results

3.1. Para Models, Injection Period

Fig. 3 demonstrates the relation between the amounts of dissolved CO$_2$ (in percentage) at the end of injection period with k_v/k_H ratio, amplitude and tilt. It is very clear that the results are more sensitive to the k_v/k_H ratio than the other parameters.

The lower the k_v/k_H ratio the higher the amount of dissolved CO$_2$. This is because the low permeability is preventing the rise of CO$_2$ therefore more CO$_2$ spreads laterally during the injection. Thus, more free CO$_2$ phase is in contact with fresh brine resulting in more CO$_2$ dissolution in the model with lower k_v/k_H ratio.

Fig.3. The amount of dissolved CO$_2$ in the para models at the end of injection comparing: k_v/k_H ratio and tilt (top right), amplitude and k_v/k_H ratio (top right), tilt and k_v/k_H ratio (bottom).
3.2. Para Models, Post Injection Period

Fig. 4 shows percentage of injected gas which exists as dissolved gas in all para models with respect to tilt, k_l/k_{HI} ratio and amplitude 100 years post injection. During this period the amount of dissolved CO$_2$ is sensitive to the tilt and k_l/k_{HI} ratio whereas the effect of amplitude is negligible. The effect of tilt is more important as the higher the tilt the more CO$_2$ migrates up-dip and therefore more CO$_2$ is in contact with fresh brine resulting in more CO$_2$ dissolved in models with higher tilt. From 0 to 2 degrees tilt approximately 1% more CO$_2$ is dissolved per 1 degree tilt. However, this change is more than 1% when tilt is increased to 5 degree.

The higher the tilt angle the more segregation between results of models with high and intermediate k_l/k_{HI} ratio. If the models are flat, most CO$_2$ is dissolved in the models with the intermediate k_l/k_{HI} ratio, next the models with lowest k_l/k_{HI} ratio and the least CO$_2$ is dissolved in the isotropic models ($k_l/k_{HI}=1$). By increasing the tilt angle to 5 degrees, more CO$_2$ is dissolved in the isotropic models. This is because greater CO$_2$ migrates upwards resulting in more CO$_2$ in contact with fresh brine. Results show that despite increasing the amplitude from 0 to 9 m, approximately the same amount of CO$_2$ is dissolved 100 years post injection period in all models. This is due to the fact that when the CO$_2$ reaches the top sand layer, it starts to fill and migrate along the closest ridge. If the thickness of the plume is more than the amplitude, CO$_2$ moves laterally to the next ridges and fills them while migrating parallel to them. Therefore there is no obstacle to prevent CO$_2$ migration. Therefore amplitude does not have a significant effect on the amount of CO$_2$ dissolution in the para models.
3.3. Perp Models

Results show that the effect of the k_v/k_H ratio and tilt on the amount of CO$_2$ dissolution during the injection period and 100 years post injection in *perp* models is the same as for the *para* models. However, amplitude has a slight effect on the amount of CO$_2$ dissolution in *perp* models whereas this was negligible in *para* models. This is because of the structural trapping that occurs in *perp* models. The bigger the amplitude, the more CO$_2$ is trapped structurally, and therefore less CO$_2$ migrates along the tilt direction, resulting in less CO$_2$ dissolution.

Fig. 4. The amount of dissolved CO$_2$ in the *para* models 100 years post injection comparing: k_v/k_H ratio and tilt (top right), amplitude and k_v/k_H ratio (top right), tilt and k_v/k_H ratio (bottom).
4. Plume migration in trans models

Three models were chosen to investigate plume migration in the *trans* models with respect to tilt and k_t/k_H ratio. Fig. 5 shows plume migration in the three *trans* models (Trans-A6-D5-K1, Trans-A6-D1-K1, Trans-A6-D1-K001) 100 years after post injection period. The pictures on the left demonstrate the CO$_2$ plume in the top-most layer and pictures in right show the length and the width of migrated CO$_2$ through different layers.

![Figure 5: Gas saturation 100 years post injection period in three *trans* models. All three models are tilted and have the same amplitude. However, top one and middle one have the same k_t/k_H ratio but the former one has 5 degrees inclination and the latter one 1 degree. The bottom one which also is tilted (1 degree) however has a low k_t/k_H ratio (0.01). More CO$_2$ reaches the top layer due to higher tilt angle and higher k_t/k_H ratio (top picture) whereas the least upwards migration happened in the model with lower tilt angle and lower k_t/k_H ratio (bottom picture).](image-url)
Fig. 5 shows that more CO₂ can reach the top of the storage formation by increasing tilt and \(k_v/k_H \) ratio. The plume at the top of the aquifer will have a patchy form depending on the permeability distribution. In addition, it can be concluded that the length of the plume is sensitive to the tilt and then \(k_v/k_H \) ratio. By increasing these two factors more CO₂ migrates up-dip resulting in the plume having a smaller width. On the other hand, more CO₂ spreads out laterally at the lower tilt angle and higher \(k_v/k_H \) ratio (Trans-A6-D1-K1). In the model with the small tilt and low \(k_v/k_H \) ratio (Trans-A6-D1-K001) more CO₂ accumulates above the injector and gives the highest thickness of the CO₂ plume amongst these models. Therefore less CO₂ migrates resulting in having the smallest length.

5. Discussion on numerical simulation results

The results of all 144 models are discussed in this section.

5.1. The effect of top morphology and transition zone on the amount of CO₂ dissolved

The amount of CO₂ dissolved at the end of the injection period and 100 years post injection period in all trans, para and perp models was chosen to investigate the effect of the amplitude of the ridges (thickness of transition zone in trans models), tilt and \(k_v/k_H \) ratio. Fig. 6 and Fig. 7 demonstrate amount of dissolved CO₂ in percentage at the end of injection and 100 years post injection with \(k_v/k_H \) ratio (Z axis), tilt (X axis), and amplitude (Y axis) for trans models (top values), para models (middle values) and perp models (bottom values) respectively.

5.2. End of Injection

Results show that the most sensitive parameter at the end of the injection period is \(k_v/k_H \) ratio (Fig. 6).

The lower the \(k_v/k_H \) ratio the more CO₂ is dissolved. This is due the fact that more CO₂ spreads out when the \(k_v/k_H \) ratio is low therefore more CO₂ will be in contact with fresh brine resulting in more CO₂ dissolution (Fig. 6). In other words, in models with high \(k_v/k_H \) ratio the effect of viscous force on the lateral migration is less than the model with low \(k_v/k_H \) ratio.

5.3. 100 Years Post Injection Period

Results show that the most sensitive parameter is tilt (Fig. 7). As the tilt increases from the left hand side of graph to the right side of the graph from 0 to 5 degrees more CO₂ dissolved in the models regardless the amplitude of the model.

The second most sensitive parameter is \(k_v/k_H \) ratio. The gas migration during post injection period is governed by buoyancy therefore the higher the \(k_v/k_H \) ratio the more CO₂ migrated upwards. Thus more CO₂ is in contact with fresh brine therefore more CO₂ is dissolved in brine (Fig. 7).

The effect of amplitude is not significant in para models due the fact that there is no obstacle for CO₂ migration.
However, in \textit{perp} models by increasing the amplitude, especially for the high k_v/k_H and high tilt models, the amount of dissolved CO$_2$ falls (Fig. 7).

Fig. 6. Dissolved CO$_2$ at the end of injection period for \textit{Trans}, \textit{para} and \textit{perp} models. The top value at each point refers to \textit{Trans} Model, the middle one refers to the \textit{Para} Model and the bottom one refers to the \textit{Perp} Model. Models with lowest k_v/k_H ratio have the highest amount of dissolved CO$_2$ at the end of injection period.

Fig. 7. Dissolved CO$_2$ 100 years post injection period for \textit{Trans}, \textit{para} and \textit{perp} models. The top value at each point refers to \textit{Trans} Model, the middle one refers to the \textit{Para} Model and the bottom one refers to the \textit{Perp} Model.
6. Conclusions

One noticeable result of this study is that during injection the effect of the k_v/k_H ratio was dominant. In other words, it was not just the caprock morphology that was affecting the results (dissolution and plume migration), it was the structure of the aquifer as a whole (The k_v/k_H ratio is used to take account of small-scale structure, which tends to be approximately horizontal). Lateral plume migration has been extensively studied [6]. However, the effect of the combination of tilt, k_v/k_H ratio, and amplitude during injection and post injection period has not previously been addressed.

In addition, the transition zone has a positive effect on the CO$_2$ storage as more CO$_2$ dissolved and the CO$_2$ vertical migration is limited too. In order to study the effect of top morphology on the CO$_2$ storage the amplitude of ridges and the orientations of ridges to the tilt was varied systematically, which has not been addressed in any work previously. Ridges with higher amplitude (bigger than plume thickness) provided more structural trapping if they were perpendicular to the tilt. However, ridges parallel to the tilt provide a pathway for rapid CO$_2$ up-dip migration. Although this may increase the risk of CO$_2$ leakage as it migrates further away from the injection point, more CO$_2$ is dissolved due to more migration.

In general, it can be concluded that the amount of CO$_2$ dissolution in saline aquifers is not strongly dependent on the direction of sub-seismic ridges at the top of aquifer or thickness of the transition zone (allowing a few percent differences). The effect of amplitude on plume migration is more important for the cases with small tilt angle than large tilt angle models.

Acknowledgements

We thank Schlumberger for the use of Eclipse 300 and Petrel and also we thank Amarile for the use of the Re-Studio. The authors wish to thank the Scottish Carbon Capture and Storage (SCCS) Consortium and Foundation CMG for funding this work.
References

