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Multimodal data channels such as bio-physiological signals are increasingly used in game-play studies to
better understand players’ behaviours and their motivations. It is however difficult to perform any sort of
conclusive analysis solely based on bio-physiological signals due to the complex nature of epistemic,
semiotic and ergotic activities surrounding in-game activities and the artefacts facilitating player immer-
sion. Thus a combined analysis of multiple data streams including in-game data and bio-physiological
signals is indispensable to produce contextualised information from which a deep analysis of game
mechanics and their effects can be performed.

Precise synchronisation in capturing multiple streams is required to generate valid inter-stream corre-
lations and meaningful information. Typically there are no automatic mechanisms built in the game
architecture or in commercial data logging systems for multimodal data synchronisation and data fusion.
This paper presents a novel and generic technique based on inducing identifiable signature pulses in data
channels to accurately synchronise multiple temporal data streams. This technique is applied and its
capabilities are exhibited using a driving game simulation as an exemplar. In this example, driver’s in-
game behavioural data is synchronised and correlated with their temporal brain activity. The concept
of simplex method borrowed from linear programming is used to correlate between the driving patterns
and brain activity in this initial study is provided so as to allow studying/investigating user behaviour in
relation to learning of the driving track.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Computer games are increasingly being used as a medium to
study user affect in psychology and behavioural studies. To study
a particular phenomenon, such as learning, perception or emotion,
often the arbitrariness of real world activities makes for a difficult
experimental setup to gather, track and analyse the provenance of
data. Temporal data from human bio-signals e.g. Electroencephalo-
gram (EEG), Electromyogram (EMG), Electrooculography (EOG),
Galvanic skin response (GSR), etc. are often used to study the
human behaviour with the reduced attitudinal and demographical
influences. Unfortunately, such data are prone to noise and thres-
holding, weakening the correlations where evidence of temporal
influences upon the multi-dimensional and subsetting operations
during in-game activities to produce contextually meaningful
information. Having well thought out and implemented game play
mechanics would provide a context and immersive experience, by
reflecting the temporal phenomena.

Contemporary Serious Games (SGs) are often represented
through complex environments in which users are led to interact
with many game-related elements and information. While SGs
generally focus on a set of specific and recognisable purposeful
activities (core mechanics) oriented towards specific learning out-
comes, they also integrate a number of smaller, shorter, activities
designed to engage players on different levels (secondary mechan-
ics) and generate a state of flow for the player. Logging game play is
a common practice in order to study a player’s in-game behaviour
and monitor the efficiency of specific game elements. Behavioural
knowledge gained through this approach could be used to assess
the contribution of individual game mechanics (core or secondary)
in supporting player engagement and learning. However, gathering
and analysis of user behaviour is a multivariate process which
requires more information than the mere logging of game context
and player activity.
, Enter-
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1.1. Synchronous logging of in game temporal data

The data captured in a game session can be classified as context
independent and context dependent data [1]. Context independent
data is normally external to the game, such as EEG, eye tracking,
screen capture, etc., while context dependent data relates to the
internal elements of the game such as score, lap time, driving
speed, interaction with a game asset or character. Apart from
enabling insights into the actual internal affective state of the
player [2], context dependent and context independent data per-
mits a more holistic understanding of the combined and interac-
tive user-game system. Consequently, accurate synchronisation
of multimodal data streams is critical to avoid parameter skews
for analysis. Analysing task based operations (e.g. Event Related
Potentials) require precise time measurements where the chrono-
logical ordering of events is crucial [3]. For example, if one wants to
analyse P300 or N400 components in EEG signal, temporal align-
ment tolerance of the synchronisation should be in millisecond
range rather than in seconds [4].

To date configured solutions for multimodal data capture are
ad-hoc solutions [5–10] and cannot serve as a holistic system.
Almost every solution for multimodal data capture is interfaced
with specific hardware or software tools from various vendors.
Because of the ad-hoc interfaces, they are depended particularly
to one or a family of data capture tools. Therefore it becomes oblig-
atory to use multiple customised data logging solutions to satisfy
different application scenarios. Assorted tools run on independent
platforms, for instance different hardware or assorted software
even if they run on the same hardware. In addition to the game
logging, multiple data capture devices (e.g. EEG Capture Device,
Eye Tracker, and Video Capture Device) also work as detached
components in a data logging environment. Devices running on
independent hardware or software platforms will naturally run
asynchronously. Data captured from these isolated components
are required to be synchronised by some means because data
streams originating from these components must be temporally
aligned to decipher the meaningful information. The temporal
alignment can influence the information extracted in such a way
that significant information of an activity is detected, undetected,
or falsely detected. For instance, eye tracking data stream should
be adequately aligned with the data stream from the in-game con-
text in order to recognise what in the dynamic screen of the game
could have caused the change in the eye data.

1.2. Driving task and game elements

A study using a driving game play was used in this paper to
quantify driver performance and skills so as to gain a better under-
standing of a driver’s ability. The intention was to ascertain
whether cognitive and motor skills from a driving game trans-
ferred to real world driving. The hypothesis that characteristics
such as confidence, skills, capacity of learning, etc. in a gaming
environment reflect similar skill sets for real-world driving, partic-
ularly since these activities align with requirements for Formula
(F1) Student driver selection [11].

In this particular study, it is anticipated that learning is
achieved via the repetition of the same game activities and a trial
and error approach towards task completion. Drivers were asked
to drive around the racing track against the clock. Driver abilities
vary greatly depending on their real and simulated driving experi-
ence (i.e. driving games) and their knowledge of motorsports. The
study therefore focused on the learning process rather than perfor-
mance. The aim is to determine how accurately temporal data can
be captured and fused to help document driver performance in the
areas of braking point, corner entry, negotiating an apex and corner
exit, prior to track days and race-driving tuition.
Please cite this article in press as: A. Sivanathan et al., Temporal multimodal da
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1.3. Game-driving task and psychophysiological analysis

Correlating driving performance and psychophysiological data,
specifically monitoring the brain activity (using EEG) can poten-
tially reveal the relationship between driving behaviour and the
cognitive state of the driver [12–17]. However, the research in
the area of distinguishing the above described skillsets from psy-
chophysiological signals is not explicit. Neurometric studies and
experiments for brain-based/driven applications are performed in
tightly controlled environments (i.e., movement restrictions). It
also limits the actual intended task and therefore not always feasi-
ble to perform the actual behavioural measurement during the
recorded task [18]. A game-driving or real-world driving is essen-
tially a mixture of various visceral and sensorial activities from
which the driver has to respond [16,17,19]. The brain activity at
an instance of driving corresponds to all these activities invariably.

The conventional practice of neurometric analysis is to ring-
fence the study and hence reducing the number of parameters that
can affect the experiment. Other activities are recognised as arte-
facts and the signals relating to these activities are considered as
‘noise’ in the signals. It might be neither possible to split the driv-
ing task into smaller key activities, nor reject other activities as
artefacts in driving. Consider the task of negotiating a corner at
speed, it involves hand-eye coordination and is associated to the
driver’s confidence level. If a study has been performed to associate
the confidence level using the affect state of the driver measured
using EEG, separating the movements or visuals processing from
task might breakdown the purpose of the study.

Although the action-chain (i.e., epistemic, semiotic and ergotic)
relationships [20–22] of driving can be broken down into individual
elements, the context of behaviour and cognitive organisation
cohesion is more than the sum of its parts. The alternative approach
is to extract patterns from combined modalities, car-related param-
eters (e.g., steering activity, pedal depressing, speed of driving, posi-
tion on the track, etc.) along with neurometrics (mainly, EEG).

Consequently, a synchronised data capture of driving telemetry
and psychophysiological data is critical for the combined analysis
and for finding correlations. Since the outcome of the analysis is
highly dependent on the synchronisation of independent data
streams, a proven mechanism was required for the data capture
and to verify the temporal alignment between data streams. This
necessitates re-scrutiny on assumptions made about data capture
tools and the whole data stream pathway.

1.4. Paper contributions

The paper introduced the compelling need for the synchronised
multimodal data capture in the Section 1. Issues related to EEG
analysis in a game environment, specifically for driving were
addressed in Section 1.3. Section 2 provides a background on issues
related to the time synchronisation in data logging and standard
strategies used to tackle the synchronisation problem are briefly
reviewed here. As a solution to the synchronisation problem,
Section 3 presents a novel and generic technique to temporally
synchronise diverse multimodal data streams. Section 4 introduces
the experimental task, a game-driving scenario as a case study.
This section explains the data logging setup in detail with relevant
data capture devices, also technically revealing potential flaws
related to the temporal synchronisation of data streams. A driving
game is used as an example scenario; however, the issues are gen-
erally encountered in many other gaming domains. Finally the
accuracy and granularity of the synchronisation are critiqued by
referring to the collected data.

Section 5 demonstrates how temporal synchronisation can be
utilised to correlate the brain activity and the events related to
driving. Simplex correlations [23] between EEG data and driving
ta synchronisation for the analysis of a game driving task using EEG, Enter-
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related telemetry data are discussed here. The purpose of this anal-
ysis is twofold. While several new methods of associating the brain
activities with the events related to driving are being presented,
the authors also want to emphasise the fact that these unprece-
dented ways of analysing the game-activity would not have been
possible without the achieving a tight temporal synchronisation.
2. Related work

Synchronising data streams can be achieved by time-stamping
every sample with a central or external clock. However, this is
not always a practical solution because of the limitations in acces-
sibility to the internal architecture of games and commodity data
capture devices. It is very common to use a data capture device
which is usually a proprietary piece of hardware or software;
where only the data is streamed out from the device. Although
games and device manufactures provide Application Program
Interfaces (API) or a Software Development Kit (SDK) to access
the data, access to the core event or the streaming loop is
restricted. Therefore it is inevitable to comply with the standard
data stream provided by the games or the capture devices.

Software based data logging systems are typically custom built
(with many existing as third party ad hoc solutions) to collect data
from relevant devices’ data streams. Data streams from multiple
sources suffer variable amount of latencies and jitters in their pipe-
line from the source to the data logging system [24,25]. A general
solution to deal with the non-deterministic latencies is to intro-
duce a jitter buffer. However this extra buffering also adds to the
overall latency [26]. Interoperability becomes an issue since typical
data logging systems running on general purpose operating sys-
tems (OS) suffer further non determinism in OS related aspects
such as task scheduling, context switching, communication proto-
cols and buffering, etc. [27,28].

The accuracy of a signal processing architecture (e.g. Social
Signal Interpretation Framework (SSI) [29]) is dependent and the
recognition of tasks will be affected by the temporal characteristics
of streams supplied to it. Misalignments in the input signal streams
can influence the output generated by a tool which fuses the data
from multiple signal streams. Therefore the samples from multiple
streams are needed to be indexed with regard to a common time
reference so that the processed output can also be referenced to
the input streams and hence can be related to the source activity.

The common approach used in data logging systems is to syn-
chronise all logged channels with one primary channel. Inherently,
this primary channel can be a global timing device. Samples from
every stream will be marked with a frame number from the pri-
mary channel, using it as the index. The TRUE Architecture by
Microsoft Game Studios [30] presents a system for recording data
for studying user behaviour in a PC software or a gaming console.
This architecture looks at streams of data and logs sequences of
events along with the timestamp. Captured video is also synchron-
ised with the event timestamps and indexed based on the events.
While this demonstrated the efficient retrieval and navigation
through large data sets of game play to identify potential problem-
atic areas in a game, fine grained time synchronisation issues are
not addressed in this work. In addition to the time stamping, con-
text related events occurring in the games are marked by emitting
a unique signal, for example using parallel port byte or a transmis-
sion control protocol (TCP) packet. This message is consumed by
the data logger and time stamped and/or inserted alongside the
other data streams [3]. Emitting events to external software i.e.
to data logging software needs access to some features of the game
via a SDK or API. In contrast to consciously emitting events
Bannach et al. [31] suggested a way of detecting events and syn-
chronising streams according to the events. An un-ambiguously
Please cite this article in press as: A. Sivanathan et al., Temporal multimodal da
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detectable data signature in data streams were used to synchronise
streams in this technique. This technique is adopted in this work
for synchronising multiple data streams.
3. Generic source data based synchronisation using synthesised
pulses

The problem with Bannach et al.’s [31] approach to estimate the
time offsets is that, finding a universal, action that could spawn an
unambiguously identifiable characteristic data signature in every
data channel is extremely difficult. For example, finding a common
detectable pattern in across physiological data streams, software
logging and audio visuals is a difficult challenge. As a solution, this
paper presents a modified technique from Bannach et al.’s source
data based synchronisation [31] approach. In contrast to finding
a common comprehensible pattern across multiple modalities,
using a reference calibration device is proposed here. The primary
purpose of this calibration device is to induce pulses or signatures
in corresponding data streams, independently. Selecting a suitable
pulsing method depends on the physical nature of the signal and
the corresponding data stream. Generally it is not difficult to find
an exclusive calibration pattern for each different modality, for
instance using light/LED flashes for video capture, buzzers for
audio, electromagnetic induction on cables for physiological cap-
ture to name a few.

This reference calibration device will be connected to the data
capture system, where the channel latencies/offsets will be mea-
sured using this device as the reference. Predominant steps
involved in this calibration process are listed below.

1. The round trip time of sending a command to the calibration
device and getting an acknowledgement will be measured.

2. A command will be sent to the device to synthesise patterns in
each channel, all at once or one-by-one. Patterns will be
induced in the data channels upon receiving this command.

3. The latency of the induced patterns will be measured in every
channel and individual time offsets can be estimated as follows.

Fig. 3.1 illustrates the spawned synchronisation data-signature
and the differences in the latencies of the signals.

The Command latency (Tcl) can be related to the Round Trip
Time (TRTT) of the calibration device. In addition to latency in data
stream paths (Tpath), jitter buffering also creates additional delays
(Tjitter) on the signal before they are received by the data logging
system [26]. Essentially both of these components contribute to
the overall latency in a channel (Tlatency).

Tcl … TRTT=2

T latency … Tpath þ T jitter

The latency (Tlatency) in a channel is equivalent to the latency in
the spawned data signature, which can be measured by the delay
between the time of inducing the synch pulse and the time it
appears in the captured stream. The measured delay (Tdelay, i.e.
d1, d3, d3) comprises the actual channel latency and the command
latency. Therefore the latency in a channel can be represented as
below.

T latency … Tdelay � Tcl
4. Case study: temporal synchronisation of driving game
logging and psychophysiological signals

Data was recorded in a driving simulation environment to
understand drivers’ behaviour, and performance on a racing track.
ta synchronisation for the analysis of a game driving task using EEG, Enter-
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Fig. 3.1. Induced synchronisation signature and channel latencies.

Fig. 4.1. Driving simulator data capture setup.
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In this case the aim was to monitor a player’s activities in relation
to mastering the specific corner sequence of braking, corner entry,
apex taking and corner exit.

4.1. Data capture setup

Codemasters Formula 1 game was used as the simulation
engine to provide the actual driving experience. Three dimensional
visuals of the game were rendered using to the DepthQ stereo-
scopic projector onto a power wall with active wearable shutter
glasses. Logitech G27 racing wheel and pedals with force feedback
system were connected with the game engine as the driving con-
trols. Telemetry data including, car’s parameters such velocity,
position of the car on the track and engine speed and drivers activ-
ities such as throttle, brake and steering angle are streamed out by
the game engine via user datagram protocol (UDP) at the rate of
50 Hz. Visuals rendered by the game engine were captured as a
phase alternating line (PAL) video with 25 frames/s. A video cam-
era is also used to capture the driver and surroundings at the same
frame rate. Electrodes were attached to the driver’s head, in order
to monitor Electroencephalographic (EEG) activity. EEG signals
were captured at 2048 Hz using Mindmedia Nexus 32 physiologi-
cal monitoring device. Fig. 4.1 illustrates the arrangement of
devices and the information flow.

In addition to the driver, an observer was also linked in the data
capture setup. The task of the observer was to identify milestones
and incidents manually during the game. The observer performed
this by pressing predefined keys on a PC keyboard. The observer
is also provided with the real-time visualization of the captured
EEG Data, Telemetry, and video streams. The observer’s input
was used to aid quick analysis, for example, to point out interesting
aspects on every lap, with the hope of future rigorous and to iden-
tify and fix any sensor faults while the experiment was carried out.

Main practical concerns related to the data capture setup and
devices are addressed throughout the rest of this section.

4.2. Jitter on the data streams

The EEG capture device API delivers the data by means of a call-
back function. Having no control over this call-back frequency,
other than setting a constant value while configuring, a jitter is
observed in this signal (Fig. 4.2). This behaviour is expected in a
general purpose OS such as windows and in the universal serial
bus (USB) communication channel used by the EEG capture device.
A similar observation is seen in the telemetry UDP packets as well.
Additionally telemetry stream UDP packets were received approx-
imately at 46 samples/s. This greatly deviates from the pre-set
frequency of 100 Hz. Network dynamics and UDP packet loses or
Please cite this article in press as: A. Sivanathan et al., Temporal multimodal da
tainm. Comput. (2014), http://dx.doi.org/10.1016/j.entcom.2014.03.004
the simulation engines internal design might have created this
deviation. The jitters can be removed by introducing additional
First-In-First-Out (FIFO) buffers. UDP stream’s actual frequency is
monitored by counting elements on the FIFO, in fixed intervals.
This observed frequency is used as the real frequency in the
analysis.

4.3. Asynchrony of EEG and telemetry streams

These two streams originate from highly dissimilar sensor
nodes. The path taken by EEG samples can be described sequen-
tially such as, generated by the hardware, transmitted through
the optical fibre, retransmitted by the USB device, received by
the API and finally reaches the data capture framework’s realm.
Since there is no apparent knowledge available to model the path
taken by these samples the relative temporal offset between these
two streams cannot be estimated directly.

4.4. Using a reference device to calibrate streams’ temporal offsets

For calibration purposes an in-house built embedded device
(Fig. 4.4) is used to induce spiky changes in EEG and simulator
ta synchronisation for the analysis of a game driving task using EEG, Enter-
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Fig. 4.2. Observed Jitter in delivered samples: Jitter observed in the delivered samples, the expected frequency: 2048 Hz.

A. Sivanathan et al. / Entertainment Computing xxx (2014) xxx–xxx 5
telemetry streams. The calibration device was initially pro-
grammed to estimate a Round Trip Time (RTT) of a command
(command to induce a data signature) and to get the respective,
symmetric acknowledgement. Measuring RTT can be also affected
by the OS timing issues and jitters discussed in the Section 2. As a
consequence of this, the RTT is estimated using multiple trials
(Fig. 4.3) in order to get a better estimate.

After the RTT estimation, the calibration device is programmed
to induce a signature in the data stream. Every stream’s time
offsets were then estimated individually by spawning individual
calibrating actions such as inducing spike waves on the EEG sen-
sors using digital pulses, blinking Light Emitting Diodes (LED) on
video streams, using gyros attached to the embedded devices to
sense the steering wheel rotation etc.

Temporal offsets for the EEG and video streams were estimated
using the method described above and by inducing spikes on their
individual data streams. However a slightly different method was
used to estimate the offset in the telemetry streams from the game
engine.

Inertial data captured using the reference device was used to
calibrate the telemetry streamed from the game engine. One off
calibration was performed to measure the telemetry offset. The
reference device with the inertial measurement modules was
mounted onto the steering wheel and pedals so that the offset
between the inertial data stream and individual telemetry streams
can be measured. Both telemetry and inertial data streams are
examined for the calibration signatures such as sharp turns on
the steering wheel and quick depresses on the pedals. Distinctive
changes in data streams related to the calibration signatures were
recognised and used to evaluate the offset between these streams.
Once this offset is measured and using the known latency of the
reference device (this is equivalent to the latency comprised in
Fig. 4.3. Round Trip Time: Command round trip time of the custom built device, con
distribution with the mean of 0.015511 and mode of 0.015589.

Please cite this article in press as: A. Sivanathan et al., Temporal multimodal da
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the inertial data stream) the actual latency of individual telemetry
channels were evaluated.

4.5. Evidence of synchronisation of driving activity and EEG

The EEG signals and car telemetry shown in Fig. 4.5 respectively
illustrate the correlation between the drivers muscle activation of
the actuations on the game controllers (steering wheel and brake
and gas paddles). EEG Signals were filtered here using Butterworth
– band pass (20–50 Hz) filter so that the muscle artefacts are
clearly visible and hence the synchronisation can be validated.
Muscle artefacts are typically filtered out in EEG analysis and
disregarded, but this information is effectively used here for the
purpose of synchronisation.

Muscle activity is a common artefact in EEG signals which can
be manually observed, therefore it is used here to evident and val-
idate the synchronisation of the captured signals. Accuracy of the
temporal alignment of EEG and driving telemetry can be visually
examined using the muscle actuations, which corresponds to a
driving activity, i.e., driver is changing over from full throttle to
brake and subsequently performing a turn in an apex in the track.
It should be noted that in this case muscle artefacts present in the
EEG data stream were exploited to validate the synchronisation,
and hence the signals are filtered to enhance the muscle artefacts.
Nevertheless it is common to filter out muscle activities while
performing a comprehensive EEG analysis but the concept of syn-
chronisation will remain unchanged.

5. Brain activity and driving patterns

Having addressed the synchronisation related issues described
and with temporal alignment of captured driving telemetry and
nected through UART interface at 115200 baud rate was observed as a Gaussian

ta synchronisation for the analysis of a game driving task using EEG, Enter-
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Fig. 4.4. In-house built embedded device with inertial measurement modules
mounted.
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EEG data justified reasonably, the methodology was used to study
the driving pattern of 14 drivers, including 7 gamers with more
than 500 h of formula 1 gaming experience, 2 real formula 1 driv-
ers and 4 rally drivers.

The main aim of this study was to demonstrate how synchron-
ised data logging and multimodal data fusion, i.e. multiple data
streams (psychophysiological signals, game, and telemetry) can
be useful in documenting the process of learning. In this case,
learning to corner at speed; braking, corner entry, apex and corner
exit. Synchronised driving activity data provides the necessary
information for documenting the learning process from a purely
numerical perspective. Such data also allows for determining
learning and exploration patterns regarding a task.
Fig. 4.5. Synchronised EEG and driving telemetry signals. EEG signal

Please cite this article in press as: A. Sivanathan et al., Temporal multimodal da
tainm. Comput. (2014), http://dx.doi.org/10.1016/j.entcom.2014.03.004
5.1. Experimental setup

The Silverstone circuit was selected for the study. Each partici-
pant drives the Red Bull Racing RB7 Renault car, with no other cars
on the track. The car was configured for automatic gear shifts, 197�
of steering angle and all other assisted driving controls (breaking,
stability control, etc.) disabled. To provide a more immersive envi-
ronment full cockpit view, force feedback steering and stereoscopic
three dimensional rendering were enabled. Lap count, lap time and
shortest lap time are displayed on the screen while all other infor-
mation displays (e.g., track position, track guidance marks, com-
ments) were turned off. Fig. 5.1 shows the driving environment
and the rendered 3D visual.

All drivers were trained on the Melbourne Grand Prix circuit
before they were allowed to enter the Silverstone circuit. The train-
ing was to familiarise the driver to the controls, the car, and adapt
themselves to the simulated environment (i.e., depth perception,
motion sickness, and steering response etc.). Once the driver felt
competent, they were asked to complete as many laps as possible
within 30 min in the test session on the Silverstone circuit.

EEG data was collected in a 10–20 system using an electro gel
cap. Drivers were strapped to the driving seat using seat belts
and a head-neck restrain setup similar to a HANS device [32].
These restrains emulated an environment similar to a real F1 car
and helped to restrict intense body movements, hence reducing
severe artefacts in the EEG.

Driver activity over a specific region on the track (Fig. 5.2) was
selected. The ‘Stowe’ corner was selected as it is a high-speed cor-
ner with a long approach straight leading into a large radius curve.
It is anticipated that drivers will contemplate risks as they learn to
deal with this corner. Additionally, Stowe tests the confidence and
the attention/concentration of the driver since maintaining a high
entry and exit speed critically impacts on the overall lap time. The
A telemetry capturing module was built to automatically generate
a marker in real-time whenever the car enters and exits Stowe. The
automatic generation of markers allows instantaneous extraction
s were filtered using Butterworth – band pass (20–50 Hz) filter.

ta synchronisation for the analysis of a game driving task using EEG, Enter-
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Fig. 5.1. F1 driving simulation environment with the 3D power wall.
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of temporally aligned data, i.e. ready to use data segments during
or after the driving session.

5.2. EEG processing

EEG analysis was performed in both time domain and frequency
domain, mainly based on the signals from frontal lobe electrodes
(F3, Fz, and F4). Signals are filtered using 4th order Butterworth fil-
ter, using hi-pass to remove the DC component and low-pass to
remove the high frequency noise. Actual cut-off frequencies are
selected according to the specific analysis performed which are
alpha band 8–12 Hz, and beta 13–21 [34, pp. 112–120]. Thereafter
the filtered signal has been transformed into frequency domain to
observe power of the frequency power spectrum. Frequency trans-
form was performed in 1s windows, with the window stepping of
10 ms. The frequency transform was scaled based on the length of
window (number of points) to conserve the signal power; although
the importance was given to the relative variation of the frequency
spectrum than the absolute values. Various representations of the
frequency power values have been presented throughout this sec-
tion. The colour map used to represent the frequencies varies from
blue to red corresponding to the minimum and maximum frequen-
cies in the considered timespan.
Fig. 5.2. Formula 1, Silverstone track [33] and region of interest for the study, i.e.
‘Stowe’ corner.
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5.3. Artefacts and noises

A driving task involves various activities that could influence
the EEG recording, such as muscle activities in the head region,
eye blinks, etc. Body and head movements also cause slight move-
ments in the EEG cap, affecting the impedances in the electrodes,
consequently introducing many noise sources in the signal. Arte-
facts occur more frequently in driving compared to a controlled
experiment, e.g., an Event Related Potential (ERP) experiment with
limited predefined events and responses. The standard practice is
to automatically or manually detect and reject artefacts [35,36].
However doing this for an EEG signal collected during a driving
task would result in highly fragmented strips of signals unsuitable
for continuous brain activity analysis [37,38]. Event locking is a
common methodology in EEG studies of signals before and after
the event. Thereafter the signals will be averaged over many events
and/or various participants [35,39–41]. The difficulty with this
approach is isolating and distinguishing a discrete cognitive event
in a driving task.

An experimental system built with consumer game equipment
and EEG capture is limited in many ways compared to an exclu-
sively built laboratory setup used in psychophysiological studies,
e.g., cost and quality of the equipment, signal to noise ratio, inter-
ferences by external sources and activities, etc. Body movement is
a significant source of noise particularly since it is almost impossi-
ble to maintain a ‘rigid’ posture or abstain from body sway. These
are uncontrolled parameters as result of combined game immer-
sion and motor reflex as in a real-world racing environment,
whereas parameters are carefully controlled in a scientific experi-
ment so that one specific concept can be isolated and studied inde-
pendently. The contrast here revolves around using a force
feedback steering wheel and pedal box as opposed to a game pad
with thumb-stick controls. Therefore, the approaches followed in
a controlled environment are not always practical in a more realis-
tic environment.

As a consequence, rather than establishing a unique signal or
pattern, it is preferable to identify the trends relating to action-
chain relationships in the EEG data. Potentially driving activity
can be explained more reliably and accurately by one or more
sequences of abstract action-chain relationships. Therefore it is
important to know what happened at a specific moment in the
environment to understand and interpret the EEG. The basis
developed by the tight synchronisation provides and enables the
correlation of recognisable actions performed by the user at any
specific time.
5.4. Interpreting the ‘noisy’ EEG using synchronised telemetry

The possibility of revealing some useful information from arte-
facts is considered here. Instead of removing signal components,
which are deemed to be artefacts or noise in conventional EEG,
they are retained. For example, signatures of white noise (appears
in all frequencies) could represent a muscle artefact or disturbance
caused by a movement in the electrodes, cap, cables, etc. (see
Figs. 5.3 and 5.4). White noise is identified by vertical lighter lines
in the frequency spectrum, some of which are associated with the
driver’s physical activities on throttle whereas horizontal lines rep-
resent alpha activity. Therefore such a white noise may be consid-
ered as an indication of the driver’s body movement and verified
further if it also corresponds to a driver activity captured in driving
telemetry. Observing the continuous variation in alpha power
(horizontal colour changes) it can be visually justified that every
rise in alpha is not due to an artefact and hence the data still
contains usable information, therefore it does not need to be disre-
garded completely (see Fig. 5.3).
ta synchronisation for the analysis of a game driving task using EEG, Enter-
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Fig. 5.3. EEG frequency power spectrum, signals were filtered using the pass band of 8–13 Hz (alpha band) before transforming into frequency domain. (Readers are strongly
encouraged to use the colour, online versions over grayscale copies of this figure for improved readability.)
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6. Results and discussion

From an observational perspective, mistakes made by drivers
and the type of alpha and beta activities immediately prior to or
during mistakes being made were investigated. Equipped with
such data it is then possible to further the causes for mistakes asso-
ciated with attitude parameters such as concentration (Beta) or
attention (Alpha). The resulting analysis below suggests several
cases where the synchronised data from EEG can further document
an observation and potentially provide better feedback towards
learning or skill acquisition.

In Fig. 5.5, the driver makes a mistake at the breaking point;
brakes too late, thus missing the corner’s entry point, apex and cor-
ner exit. The cause of the mistake is clearly seen from the telemetry
record and trajectory of the car in lap 2 compared to laps 1 and 3. A
possible interpretation of brain activity correlated to the incidents
in the driving is given below.

It can be speculated at this stage that alpha monitoring could
provide information as to why a driver might have missed their
braking point. Research has shown EEG alpha power fluctuations
to correlate with processing of the visual network and between
the visual cortex and the rest of the brain. Interestingly, these
effects are unique for the alpha band and not observable in other
Fig. 5.4. EEG frequency power spectrum, signals filtered using the pass band of 15–20 Hz
are strongly encouraged to use the colour, online versions over grayscale copies of this
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frequency bands [42]. The braking zone is highlighted in red,
meaning that the driver is emitting high alpha thus appearing
quite relaxed and still possibly performing mental calculations,
working with memory [43–46]. Upon missing the breaking point,
the alpha reading shift towards low alpha (blue) and full attention
to the task at hand. It can be speculated that this could illustrate
the moment in which the driver realises that he/she is not going
to make the corner entry or the apex and possibly run off the track.
While speculative, the shift of activities in the EEG bands appears
to match the expected experiential sequencing of events on track.
In this context, the later part of the corner is particularly telling as
the driver is focusing his/her attention towards re-positioning the
car on the track. Fig. 5.6 illustrates further examples from a novice
driver, highlighting the alpha attenuation when coming close to
the kerb or overshooting. Similar interpretations were derived by
performing cause and effect analysis [47] for all 14 drivers.

While high alpha is interpreted as a state of still brain, i.e., relax-
ation or performing internal mental calculations, working memory
[43,46], beta represents a busy activity, anxious thinking, or
actively concentrating [44,48–50] process. Fig. 5.7 shows the
drivers brain switching between alpha and beta activities. Low
alpha power was observed when the driver overshoots the track
then he/she regulates the throttle and corrects the path back to
(beta band) before transforming into frequency domain - similar to Fig. 5.3. (Readers
figure for improved readability.)

ta synchronisation for the analysis of a game driving task using EEG, Enter-
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Fig. 5.5. Left: Alpha power mapped on to the car’s path. Change in throttle is mapped to the radius of the circles. Right: Alpha Beta, brake throttle, and steering angle are
plotted against the distance. (Readers are strongly encouraged to use the colour, online versions over grayscale copies of this figure for improved readability.)

Fig. 5.6. Power of alpha frequency is mapped on to the car’s path. Change in throttle is mapped with the radius of the circles. Arrows indicate car coming adjacent to the kerb
or an overshoot. (Readers are strongly encouraged to use the colour, online versions over grayscale copies of this figure for improved readability.)
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the normal position. This is justified by the notion of alpha atten-
uation i.e., increased attentiveness [43–45]. The example in
Fig. 5.8 illustrates a situation in which both alpha and beta activity
can be combined in order to further explain a mistake and cogni-
tive load in compensating the error. The switch between alpha
and beta frequencies in the apex can be observed here, i.e., driver
switching between relaxed, possibly internal calculations, working
memory modes (high alpha) to attentive (low alpha) [43,46], and
busy, anxious thinking, active concentration (high beta) modes
[48,49]. In this case, the error occurs at mid-corner while negotiat-
ing the corner’s apex. At this stage of the task, the driver’s attention
should shift towards the corner’s exit and target the white track
demarcation line on the side of the track for maximum exit speed.
Please cite this article in press as: A. Sivanathan et al., Temporal multimodal da
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In this particular case, there might be several reasons as to why
the driver has run off the track, e.g. carrying too much speed in the
corner and/or misjudge the corner exit point. Fig. 4.4 is however
suggesting that the driver might not have been as attentive as
he/she should have been towards the apex of the corner. High
alpha towards the apex of the corner would suggest that the driver
is quite relaxed at this point. Low beta further is correlating as it
suggests that the driver in this case is not showing high levels of
concentration (blue). Once off the track, alpha levels reduce, thus
suggesting attention is fully returned while beta activity slowly
rises (yellow/red) towards re-joining the track.

While this approach cannot at this stage be used as a definite
and conclusive mechanism for interpreting player performance, it
ta synchronisation for the analysis of a game driving task using EEG, Enter-
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Fig. 5.7. Alpha and Beta power changes are compared for a driver in 4 consecutive laps. Change in breaking is mapped on to the circles’ radius. (Readers are strongly
encouraged to use the colour, online versions over grayscale copies of this figure for improved readability.)

Fig. 5.8. Alpha and Beta power changes when overshooting the track.(Readers are strongly encouraged to use the colour, online versions over grayscale copies of this figure
for improved readability.)
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can be used in conjunction with other game-related performance
and logged activities so as to further determine the reasons moti-
vating player behaviours and enhance the quality of feedback that
can be offered to the player.

7. Conclusion

A novel and generic technique to synchronise independent data
streams captured in a gaming session has been detailed and
demonstrated in the paper. The technique described in this paper
neither depends on nor needs to have knowledge about the inter-
nal architecture or the core timing loop of the game to measure the
end-to-end timing inconsistencies between the environments (i.e.,
where real-world user activity happens) and the data capture end-
point (i.e., the data is being available to capture along with the
temporal information).

Cases study that records video, driving telemetry and EEG data
was used to demonstrate the accuracy of synchronisation of these
multimodal data streams for neurometric analysis. The proposed
synchronisation method is generic and applicable to any data
stream.

This paper demonstrated how the achieved precise temporal
synchronisation across multimodal channels was exploited to cre-
ate in depth interpretations of the in game activity. This approach
Please cite this article in press as: A. Sivanathan et al., Temporal multimodal da
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provides fresh opportunities for using commercial of-the-shelf
games to study user behaviour in-relation to the in-game data
logging. Consequently it enables a vast majority of games not
intentionally designed for research to be used for scientific and
methodological research. The development of such a generic tech-
nique for temporal synchronisation opens up a wide range of pos-
sibilities in the areas of psychology, game studies, cognitive
sciences and experiential-based multimodal studies. This tech-
nique is beneficial to the Serious Games community in the sense
that it offers a quick method for a synchronised real-time docu-
mentation of learning activities by combining explicit and implicit
data gathering. The synchronisation technique discussed in this
paper is, for instance, currently being used experimentally in syn-
chronising game events for psycho-physiological studies and for
studying cognitive aspects of computer aided design task. From a
multi-modal perspective, this approach presents the benefit to
develop a flexible and fast approach to experimenting with com-
plex experimental designs by significantly reducing the complexity
of experiment technical implementation.

8. Future work

The presented work highlighted the potential of interpreting
the driving based on EEG and in game data. The difficulty in tightly
ta synchronisation for the analysis of a game driving task using EEG, Enter-
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controlling the environment and ring fencing a particular activity
in the driving task creates difficulties in employing conventional
neurometric approaches. Consequently authors are constrained
to choose a flexible approach of using time synchronised multi-
modal approach to interpret the data. Cause and effect analysis
have been performed manually to describe patterns in the EEG
power spectrum [47]. Current and future work will focus on
automatic classification and documentation of the driving activity.
Differences in previous experiences in gaming or driving task and
driver individualities create a challenge in building up a large data-
set. The reliability and performance of automatic methods rely on
finding suitable statistical methods and adequate amount of train-
ing data for classifiers. Using the time synchronisation techniques
presented the future direction of the work leads towards a real-
time, closed-loop system that can feedback into the game or to
the driver to influence driving experience.
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