The role of metasomatic alteration on frictional properties of subduction thrusts

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.epsl.2019.115967

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
Earth and Planetary Science Letters

Publisher Rights Statement:
© 2019 Elsevier B.V. All rights reserved.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The role of metasomatic alteration on frictional properties of subduction thrusts: An example from a serpentinite body in the Franciscan Complex, California

Ken-ichi Hirauchi¹, Yuzuru Yamamoto², Sabine A. M. den Hartog³, and André R. Niemeijer⁴

¹Department of Geosciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
²Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, Showa-machi 3173-25, Kanazawa-ku, Yokohama 236-0001, Japan
³The Lyell Centre, Heriot-Watt University, Research Avenue South, Edinburgh, EH14 4AP, UK
⁴Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands

Corresponding author: Ken-ichi Hirauchi

Phone: +81-54-238-4735
Fax: +81-54-238-0491
E-mail: hirauchi.kenichi@shizuoka.ac.jp
Abstract

Fluid–rock interaction within accretionary prisms drastically changes the frictional strength and slip stability of the fault zone. In order to understand the effect of ultramafic components on the degree of interplate coupling, we present data on frictional properties of a reaction zone between serpentinite and argillite in a tectonic mélange of the Franciscan Complex, central California. Field and petrographic observations indicate that the argillite and serpentinite along the lithological boundary are metasomatized to tremolite and talc schists, respectively, forming a ductile shear zone. Simulated gouges made from fault and wall rock samples collected are sheared at effective normal stresses (σ_n^{eff}) of 60–180 MPa and temperatures (T) of 20–400°C, using a hydrothermal ring shear machine. The serpentinite is frictionally strong (steady-state friction coefficient $\mu_{ss} = 0.5–0.6$), and exhibits both velocity-weakening and velocity-strengthening behavior. The μ_{ss} of the argillite and tremolite schist increases up to 0.7 and 0.6, respectively, with increasing σ_n^{eff} and T, while ($a-b$) transitions from positive to negative with increasing T. At a given experimental condition, μ and ($a-b$) values are lower and higher for the tremolite schist than for the argillite. In contrast, the talc schist exhibits very low friction ($\mu_{ss} = 0.1–0.2$) and velocity-strengthening behavior at all experimental conditions tested. Our results demonstrate that Si-metasomatism along the argillite–serpentinite contact results in reduced friction and stabilized slip, forming frictionally weak, velocity-strengthening regions in the megathrust zone.

Keywords: Franciscan Complex, friction, interplate coupling, metasomatism, serpentinite
1. Introduction

Most large earthquakes (with moment magnitude $M_w > 7$) occur on the thrust fault between subducting and overriding plates. The extent of the so-called seismogenic zone in subduction zones appears to be thermally controlled, with updip and downdip limits occurring at 100–150°C and 350–450°C, respectively (e.g., Oleskevich et al., 1999). The updip limit of seismicity is attributed to the dehydration reaction of smectite to form illite (Vrolijk, 1990) or lithification of underthrusting sediments (Moore et al., 2007; Trüttner et al., 2015), while the downdip limit coincides with a transition from velocity-weakening to velocity-strengthening behavior of quartzo-feldspathic rocks or argillaceous sediments, induced by the thermal activation of viscous (plastic) processes in quartz (Blanpied et al., 1998; den Hartog et al., 2012a). Alternatively, if the intersection of the thrust fault with the overriding plate Moho is located at shallower depths than the 350°C isotherm, stable frictional sliding or plastic flow of serpentine at the base of the hydrated forearc mantle wedge may inhibit the generation of subduction thrust earthquakes (Hirauchi et al., 2010; Takahashi et al., 2011).

Geodetic and seismological observations indicate that in the seismogenic zone, there are spatial and temporal variations in interplate coupling along both strike and dip directions (e.g., Suwa et al., 2006; Burgette et al., 2009; Uchida et al., 2009; Yoshioka and Matsuoka, 2013). The heterogeneity of interplate coupling may be explained by the presence of seamounts and other topographic reliefs on the subducting plate (Wang and Bilek, 2011), or by fluid content in a plate-boundary shear zone (Heise et al., 2017). On the other hand, the differences in interplate coupling are linked to those in fault slip behavior, including continuous aseismic sliding and
episodic earthquake slip. As mineralogy is one of the factors that control the nucleation of slip instability, the composition of fault zone materials plays a key role in controlling the degree of interplate coupling. For instance, Ikari et al. (2013) suggested that at nonaccretionary margins, the type of sediment cover (i.e., carbonates or clays) on the subducting oceanic plate controls the loci of earthquake nucleation along the megathrust.

Aqueous fluids expelled from the subducting slab are predicted to be focused into a permeable plate boundary shear zone. Fluids act not only to reduce the effective normal stress ($\sigma_{n\text{eff}}$) on the fault, but also to promote mass transfer of fluid-mobile elements (e.g., Bebout and Penniston-Dorland, 2016). The fluid-assisted mass transfer in accretionary prisms results in the formation of quartz and carbonate veins (Moore et al., 2007), providing a potential preferential site for earthquake nucleation (Chester and Higgs, 1992; Verberne et al., 2013). On the other hand, in places where disparate rock types (e.g., mafic vs. ultramafic lithologies) are in contact with one another, metasomatic alteration of both rocks occurs through diffusion across a chemical potential gradient, leading to the development of reaction zones consisting mainly of hydrous minerals (e.g., amphiboles, chlorites, serpentines and talc). Petrological and geochemical studies have provided information about element mobility due to mass transfer during metasomatic alteration of ultramafic blocks in subduction zone complexes (e.g., Bebout and Barton, 2002; Spandler et al., 2008). However, it remains unclear how metasomatic alteration changes deformation behavior of a shear zone localized along the lithological contacts in terms of seismicity.

The importance of talc metasomatism on fault zone properties has been documented in several field and experimental studies (Moore and Rymer, 2007; Escartín et al., 2008; Collettini et
In this study, we describe a **talc-bearing**, metasomatic reaction zone developed between serpentinite and argillite in a tectonic mélange of the Franciscan accretionary prism, Gorda, central California. The serpentinite represents a fragment of abyssal peridotite exposed along oceanic transform or detachment faults (Coleman, 2000; Hirauchi et al., 2008). The samples collected are utilized for hydrothermal frictional sliding experiments conducted over a wide range of pressure and temperature conditions ($\sigma_{n}^{\text{eff}} = 60–180$ MPa, $T = 20–400^\circ$C), in order to investigate the extent to which metasomatic alteration affects frictional strength and slip stability of subduction thrust faults at seismogenic depths. Based on field and experimental data, we discuss the influence of ultramafic components on the degree of interplate coupling.

2. Geologic setting and deformation features of an ancient subduction fault

At Gorda, several serpentinite bodies up to 500 m thick, striking NW–SE and **moderately to steeply** dipping to the NE, are well exposed on Sand Dollar Beach and Jade Cove along a length of 3 km, and are incorporated into the Late Cretaceous Franciscan accretionary complex (Fig. 1). The Franciscan Complex in the study area that is present in the Central Belt represents a tectonic mélange characterized by blocks of metagreywacke, greenstone, and metachert within an argillite matrix (e.g., Hall, 1991). Mineral assemblages of the metagraywacke include pumpellyite ± prehnite, metamorphosed at temperatures of $150 \pm 50^\circ$C and pressures of 2–3 kbar (Ernst, 1980), corresponding to P–T conditions for the upper part of the seismogenic zone in subduction zones (Oleskevich et al., 1999). The argillite matrix that displays a penetrative scaly fabric is composed
mainly of clay minerals, such as illite/muscovite and chlorite, along with fragments of quartz, plagioclase, epidote, and calcite. The scaly cleavages are defined by preferentially oriented clay minerals and dark pressure-solution seams (Fig. 4A, B), suggesting that the main deformation mechanism is frictional sliding on phyllosilicate foliation, with accommodation by pressure solution of quartz grains (e.g., Niemeijer et al., 2018).

The serpentine body along Sand Dollar Beach exhibits a block-in-matrix structure, consisting of a sheared chrysotile matrix that wraps around phacoids, in which multiple serpentinization events, including the lizardite/chrysotile–antigorite transition indicative of high-temperature ($T > 250–300^\circ$C) metamorphism (Evans, 2004; Schwartz et al., 2013), are recognized (King et al., 2003; Hirauchi and Yamaguchi, 2007; Hirauchi et al., 2008). The low-temperature, chrysotile-bearing deformation represents a retrograde episode, possibly related to the exhumation along the subduction boundary. Petrological and geochemical characteristics of relict primary minerals within the phacoids (spinel lherzolite) are typical of abyssal peridotites sampled at slow-spreading mid-ocean ridges (Hirauchi et al., 2008), representing ‘Franciscan peridotite wedges’ that are thought to be tectonically detached slabs of abyssal peridotite that had been exposed near the seafloor (Coleman, 2000). Thus, the serpentine bodies in the study area are regarded as oceanic mantle rocks that were subducted from the trench to great depths, and then were exhumed in a subduction channel and ultimately underplated to the Franciscan accretionary complex.

At Jade Cove, there are several boundary faults (striking WNW–ESE and moderately dipping to the NE) that separate the serpentine bodies from the Franciscan mélanges (Fig. 2)
The serpentinite body that shows a block-in-matrix structure is overprinted by anastomosing development of crack-seal veins of serpentine (antigorite or lizardite) and talc (Figs. 3A and 4C), the amount of which increases towards the boundary fault over a distance of ~10–50 m. This observation suggests that intense fluid–rock interaction took place in connection with faulting. The serpentinite along the faults represents a foliated cataclastic zone that records brittle deformation (Fig. 3B), consisting of angular fragments that are suspended in a fine-grained, randomly-oriented talc matrix (Fig. 4D, E). These serpentinite fragments are fully serpentinized, represented by mesh (hourglass) texture and bastite of chrysotile or a mixture of lizardite (or chrysotile) and antigorite and interpenetrating texture of antigorite as well as foliated chrysotile (Fig. 4D, E). This indicates that the metasomatic growth of talc occurred simultaneously with or after the exhumation-related, chrysotile-bearing deformation (Hirauchi and Yamaguchi, 2007).

Interestingly, the argillite matrix at Jade Cove is totally metasomatized, characterized by the overgrowth of tremolite and minor chlorite along the previous metamorphic foliation (Fig. 4F). Within the mélange near the lithological boundary, varied-sized serpentinite blocks, which are now almost completely altered by the formation of talc, are incorporated as lenticular blocks (Fig. 3C), indicating that the pre-existing serpentinite was boudinaged as a competent layer within a relatively incompetent argillite-rich matrix. Talc-rich schists up to 2 m thick with folding are intercalated within the mélange (Figs. 2 and 3D). Since the talc-rich schist retains magnetite and altered spinels surrounded by chlorite coronas (Fig. 4G), it could have formed by Si-metasomatism of the pre-existing serpentinite (Hirauchi et al., 2008). The talc-rich schist is characterized by the shape-preferred orientation of fine-grained talc (Fig. 4G, H). The strike and...
dip of foliated cataclasite and talc and tremolite schists are concordant with those of the boundary faults in the study area (Fig. 2).

3. Experimental methods

3.1. Starting materials

The starting materials used in this study were natural samples as described in Section 2, and collected from Sand Dollar Beach and Jade Cove. The samples, which include argillite (sample no.: 11121002), tremolite schist (sample no.: 10122101), serpentinite (sample no.: 10122109), talc schist (sample no.: G02) and foliated cataclasite (sample no.: 10122102), were pulverized and sieved to a grain size of <106 μm to produce a synthetic fault gouge. All sample localities are shown in Fig. 1B. We note again that talc and tremolite schists are metasomatic products derived from serpentinite and argillite, respectively, while foliated cataclasite represents a shear zone developed along the lithological boundary. Veins and surface coatings were removed as much as possible from the samples prior to pulverization. Representative X-ray diffraction (XRD) patterns are presented in Figs. S1 and S2. A quantitative analysis using the RockJock program (Eberl, 2003) indicates that 25 wt.% of quartz is present in the argillite sample.

For the serpentinite and foliated cataclasite samples, serpentine minerals were identified using a confocal Raman microscope (alpha 300R; WITec GmbH, Ulm, Germany) at Shizuoka University, Japan. A 100× objective lens was used to focus a 488 nm solid-state laser into a 1 μm spot size. Spectra were acquired over 10–100 s of measurement time with the laser power of 6 mW. The spectrum resolution was 4 cm⁻¹. See Supplementary material for description of Raman
spectra of serpentine minerals. In addition, the modal abundances of minerals and serpentine
textures were determined by point counting on 28 × 48 mm thin sections (Table S1). As each
textural type consists of a distinct serpentine mineral, we can roughly estimate the dominant
serpentine minerals within the two samples.

3.2. Experimental procedure

We performed a series of frictional sliding experiments at pore fluid pressures (P_{fluid}) of
40–120 MPa, effective normal stresses (σ_{n}^{eff}) of 60–180 MPa, temperatures (T) of 20–400°C, and
sliding velocities (V) of 0.3–100 μm/s. The σ_{n}–T range covers shallower parts of the thrust fault
(<15 km depth) in warm and cold subduction zones, when assuming $\lambda = 0.6$. The hydrothermal
ring shear machine, described in detail by Niemeijer et al. (2008), was used in our frictional
sliding experiments (Fig. S4A, B). In this machine, an annular sample with an initial thickness of
~1.1–1.4 mm is located between two opposing René 41 Superalloy pistons (Fig. S4C, D). The
sample is kept in place by inner and outer René 41 Superalloy confining rings, with inner and
outer radii of 11 and 14 mm, respectively. To prevent slip on the piston–sample interface, a
cross-hatched pattern (~200 μm deep) is engraved on the piston faces. To reduce wall friction, the
confining rings were coated with a graphite powder suspension and dried at 50 °C for 10–20 min
to remove volatiles (alcohol) in the suspension, before assembly.

The piston–sample assembly was attached to the pressure-compensated piston plus the upper
sealing head, was then lowered into an internally heated, water-filled pressure vessel, which in
turn was sealed and placed into the Instron 1362 loading frame. The vessel was then moved
upwards using the Instron ram, and the pressure-compensated piston was engaged with the upper
forcing block plus the torque and axial force gauges.

An effective normal stress of 60 MPa was first applied using the Instron ram, then the
furnace was switched on, heating to the desired temperature and applying a fluid pressure of 40
MPa. The system was subsequently left to equilibrate for ~1 h. After equilibration of the entire
experimental set-up, the rotary drive was switched on to give a sliding velocity of 10 μm/s until a
displacement of typically ~5 mm was reached, after which the sliding velocity was systematically
stepped to 1, 0.3, 3, 30, 100 and 10 μm/s, respectively. During each experiment, pore fluid
pressure and effective normal stress were simultaneously stepped in the sequence $P_{\text{fluid}} = 40, 80,$
and 120 MPa and $\sigma_{n}^{\text{eff}} = 60, 120,$ and 180 MPa, respectively. Note that the same velocity steps
were applied to the second and third normal-stress sequences.

Each experiment was terminated by switching off the rotary drive and then the furnace,
which resulted in a rapid decrease in the fluid pressure. The system cooled to room temperature
within 20 min, after which the axial load was removed. The piston–sample assembly was then
extracted and dried in an oven at 50 °C for at least 24 h. Details of the experimental conditions
and key mechanical data are provided in Table 1.

3.3. Data acquisition and processing

Shear displacement (resolution ±1 μm), axial displacement (±0.05 μm), torque (±6 Nm), and
normal force (±0.05 kN) were measured externally, and the corresponding signals were recorded
at a sampling rate of 10 Hz, using a 16 bit A/D converter. Torque and normal force data were
corrected for seal friction to obtain the shear stress (τ) and effective normal stress (σ_{eff}) acting on the sample. The apparent coefficient of friction (μ) was calculated as $\mu = \tau/\sigma_{\text{eff}}$ and assuming no cohesion. Additional information on the details of data acquisition can be found in den Hartog et al. (2012a,b).

The velocity dependence of friction was quantified in the framework of the rate and state friction model as:

$$ (a - b) = \frac{\Delta \mu_{\text{ss}}}{\Delta \ln(V)} \tag{1} $$

(e.g., Ruina, 1983). Here, μ_{ss} is the steady state friction coefficient and V is the sliding velocity. Positive ($a-b$) values indicate an increase in friction coefficient with increasing velocity, i.e., velocity-strengthening slip behavior, which is inherently stable. Negative ($a-b$) values mean that the behavior is velocity-weakening, which is potentially unstable. Values of ($a-b$) were calculated using Eq. (1), after detrending the μ versus displacement curves for slip hardening or softening, following Blanpied et al. (1998) and den Hartog et al. (2012a). Details of the friction rate parameter ($a-b$) are shown in Tables S2 and S3.

4. Experimental results

4.1. Frictional strength

The evolution of the apparent coefficient of friction (μ) with shear displacement is shown in Figs. 5 and S5, for all temperatures. In the first normal-stress sequence, all samples, except for argillite, showed an initial peak μ at ~0.3–1.7 mm displacement, followed by a drop in μ of up to ~0.1, after which steady-state sliding or strain hardening was observed until the velocity steps...
were superimposed. The argillite sample showed strain hardening after apparent yielding at ~0.4 mm displacement.

The steady-state apparent coefficient of friction (μ_{ss}) obtained at the first 4 mm displacement in each normal-stress sequence is plotted as a function of effective normal stress in Fig. 6A, for a temperature of 150°C. The μ_{ss} values for the serpentine sample slightly decreased from 0.54–0.60 at $\sigma_n^{eff} = 60$ MPa to 0.51 at $\sigma_n^{eff} = 180$ MPa, while those for the talc schist sample increased from 0.13–0.17 at $\sigma_n^{eff} = 60$ MPa to 0.19–0.21 at $\sigma_n^{eff} = 180$ MPa. The μ_{ss} of the foliated cataclase sample ranged from 0.30 to 0.33. The μ_{ss} values for the argillite and tremolite schist samples increased from 0.45 and 0.36 at $\sigma_n^{eff} = 60$ MPa to 0.58 and 0.43–0.46 at $\sigma_n^{eff} = 180$ MPa, respectively. We also confirmed that the steady-state shear stress at all temperatures increased linearly with increasing σ_n^{eff}, indicating that a frictional regime was achieved in our experiments (Figs. S6 and S7).

The μ_{ss} obtained at the first 4 mm displacement in the second normal-stress sequence ($P_{fluid} = 80$ MPa and $\sigma_n^{eff} = 120$ MPa) is plotted against temperature in Fig. 6B. The μ_{ss} of the serpentine sample ranged from 0.55 to 0.59. The μ_{ss} values for the talc schist sample decreased from 0.21 at $T = 20^\circ$C to 0.14 at $T = 300^\circ$C. The μ_{ss} value for the foliated cataclase sample was 0.21 at $T = 20^\circ$C, increasing to 0.30–0.31 at $T = 150$–300°C. The μ_{ss} of the argillite and tremolite schist samples increased from 0.43 and 0.39 at $T = 20^\circ$C to 0.59 and 0.53 at $T = 400^\circ$C, respectively.

4.2. Velocity dependence of friction

Values of $(a-b)$ obtained at an effective normal stress of 120 MPa are plotted as a function
of sliding velocity in Figs. 7 and 8, for all temperatures. The \((a-b)\) values of the serpentine sample at a given temperature were roughly independent of sliding velocity, with the values being lower at 20°C \((a-b = -0.004--0.002)\) and higher at 150°C \((a-b = 0.011--0.018)\) (Fig. 7A). The \((a-b)\) values of the foliated cataclasite sample slightly increased with increasing sliding velocity, ranging from \(-0.001--0.010\) at the 1–0.3 μm/s velocity step to \(0.011--0.017\) at the 30–100 μm/s velocity step (Fig. 7B). The talc schist sample exhibited a narrow range in \((a-b)\) at a given sliding velocity, increasing from \(0.001--0.005\) at the 1–0.3 μm/s velocity step to \(0.009--0.017\) at the 30–100 μm/s velocity step (Fig. 7C). For the argillite sample, the \((a-b)\) values ranged from \(-0.008\) to \(0.007\) (Fig. 8A). At a given sliding velocity, the argillite sample showed an overall decrease in \((a-b)\) with increasing temperature \((T = 150–400°C)\) (Fig. 8A). Note that unstable, oscillatory (stick-slip) events were occasionally observed at \(T = 400°C\). The \((a-b)\) values of the tremolite schist sample were independent of sliding velocity, with the clear exception of the 100–10 μm/s and 30–100 μm/s velocity steps, where they gradually decreased from \(0.008--0.011\) at \(T = 150°C\) to \(-0.002--0.006\) at \(T = 400°C\) (Fig. 8B).

5. Discussion

5.1. Comparison of frictional properties between metasomatic and non-metasomatic rocks

Hydrothermal frictional sliding experiments on gouge mixtures of antigorite and quartz \((T = 300–500°C)\) for <6 days have demonstrated that metasomatic alteration of antigorite to form talc leads to significant strain weakening (Hirauchi et al., 2013). Moore and Lockner (2013), who conducted triaxial experiments on lizardite and antigorite gouges sheared between forcing blocks...
of granite and quartzite under hydrothermal conditions \((T = 200–350^\circ C)\), also observed that for short \((\leq 6\text{ days})\) and long \((>10\text{ days})\) duration runs, a solution-transfer process causes the precipitation of serpentine and Mg-rich smectite clays (e.g., saponite) or talc, respectively, resulting in lower \(\mu\) and higher \((a-b)\).

Our experiments showed a marked contrast in frictional strength and slip stability between metasomatic (i.e., talc and tremolite schists) and non-metasomatic (i.e., serpentinite and argillite) rocks. Overall, metasomatic alteration of the serpentinite and argillite reduces friction and stabilizes slip, consistent with previous studies (Hirauchi et al., 2013; Moore and Lockner, 2013). The serpentinite and argillite were frictionally strong \((\mu = 0.4–0.7)\) across all experimental conditions tested (Table 1; Fig. 6). Raman spectroscopic analysis reveals that antigorite is contained in the serpentinite (Fig. S3), explaining why the \(\mu_{ss}\) of the serpentinite \((0.5–0.6)\) is higher than that of other pseudomorphic, lizardite/chrysotile serpentinites \((0.3–0.5)\) at similar conditions (e.g., Moore et al., 1997; Tesei et al., 2018). The argillite has a strong positive dependence of \(\mu\) on both effective normal stress and temperature (Fig. 6); at higher effective normal stress and temperature \((e.g., \sigma_n^{\text{eff}} = 180\text{ MPa and } T = 150^\circ C; \text{ Fig. 6})\), the argillite is frictionally stronger than the serpentinite. Similar trends have been observed for pure phyllosilicates such as biotite, chrysotile, and montmorillonite (Moore et al., 2004; Lu and He, 2014; Mizutani et al., 2017), illite/quartz and muscovite/quartz mixtures (i.e., argillitic lithologies) (den Hartog et al., 2012a, 2013), and phyllosilicate-bearing natural fault gouges (Niemeijer et al., 2016). Moore et al. (2016) also reported that for water-saturated gouges derived from the Franciscan metasedimentary rocks, the \(\mu_{ss}\) at shear displacement of <5 mm gradually increased
from 0.47 to 0.52 with increasing temperature ($T = 25$–$250^\circ C$ and $V = 1 \ \mu m/s$). The strength of phyllosilicates is a function of the number of water molecules absorbed on the (001) planes, which act as a lubricant to reduce friction. The observed increase in μ_{ss} with effective normal stress and temperature might be attributed to gradual loss of the water molecules by compaction and heating, respectively (e.g., Moore et al., 2004). First-principles electronic calculations based on density functional theory also imply that the roughness of potential energy surfaces contributes to macroscopic friction of phyllosilicate (Sakuma et al., 2018).

In metasomatic rocks, the talc schist exhibited very low friction (μ as low as 0.13) at our experimental conditions (Table 1), consistent with previous experimental studies that demonstrate the mechanical weakness of talc-rich rocks (Moore and Lockner, 2008; Escartín et al., 2008; Collettini et al., 2009a; Hirauchi et al., 2013; Moore and Lockner, 2011; Niemeijer and Collettini, 2014). The decreasing trend of frictional strength with increasing temperature (Fig. 6) is similar to that observed for pure talc gouge sheared at similar conditions (Moore and Lockner, 2008). We suggest that the difference in μ between the talc schist and foliated cataclasite (Fig. 6) is attributed to the ratio of serpentine content to talc content (Fig. S1), consistent with previous friction experiments on various mixtures of serpentine and talc (Moore and Lockner, 2011). We note that the presence of 20 vol.% foliated chrysotile (Table S1) also contributes to the frictional weakness of the foliated cataclasite. Similar to the argillite, the tremolite schist also shows a positive dependence of μ on effective normal stress and temperature (Fig. 6); however, at any given experimental condition, the tremolite schist is always frictionally weaker than the argillite, with one exception at $\sigma_n^{\text{eff}} = 60 \ \text{MPa}$ and $T = 400^\circ C$ (Table 1). The observed μ values are intermediate
of those obtained by Niemeijer and Collettini (2014) for their tremolite-bearing (42–46 wt.%)
samples. This can be explained by the presence of 22 wt.% talc in their weaker sample and 43
wt.% calcite in their stronger sample, while our sample is a mixture of chlorite and tremolite. In
addition, our tremolite schist sample has μ values intermediate between those of pure chlorite and
tremolite samples sheared at $T = 290^\circ$C and $\sigma_n^{\text{eff}} = 140$ MPa (Swiatlowski et al., 2017).

Our velocity-step tests demonstrated that the serpentinite gouge exhibits velocity-weakening
behavior under certain conditions (Fig. 7A), which is consistent with complex velocity-dependent
frictional behavior of lizardite or chrysotile gouge sheared at 25–194°C (Reinen et al., 1994;
Moore et al., 1997). However, our experiments on serpentine-bearing samples showed that with
increasing talc content (serpentinite, foliated cataclasite and talc schist in order; Fig. S1), the
$(a-b)$ values become positive at all experimental conditions tested (Fig. 7), in good agreement
with previous work (Moore and Lockner, 2008, 2011). For the argillite, an increase in
temperature from 150°C to 400°C resulted in a transition from velocity strengthening to velocity
weakening behavior (Fig. 8A), with stick-slip events at 400°C. A similar transition to velocity
weakening at elevated temperatures has been observed for illite/quartz and muscovite/quartz
gouges sheared at $\sigma_n^{\text{eff}} = 170$ MPa (den Hartog et al., 2012, 2013) as well as the Franciscan
metasedimentary rock sample at $\sigma_n^{\text{eff}} = 100$ MPa (Moore et al., 2016). This change in
velocity-dependence with increasing temperature can be interpreted in the framework of the
series of microphysical models for the steady-state and transient frictional behavior of gouges in
which thermally activated compaction is possible (Niemeijer and Spiers, 2007, den Hartog and
Spiers 2014, Chen and Spiers, 2016). In the microphysical model, velocity weakening is only
attained when dilation due to frictional slip on grain contacts is balanced by compaction through time-dependent thermally activated process (pressure solution) of the soluble phases (e.g. quartz).

A similar trend with \((a-b)\) decreasing with temperature was observed for the tremolite schist (Fig. 8B), while the transition temperature appears to be higher for the tremolite schist than for the argillite. Niemeijer and Collettini (2014) have shown that for tremolite-rich (up to 46 wt.%) fault rocks obtained from the Zuccale fault, values of \((a-b)\) change from positive to negative with increasing temperature (25–300°C). Swiatkowski et al. (2017) have demonstrated that at a temperature of 290°C, pure chlorite and tremolite samples are velocity strengthening and velocity weakening, respectively. This indicates that \((a-b)\) values for tremolite-rich rocks vary depending on the chlorite content, which would be a function of Al content in the fluids.

5.2. Evolution of frictional behavior via metasomatism along subduction zone faults

As mentioned above, the serpentinite body examined in this study represents abyssal peridotites derived from transform faults/fracture zones or oceanic core complexes developed in the setting of a slow- to ultraslow-spreading ridge (Hirauchi et al., 2008). The peridotites experienced subduction-related high-temperature metamorphism within the stability field of antigorite, and then were exhumed into an argillite-matrix mélange of the Franciscan Complex. On the basis of field and experimental data, we show in Figure 9 a schematic illustration for the lithological and mechanical evolution (Stage I–III) of the serpentinite–argillite contact zone.

During Stage I, the serpentinite body was emplaced as tectonic slices within the Franciscan tectonic mélange (Hirauchi and Yamaguchi, 2007). Along the lithological boundary, the
serpentinite was fragmented and incorporated as competent lenses into an incompetent argillitic matrix (Fig. 3C). This observation indicates that the serpentinite was mechanically stronger than the argillite at conditions of the upper part of the seismogenic zone, which is supported by \(\mu \) values of the two samples sheared at lower effective normal stresses (Fig. 6A). The observed trends in \((a−b)\) as a function of temperature (Figs. 7A and 8A) also suggest that the lithological boundary acted as intrinsically strong patches (asperities) at seismogenic depths, representing preferential sites for hosting earthquake nucleation.

Stage II is characterized by an episode of intense fluid–rock interaction along the lithological boundary (Figs. 2 and 3A, B). Since the intensity of veining associated with brittle deformation increases towards the argillite–serpentinite contact, we suggest that the lithological boundary provided an essential fluid pathway at this stage. The fluid–rock interaction involved the hydration of relict olivine and pyroxenes within the phacoids to form serpentine. After complete serpentinization, the presence of silica-rich fluids may result in the replacement of serpentine by talc (i.e., Si-metasomatism), according to the following reaction (Manning, 1997):

\[
\text{serpentine} + 2\text{SiO}_2(\text{aq}) = \text{talc} + \text{H}_2\text{O}.
\]

We postulate that the dissolution of quartz grains contained in the argillite (Fig. 4B) supplies significant amounts of silica into the serpentine. The presence of hydrofractures infilled with talc within foliated cataclasites (Figs. 3B and 4D, E) suggests the attainment of fluid overpressures during fault activity. We also suggest that the serpentine blocks within the argillite were metasomatized to talc-rich assemblages at this stage. As the tremolite schist occurs in contact with the serpentine, the source of calcium responsible for the formation of tremolite may be
attributed to the breakdown of pyroxenes within the phacoids (i.e., Ca-metasomatism; Peacock, 1987).

During continued fault activity (Stage III), strain localization may occur in the talc-rich assemblages owing to their low friction (Fig. 6). The development of shape-preferred orientation of talc (Fig. 4G, H) suggests that frictional sliding on (001) planes is the main deformation mechanism. At this stage, the talc schist acted as an intrinsically weak, ductile shear zone (Fig. 2), which is unlikely to be a nucleation site for earthquake rupture (Figs. 6 and 7C). We also note that decomposition of organic matter dispersed in the argillite contributes to the formation of CO$_2$-bearing veins (i.e., dolomite).

5.3. The role of ultramafic components on the degree of interplate coupling

Geological observations of exhumed subduction complexes have revealed that at depths corresponding to the seismogenic zone, precipitation of SiO$_2$ and CaCO$_3$ proceeds along discrete faults (e.g., Moore et al., 2007). Because quartz and calcite exhibit velocity-weakening behavior at temperatures above 100–150°C (Chester and Higgs, 1992; Verberne et al., 2013), fluid–rock interaction in accretionary prisms will generally promote slip instability and earthquake nucleation. In contrast, in the case that the serpentinite body is in contact with argillaceous sediments, Si- and Ca-metasomatism along the serpentinite–argillite contact will lead to the development of a complex fault zone due to spatial variations in metasomatic alteration (Fig. 2) as well as due to the temperature dependence of frictional properties of all the rock units (Figs. 6–8). However, we stress that the weak, talc-rich ductile shear zones, which remain velocity
strengthening even at high temperature, represent stable sliding patches on subduction thrust faults.

Along oceanic ridges spreading at <8 cm/yr, numerous long-lived detachment faults exhume lower crustal and upper mantle rocks on the seafloor, forming oceanic core complexes (e.g., Smith et al., 2012). For instance, about half of the northern Mid-Atlantic Ridge axis is experiencing spreading by detachment faulting, implying that up to ~25% of the seafloor is composed of oceanic core complexes (Escartín et al., 2008). The tectonic unroofing leads to extensive serpentinization of the mantle rocks, characterized by pseudomorphic replacement of olivine and pyroxenes by lizardite and/or chrysotile (e.g., Rouméjon et al., 2015). Our experimental results indicate that if the oceanic mantle rocks start to subduct at the trench, they exhibit distinctly different frictional behavior compared to subducting sediments and oceanic crust. In particular, our results suggest the possibility that continuous subduction of the hydrated mantle rocks results in a transition from velocity weakening to velocity strengthening behavior via Si-metasomatism in a plate boundary shear zone. The onset of Si-metasomatism is primarily associated with that of quartz dissolution in underthrusting sediments at a temperature of ~150°C (Moore et al., 2007).

A number of serpentinite mud volcanoes exist in the Izu-Bonin-Mariana (IBM) forearc region, implying the existence of an extensively serpentinized mantle wedge of the Philippine Sea (PHS) plate (e.g., Fryer, 2012). In the Kanto district of central Japan, north of the IBM forearc, the PHS plate is subducting northwestward beneath the continental plate, and the Pacific (PAC) plate is subducting westward beneath the PHS and continental plates. Based on seismic
tomographic data beneath Kanto, Nakajima et al. (2009) found that the wedge-shaped
serpentinitized mantle in the PHS plate is subducting down to depths of ~80 km due to the low
gеothermal gradient. Furthermore, Uchida et al. (2009) revealed that on the upper surface of the
PAC plate, the plate interface overlain by the serpentinitized mantle of the PHS plate is
characterized by weak interplate coupling and low seismic activity. Since the dominant serpentine
phases present in the serpentinite muds sampled are lizardite and chrysotile (Fryer, 2012), which
become velocity weakening particularly at elevated temperatures (Fig. 7A; Moore et al., 1997,
2004), we suggest that metasomatic alteration of lizardite/chrysotile to form talc after subduction
enables the plate boundary fault to slip aseismically, lowering the coupling. We caution, however,
that the degree of interplate coupling is also influenced by fluid content and topographic reliefs on
the subducting plate, which contribute to values of effective normal stress (e.g., Wang and Bilek,
2011; Scholz and Campos, 2012; Heise et al., 2017).

Although the metasomatic reaction zone observed in our study formed at shallow
seismogenic depths, our results are applicable to any tectonic setting where ultramafic and crustal
rocks are juxtaposed. For instance, Si-rich fluids liberated from the subducting oceanic slab
migrate into the overlying forearc mantle wedge, inducing serpentinization and subsequent
metasomatic alteration (Manning, 1997; Bebout and Penniston-Dorland, 2016). Seismic
tomographic studies indicate that in the warm Nankai subduction zone, the shallow (<60 km
depth) mantle wedge is partially serpentinized (e.g., Hirose et al., 2008). The weak interplate
coupling along the slab–mantle interfaces (e.g., Yoshioka and Matsuoka, 2013) can be explained
by ductile deformation of talc-rich shear zones formed via Si-metasomatism, in addition to stable
frictional sliding of antigorite, a high-temperature serpentine phase, which tends to exhibit velocity strengthening behavior in its stability field (Moore et al., 1997; Takahashi et al., 2011). Indeed, geological studies of exhumed subduction complexes at greenschist to eclogite facies conditions have reported the occurrence of talc- or tremolite-bearing metasomatic reaction zones between mantle wedge-derived antigorite serpentinite and pelitic schist (Aoya et al., 2013). On the other hand, in the cold Tohoku subduction zone, the degree of interplate coupling is found to be spatially heterogeneous on the slab–mantle interface (Suwa et al., 2006). Yamamoto et al. (2008) shows a close correlation between areas of high V_p/V_s ratios within the shallow (<60 km) mantle wedge and weak interplate coupling, suggesting that low-temperature serpentinization and subsequent metasomatic alteration allow the plate interface to slip stably.

Conclusions

Metasomatic alteration at the ultramafic–sedimentary contact leads to the formation of a reaction zone consisting of hydrous minerals. To investigate the evolution of frictional strength and slip stability via Ca- and Si-metasomatism, we performed a series of hydrothermal frictional sliding experiments on simulated gouge prepared from the metasomatic (talc and tremolite schists) and non-metasomatic (serpentinite and argillite) rocks in the Franciscan accretionary complex. On the basis of our mechanical data, we can conclude the following:

1. Pseudomorphic serpentinite as tested in this study is frictionally strong, with the coefficient of friction (μ) ranging from 0.5 to 0.6.

2. Talc schist has a very low μ (as low as 0.1), with a negative dependence of μ on temperature.
3. Argillite and tremolite schist exhibit an increase in μ with increasing effective normal stress and temperature, up to 0.7 and 0.6, respectively. The former is frictionally stronger than the latter at a given experimental condition.

4. With increasing talc content, serpentine-bearing rock becomes more velocity strengthening. Talc schist has a positive dependence of $(a-b)$ on sliding velocity.

5. For argillite and tremolite schist, friction transitions from velocity strengthening to velocity weakening with increasing temperature. The temperature transitioning to velocity weakening is lower for the former than for the latter.

6. The metasomatic growth of talc in ultramafic systems plays a role in reducing friction, stabilizing slip, and preventing earthquake propagation along the fault.

Acknowledgments

We appreciate the advice of Christopher Spiers and Colin Peach when using the Utrecht ring shear machine. We greatly appreciate constructive comments by Diane Moore and Telemaco Tesei. Raman spectroscopic and XRD analyses were carried out with the help of Tatsuhiko Kawamoto and Keishi Okazaki, respectively. We would also like to thank Jun Kameda for his help in conducting XRD-RockJock analyses. Technical support in maintaining the ring shear machine was provided by Thony van der Gon Netscher, Gert Kastelein and Eimert de Graaff. This study was funded by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 26109005) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, under its Earthquake and Volcano Hazards Observation and Research Program.
References

Moore, D.E., Lockner, D.A., Ma, S., Summers, R., Byerlee, J.D., 1997. Strengths of serpentine...

Niemeijer, A.R., Spiers, C.J., Peach, C.J., 2008. Frictional behaviour of simulated quartz fault gouges under hydrothermal conditions: Results from ultra-high strain rotary shear

talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence
from the high-pressure subduction mélangé of New Caledonia. Contributions to Mineralogy

Swiatlowski, J.L., Moore, D.E., Lockner, D.A., 2017. The influence of metasomatic alteration on
the frictional properties of serpentinite-bearing gouge in the Bartlett Springs Fault, northern
California. Geological Society of America, Abstracts with Programs, v. 49, no. 6, #288-17.

transient response of serpentine (antigorite) gouge to stepwise changes in slip velocity under

Tesei, T., Harbord, C.W.A., De Paola, N., Collettini, C., Viti, C., 2018. Friction of
mineralogically controlled serpentinites and implications for fault weakness. Journal of
Geophysical Research 123, 6976–6991.

frictional instability in argillaceous subduction zone sediments. Tectonophysics 665,
177–185.

coupling?: Evidence for abrupt change in coupling across a border between two overlying

Captions

Figure 1. (A) Geologic map of the western margin of central California, showing rock units, major faults, modified from Jennings (1958) and King et al. (2003). (B) Enlargement of the area shown in (A) (black rectangle), showing sample localities at Sand Dollar Beach and Jade Cove, Monterey County. All samples except for sample G02 were collected from outcrop.
Figure 2. Occurrence of a reaction zone between argillite and serpentineite within the Franciscan Complex at Jade Cove. (A) Outcrop photograph showing lenses and layers of talc schist embedded within tremolite schist. (B and C) Stereoplots illustrating poles to foliation (B) and lithological contacts between foliated cataclasite and tremolite schist (C). All plots are shown on lower hemisphere, equal area projections. Blue squares: foliated cataclasite, green square: talc schist, red squares: tremolite schist.

Figure 3. Outcrop photographs showing metasomatic features at Jade Cove. (A) Blocky serpentinite crosscut by serpentine and talc veins. (B) Close up of a lithological boundary between foliated cataclasite and tremolite schist. The foliated cataclasite is accompanied with vein networks of talc. (C) Lenticular serpentinite (now altered to talc-rich assemblages) blocks embedded in tremolite schist. (D) Close up of talc schist in Figure 2A.

Figure 4. Optical photomicrographs of metasomatic (talc and tremolite schists) and non-metasomatic (argillite and serpentinite) rock samples used for friction experiments. The photomicrographs were taken in plane-polarized light (B) and in cross-polarized light (A, C, D, E, F, G and H). (A and B) Argillite (sample no.: 11121002) with preferentially oriented illite/muscovite (I/M) aggregates (A) and dark pressure-solution seams and soluble minerals such as quartz and plagioclase (B). (C) Massive serpentinite (sample no.: 10122109) exhibiting mesh (hourglass) texture (MT) and bastite (Bs). Note crosscutting veins of lizardite (liz) and talc (tlc).
Foliated cataclasite (sample no.: 10122102) in which serpentinite clasts exhibiting interpenetrating texture of antigorite (Atg) (D) and mesh (hourglass) texture (E) are contained in a matrix of fine-grained, randomly-oriented talc, along with minor dolomite (Dol). Cr: mesh core, Rm: mesh rim. Tremolite schist (sample no.: 10122101) consisting of tremolite (Tr) and minor chlorite (Chl) overgrowing the previous metamorphic foliation. Talc schist (sample no.: G02) showing a shape-preferred orientation of fine-grained talc. (H) Close up of aligned talc blades in Figure G.

Figure 5. (A) Coefficient of friction (μ) as a function of shear displacement sheared at pore fluid pressures (P_{fluid}) of 40, 80 and 120 MPa, effective normal stresses (σ_{n,eff}) of 60, 120 and 180 MPa, and a temperature (T) of 20°C. (B) Enlargement of the area shown in (A) (black rectangle), showing the details of velocity steps in the first normal-stress sequence. Numbers adjacent to curves correspond to sliding velocity (μm/s). Note that the same velocity steps were applied to the second and third normal-stress sequences.

Figure 6. Summary of friction data. All plotted measurements were taken at 4 mm shear displacement in each normal-stress sequence. (A) Coefficient of friction (μ) versus effective normal stress at a temperature (T) of 150°C. (B) Coefficient of friction (μ) versus temperature at a pore fluid pressure (P_{fluid}) of 80 MPa and an effective normal stress (σ_{n,eff}) of 120 MPa.

Figure 7. Plots of the friction rate parameter (a−b) as a function of sliding velocity for serpentinite
(A), foliated cataclasite (B) and talc schist (C) sheared at temperatures of 20, 150 and 300°C and an effective normal stress (σ_{eff}) of 120 MPa.

Figure 8. Plots of the friction rate parameter ($a-b$) as a function of sliding velocity for argillite (A) and tremolite schist (B) sheared at temperatures of 20, 150, 300 and 400°C and an effective normal stress (σ_{eff}) of 120 MPa.

Figure 9. Schematic diagram showing metasomatic alteration of a contact zone between argillite and serpentinite in the Franciscan Complex. Cata.: cataclasite. See the text for more details.

Figure S1. X-ray diffraction (XRD) patterns for serpentinite (A), foliated cataclasite (B) and talc schist (C) used in our experiments. Ch: chlorite, Sp: serpentine, Tc: talc.

Figure S2. X-ray diffraction (XRD) patterns for argillite (A) and tremolite schist (B) used in our experiments. Ch: chlorite, I/M: illite/muscovite, Qz: quartz, Tr: tremolite.

Figure S3. Raman spectra of serpentine minerals in the range of 250–1200 cm$^{-1}$ obtained for the serpentinite (A) and foliated cataclasite (B) samples. A: antigorite, C: chrysotile, L: lizardite.

Figure S4. Hydrothermal ring shear machine installed at Utrecht University, the Netherlands. (A) The ring shear drive system and pressure vessel located inside the Instron loading frame. (B)
two internal pistons assembled with the pressure-compensated piston plus upper sealing head.

The two insulating mullite tubes, sheathed with stainless steel, and the furnace element are normally located inside the pressure vessel. (C) The two internal pistons plus sample-confining rings. (D) Schematic cross section of the piston–sample assembly.

Figure S5. Coefficient of friction (μ) as a function of shear displacement sheared at pore fluid pressures (P_{fluid}) of 40, 80 and 120 MPa, effective normal stresses (σ_{eff}) of 60, 120 and 180 MPa, and temperatures (T) of 150 (A), 300 (B) and 400°C (C).

Figure S6. Plots of shear stress as a function of effective normal stress (σ_{eff}) for serpentine (A), foliated cataclasite (B) and talc schist (C) sheared at temperatures of 20, 150 and 300°C. Shear stress was measured at 4 mm shear displacement in each normal stress step. The slope of the linear best fit represents the average coefficient of friction (μ).

Figure S7. Plots of shear stress as a function of effective normal stress (σ_{eff}) for argillite (A) and tremolite schist (B) sheared at temperatures of 20, 150, 300 and 400°C. Shear stress was measured at 4 mm shear displacement in each normal stress step. The slope of the linear best fit represents the average coefficient of friction (μ).
1 **Highlights**

2 Ca- and Si-metasomatism occurs between a serpentinite–argillite contact.

3 Serpentine and argillite are altered to talc and tremolite schists, respectively.

4 The metasomatism of the contact results in reduced friction and stabilized slip.
The role of metasomatic alteration on frictional properties of subduction thrusts: An example from a serpentinite body in the Franciscan Complex, California

Ken-ichi Hirauchi¹, Yuzuru Yamamoto², Sabine A. M. den Hartog³, and André R. Niemeijer⁴

¹Department of Geosciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
²Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, Showa-machi 3173-25, Kanazawa-ku, Yokohama 236-0001, Japan
³The Lyell Centre, Heriot-Watt University, Research Avenue South, Edinburgh, EH14 4AP, UK
⁴Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands

Corresponding author: Ken-ichi Hirauchi

Phone: +81-54-238-4735
Fax: +81-54-238-0491
E-mail: hirauchi.kenichi@shizuoka.ac.jp
Abstract

Fluid–rock interaction within accretionary prisms drastically changes the frictional strength and slip stability of the fault zone. In order to understand the effect of ultramafic components on the degree of interplate coupling, we present data on frictional properties of a reaction zone between serpentinite and argillite in a tectonic mélange of the Franciscan Complex, central California. Field and petrographic observations indicate that the argillite and serpentinite along the lithological boundary are metasomatized to tremolite and talc schists, respectively, forming a ductile shear zone. Simulated gouges made from fault and wall rock samples collected are sheared at effective normal stresses (σ_n^{eff}) of 60–180 MPa and temperatures (T) of 20–400°C, using a hydrothermal ring shear machine. The serpentinite is frictionally strong (steady-state friction coefficient $\mu_{ss} = 0.5–0.6$), and exhibits both velocity-weakening and velocity-strengthening behavior. The μ_{ss} of the argillite and tremolite schist increases up to 0.7 and 0.6, respectively, with increasing σ_n^{eff} and T, while $(a–b)$ transitions from positive to negative with increasing T. At a given experimental condition, μ and $(a–b)$ values are lower and higher for the tremolite schist than for the argillite. In contrast, the talc schist exhibits very low friction ($\mu_{ss} = 0.1–0.2$) and velocity-strengthening behavior at all experimental conditions tested. Our results demonstrate that Si-metasomatism along the argillite–serpentinite contact results in reduced friction and stabilized slip, forming frictionally weak, velocity-strengthening regions in the megathrust zone.

Keywords: Franciscan Complex, friction, interplate coupling, metasomatism, serpentinite
1. Introduction

Most large earthquakes (with moment magnitude $M_w > 7$) occur on the thrust fault between subducting and overriding plates. The extent of the so-called seismogenic zone in subduction zones appears to be thermally controlled, with updip and downdip limits occurring at 100–150°C and 350–450°C, respectively (e.g., Oleskevich et al., 1999). The updip limit of seismicity is attributed to the dehydration reaction of smectite to form illite (Vrolijk, 1990) or lithification of underthrusting sediments (Moore et al., 2007; Trütner et al., 2015), while the downdip limit coincides with a transition from velocity-weakening to velocity-strengthening behavior of quartzo-feldspathic rocks or argillaceous sediments, induced by the thermal activation of viscous (plastic) processes in quartz (Blanpied et al., 1998; den Hartog et al., 2012a). Alternatively, if the intersection of the thrust fault with the overriding plate Moho is located at shallower depths than the 350°C isotherm, stable frictional sliding or plastic flow of serpentine at the base of the hydrated forearc mantle wedge may inhibit the generation of subduction thrust earthquakes (Hirauchi et al., 2010; Takahashi et al., 2011).

Geodetic and seismological observations indicate that in the seismogenic zone, there are spatial and temporal variations in interplate coupling along both strike and dip directions (e.g., Suwa et al., 2006; Burgette et al., 2009; Uchida et al., 2009; Yoshioka and Matsuoka, 2013). The heterogeneity of interplate coupling may be explained by the presence of seamounts and other topographic reliefs on the subducting plate (Wang and Bilek, 2011), or by fluid content in a plate-boundary shear zone (Heise et al., 2017). On the other hand, the differences in interplate coupling are linked to those in fault slip behavior, including continuous aseismic sliding and
episodic earthquake slip. As mineralogy is one of the factors that control the nucleation of slip instability, the composition of fault zone materials plays a key role in controlling the degree of interplate coupling. For instance, Ikari et al. (2013) suggested that at nonaccretionary margins, the type of sediment cover (i.e., carbonates or clays) on the subducting oceanic plate controls the loci of earthquake nucleation along the megathrust.

Aqueous fluids expelled from the subducting slab are predicted to be focused into a permeable plate boundary shear zone. Fluids act not only to reduce the effective normal stress \(\sigma_{n,\text{eff}}\) on the fault, but also to promote mass transfer of fluid-mobile elements (e.g., Bebout and Penniston-Dorland, 2016). The fluid-assisted mass transfer in accretionary prisms results in the formation of quartz and carbonate veins (Moore et al., 2007), providing a potential preferential site for earthquake nucleation (Chester and Higgs, 1992; Verberne et al., 2013). On the other hand, in places where disparate rock types (e.g., mafic vs. ultramafic lithologies) are in contact with one another, metasomatic alteration of both rocks occurs through diffusion across a chemical potential gradient, leading to the development of reaction zones consisting mainly of hydrous minerals (e.g., amphiboles, chlorites, serpentines and talc). Petrological and geochemical studies have provided information about element mobility due to mass transfer during metasomatic alteration of ultramafic blocks in subduction zone complexes (e.g., Bebout and Barton, 2002; Spandler et al., 2008). However, it remains unclear how metasomatic alteration changes deformation behavior of a shear zone localized along the lithological contacts in terms of seismicity.

The importance of talc metasomatism on fault zone properties has been documented in several field and experimental studies (Moore and Rymer, 2007; Escartín et al., 2008; Collettini et
In this study, we describe a talc-bearing, metasomatic reaction zone developed between serpentinite and argillite in a tectonic mélangé of the Franciscan accretionary prism, Gorda, central California. The serpentinite represents a fragment of abyssal peridotite exposed along oceanic transform or detachment faults (Coleman, 2000; Hirauchi et al., 2008). The samples collected are utilized for hydrothermal frictional sliding experiments conducted over a wide range of pressure and temperature conditions ($\sigma_{\text{eff}} = 60–180$ MPa, $T = 20–400^\circ$C), in order to investigate the extent to which metasomatic alteration affects frictional strength and slip stability of subduction thrust faults at seismogenic depths. Based on field and experimental data, we discuss the influence of ultramafic components on the degree of interplate coupling.

2. Geologic setting and deformation features of an ancient subduction fault

At Gorda, several serpentinite bodies up to 500 m thick, striking NW–SE and moderately to steeply dipping to the NE, are well exposed on Sand Dollar Beach and Jade Cove along a length of 3 km, and are incorporated into the Late Cretaceous Franciscan accretionary complex (Fig. 1). The Franciscan Complex in the study area that is present in the Central Belt represents a tectonic mélangé characterized by blocks of metagreywacke, greenstone, and metachert within an argillite matrix (e.g., Hall, 1991). Mineral assemblages of the metagraywacke include pumpellyite ± prehnite, metamorphosed at temperatures of 150 ± 50°C and pressures of 2–3 kbar (Ernst, 1980), corresponding to P–T conditions for the upper part of the seismogenic zone in subduction zones (Oleskevich et al., 1999). The argillite matrix that displays a penetrative scaly fabric is composed
mainly of clay minerals, such as illite/muscovite and chlorite, along with fragments of quartz, plagioclase, epidote, and calcite. The scaly cleavages are defined by preferentially oriented clay minerals and dark pressure-solution seams (Fig. 4A, B), suggesting that the main deformation mechanism is frictional sliding on phyllosilicate foliation, with accommodation by pressure solution of quartz grains (e.g., Niemeijer et al., 2018).

The serpentine body along Sand Dollar Beach exhibits a block-in-matrix structure, consisting of a sheared chrysotile matrix that wraps around phacoids, in which multiple serpentinization events, including the lizardite/chrysotile–antigorite transition indicative of high-temperature ($T > 250–300°C$) metamorphism (Evans, 2004; Schwartz et al., 2013), are recognized (King et al., 2003; Hirauchi and Yamaguchi, 2007; Hirauchi et al., 2008). The low-temperature, chrysotile-bearing deformation represents a retrograde episode, possibly related to the exhumation along the subduction boundary. Petrological and geochemical characteristics of relict primary minerals within the phacoids (spinel lherzolite) are typical of abyssal peridotites sampled at slow-spreading mid-ocean ridges (Hirauchi et al., 2008), representing ‘Franciscan peridotite wedges’ that are thought to be tectonically detached slabs of abyssal peridotite that had been exposed near the seafloor (Coleman, 2000). Thus, the serpentine bodies in the study area are regarded as oceanic mantle rocks that were subducted from the trench to great depths, and then were exhumed in a subduction channel and ultimately underplated to the Franciscan accretionary complex.

At Jade Cove, there are several boundary faults (striking WNW–ESE and moderately dipping to the NE) that separate the serpentine bodies from the Franciscan mélanges (Fig. 2)
The serpentinite body that shows a block-in-matrix structure is overprinted by anastomosing development of crack-seal veins of serpentine (antigorite or lizardite) and talc (Figs. 3A and 4C), the amount of which increases towards the boundary fault over a distance of ~10–50 m. This observation suggests that intense fluid–rock interaction took place in connection with faulting. The serpentinite along the faults represents a foliated catalastic zone that records brittle deformation (Fig. 3B), consisting of angular fragments that are suspended in a fine-grained, randomly-oriented talc matrix (Fig. 4D, E). These serpentinite fragments are fully serpentinized, represented by mesh (hourglass) texture and bastite of chrysotile or a mixture of lizardite (or chrysotile) and antigorite and interpenetrating texture of antigorite as well as foliated chrysotile (Fig. 4D, E). This indicates that the metasomatic growth of talc occurred simultaneously with or after the exhumation-related, chrysotile-bearing deformation (Hirauchi and Yamaguchi, 2007).

Interestingly, the argillite matrix at Jade Cove is totally metasomatized, characterized by the overgrowth of tremolite and minor chlorite along the previous metamorphic foliation (Fig. 4F). Within the mélange near the lithological boundary, varied-sized serpentinite blocks, which are now almost completely altered by the formation of talc, are incorporated as lenticular blocks (Fig. 3C), indicating that the pre-existing serpentinite was boudinaged as a competent layer within a relatively incompetent argillite-rich matrix. Talc-rich schists up to 2 m thick with folding are intercalated within the mélange (Figs. 2 and 3D). Since the talc-rich schist retains magnetite and altered spinels surrounded by chlorite coronas (Fig. 4G), it could have formed by Si-metasomatism of the pre-existing serpentinite (Hirauchi et al., 2008). The talc-rich schist is characterized by the shape-preferred orientation of fine-grained talc (Fig. 4G, H). The strike and
dip of foliated cataclasite and talc and tremolite schists are concordant with those of the boundary faults in the study area (Fig. 2).

3. Experimental methods

3.1. Starting materials

The starting materials used in this study were natural samples as described in Section 2, and collected from Sand Dollar Beach and Jade Cove. The samples, which include argillite (sample no.: 11121002), tremolite schist (sample no.: 10122101), serpentine (sample no.: 10122109), talc schist (sample no.: G02) and foliated cataclasite (sample no.: 10122102), were pulverized and sieved to a grain size of <106 μm to produce a synthetic fault gouge. All sample localities are shown in Fig. 1B. We note again that talc and tremolite schists are metasomatic products derived from serpentine and argillite, respectively, while foliated cataclasite represents a shear zone developed along the lithological boundary. Veins and surface coatings were removed as much as possible from the samples prior to pulverization. Representative X-ray diffraction (XRD) patterns are presented in Figs. S1 and S2. A quantitative analysis using the RockJock program (Eberl, 2003) indicates that 25 wt.% of quartz is present in the argillite sample.

For the serpentine and foliated cataclasite samples, serpentine minerals were identified using a confocal Raman microscope (alpha 300R; WITec GmbH, Ulm, Germany) at Shizuoka University, Japan. A 100× objective lens was used to focus a 488 nm solid-state laser into a 1 μm spot size. Spectra were acquired over 10–100 s of measurement time with the laser power of 6 mW. The spectrum resolution was 4 cm⁻¹. See Supplementary material for description of Raman
spectra of serpentine minerals. In addition, the modal abundances of minerals and serpentine textures were determined by point counting on 28 × 48 mm thin sections (Table S1). As each textural type consists of a distinct serpentine mineral, we can roughly estimate the dominant serpentine minerals within the two samples.

3.2. Experimental procedure

We performed a series of frictional sliding experiments at pore fluid pressures (P_{fluid}) of 40–120 MPa, effective normal stresses (σ_n^{eff}) of 60–180 MPa, temperatures (T) of 20–400°C, and sliding velocities (V) of 0.3–100 μm/s. The σ_n^{eff}–T range covers shallower parts of the thrust fault (<15 km depth) in warm and cold subduction zones, when assuming $\lambda = 0.6$. The hydrothermal ring shear machine, described in detail by Niemeijer et al. (2008), was used in our frictional sliding experiments (Fig. S4A, B). In this machine, an annular sample with an initial thickness of ~1.1–1.4 mm is located between two opposing René 41 Superalloy pistons (Fig. S4C, D). The sample is kept in place by inner and outer René 41 Superalloy confining rings, with inner and outer radii of 11 and 14 mm, respectively. To prevent slip on the piston–sample interface, a cross-hatched pattern (~200 μm deep) is engraved on the piston faces. To reduce wall friction, the confining rings were coated with a graphite powder suspension and dried at 50 °C for 10–20 min to remove volatiles (alcohol) in the suspension, before assembly.

The piston–sample assembly was attached to the pressure-compensated piston plus the upper sealing head, was then lowered into an internally heated, water-filled pressure vessel, which in turn was sealed and placed into the Instron 1362 loading frame. The vessel was then moved...
upwards using the Instron ram, and the pressure-compensated piston was engaged with the upper forcing block plus the torque and axial force gauges.

An effective normal stress of 60 MPa was first applied using the Instron ram, then the furnace was switched on, heating to the desired temperature and applying a fluid pressure of 40 MPa. The system was subsequently left to equilibrate for ~1 h. After equilibration of the entire experimental set-up, the rotary drive was switched on to give a sliding velocity of 10 μm/s until a displacement of typically ~5 mm was reached, after which the sliding velocity was systematically stepped to 1, 0.3, 3, 30, 100 and 10 μm/s, respectively. During each experiment, pore fluid pressure and effective normal stress were simultaneously stepped in the sequence $P_{\text{fluid}} = 40, 80, \text{and } 120 \text{ MPa}$ and $\sigma_{\text{eff}} = 60, 120, \text{and } 180 \text{ MPa}$, respectively. Note that the same velocity steps were applied to the second and third normal-stress sequences.

Each experiment was terminated by switching off the rotary drive and then the furnace, which resulted in a rapid decrease in the fluid pressure. The system cooled to room temperature within 20 min, after which the axial load was removed. The piston–sample assembly was then extracted and dried in an oven at 50 °C for at least 24 h. Details of the experimental conditions and key mechanical data are provided in Table 1.

3.3. Data acquisition and processing

Shear displacement (resolution ±1 μm), axial displacement (±0.05 μm), torque (±6 Nm), and normal force (±0.05 kN) were measured externally, and the corresponding signals were recorded at a sampling rate of 10 Hz, using a 16 bit A/D converter. Torque and normal force data were
corrected for seal friction to obtain the shear stress (τ) and effective normal stress (σ_n^eff) acting on
the sample. The apparent coefficient of friction (μ) was calculated as μ = τ/σ_n^eff and assuming no
cohesion. Additional information on the details of data acquisition can be found in den Hartog et
al. (2012a,b).

The velocity dependence of friction was quantified in the framework of the rate and state
friction model as:

\[(a - b) = \frac{\Delta \mu_{ss}}{\Delta \ln(V)} \] \hspace{1cm} (1)

(e.g., Ruina, 1983). Here, μ_{ss} is the steady state friction coefficient and V is the sliding velocity.

Positive (a–b) values indicate an increase in friction coefficient with increasing velocity, i.e.,
velocity-strengthening slip behavior, which is inherently stable. Negative (a–b) values mean that
the behavior is velocity-weakening, which is potentially unstable. Values of (a–b) were calculated
using Eq. (1), after detrending the μ versus displacement curves for slip hardening or softening,
following Blanpied et al. (1998) and den Hartog et al. (2012a). Details of the friction rate
parameter (a–b) are shown in Tables S2 and S3.

4. Experimental results

4.1. Frictional strength

The evolution of the apparent coefficient of friction (μ) with shear displacement is shown in
Figs. 5 and S5, for all temperatures. In the first normal-stress sequence, all samples, except for
argillite, showed an initial peak μ at ~0.3–1.7 mm displacement, followed by a drop in μ of up to
~0.1, after which steady-state sliding or strain hardening was observed until the velocity steps
were superimposed. The argillite sample showed strain hardening after apparent yielding at ~0.4 mm displacement.

The steady-state apparent coefficient of friction (μ_{ss}) obtained at the first 4 mm displacement in each normal-stress sequence is plotted as a function of effective normal stress in Fig. 6A, for a temperature of 150°C. The μ_{ss} values for the serpentine sample slightly decreased from 0.54–0.60 at $\sigma_{n}^{\text{eff}} = 60$ MPa to 0.51 at $\sigma_{n}^{\text{eff}} = 180$ MPa, while those for the talc schist sample increased from 0.13–0.17 at $\sigma_{n}^{\text{eff}} = 60$ MPa to 0.19–0.21 at $\sigma_{n}^{\text{eff}} = 180$ MPa. The μ_{ss} of the foliated cataclasite sample ranged from 0.30 to 0.33. The μ_{ss} values for the argillite and tremolite schist samples increased from 0.45 and 0.36 at $\sigma_{n}^{\text{eff}} = 60$ MPa to 0.58 and 0.43–0.46 at $\sigma_{n}^{\text{eff}} = 180$ MPa, respectively. We also confirmed that the steady-state shear stress at all temperatures increased linearly with increasing σ_{n}^{eff}, indicating that a frictional regime was achieved in our experiments (Figs. S6 and S7).

The μ_{ss} obtained at the first 4 mm displacement in the second normal-stress sequence ($P_{\text{fluid}} = 80$ MPa and $\sigma_{n}^{\text{eff}} = 120$ MPa) is plotted against temperature in Fig. 6B. The μ_{ss} of the serpentine sample ranged from 0.55 to 0.59. The μ_{ss} values for the talc schist sample decreased from 0.21 at $T = 20°C$ to 0.14 at $T = 300°C$. The μ_{ss} value for the foliated cataclasite sample was 0.21 at $T = 20°C$, increasing to 0.30–0.31 at $T = 150–300°C$. The μ_{ss} of the argillite and tremolite schist samples increased from 0.43 and 0.39 at $T = 20°C$ to 0.59 and 0.53 at $T = 400°C$, respectively.

4.2. Velocity dependence of friction

Values of $(a-b)$ obtained at an effective normal stress of 120 MPa are plotted as a function
of sliding velocity in Figs. 7 and 8, for all temperatures. The \((a-b)\) values of the serpentine sample at a given temperature were roughly independent of sliding velocity, with the values being lower at 20°C \((a-b = -0.004\text{--}\ -0.002)\) and higher at 150°C \((a-b = 0.011\text{--}\ 0.018)\) (Fig. 7A). The \((a-b)\) values of the foliated cataclasite sample slightly increased with increasing sliding velocity, ranging from \(-0.001\text{--}\ -0.010\) at the 1–0.3 μm/s velocity step to 0.011–0.017 at the 30–100 μm/s velocity step (Fig. 7B). The talc schist sample exhibited a narrow range in \((a-b)\) at a given sliding velocity, increasing from 0.001–0.005 at the 1–0.3 μm/s velocity step to 0.009–0.017 at the 30–100 μm/s velocity step (Fig. 7C). For the argillite sample, the \((a-b)\) values ranged from \(-0.008\text{--}\ 0.007\) (Fig. 8A). At a given sliding velocity, the argillite sample showed an overall decrease in \((a-b)\) with increasing temperature \((T = 150\text{--}\ 400°C)\) (Fig. 8A). Note that unstable, oscillatory (stick-slip) events were occasionally observed at \(T = 400°C\). The \((a-b)\) values of the tremolite schist sample were independent of sliding velocity, with the clear exception of the 100–10 μm/s and 30–100 μm/s velocity steps, where they gradually decreased from 0.008–0.011 at \(T = 150°C\) to \(-0.002\text{--}\ -0.006\) at \(T = 400°C\) (Fig. 8B).

5. Discussion

5.1. Comparison of frictional properties between metasomatic and non-metasomatic rocks

Hydrothermal frictional sliding experiments on gouge mixtures of antigorite and quartz \((T = 300\text{--}\ 500°C)\) for <6 days have demonstrated that metasomatic alteration of antigorite to form talc leads to significant strain weakening (Hirauchi et al., 2013). Moore and Lockner (2013), who conducted triaxial experiments on lizardite and antigorite gouges sheared between forcing blocks
of granite and quartzite under hydrothermal conditions \((T = 200–350°C)\), also observed that for short \((\leq 6\) days) and long \((>10\) days) duration runs, a solution-transfer process causes the precipitation of serpentine and Mg-rich smectite clays (e.g., saponite) or talc, respectively, resulting in lower \(\mu\) and higher \((a-b)\).

Our experiments showed a marked contrast in frictional strength and slip stability between metasomatic (i.e., talc and tremolite schists) and non-metasomatic (i.e., serpentinite and argillite) rocks. Overall, metasomatic alteration of the serpentinite and argillite reduces friction and stabilizes slip, consistent with previous studies (Hirauchi et al., 2013; Moore and Lockner, 2013).

The serpentinite and argillite were frictionally strong \((\mu = 0.4–0.7)\) across all experimental conditions tested (Table 1; Fig. 6). Raman spectroscopic analysis reveals that antigorite is contained in the serpentinite (Fig. S3), explaining why the \(\mu_{ss}\) of the serpentinite \((0.5–0.6)\) is higher than that of other pseudomorphic, lizardite/chrysotile serpentinites \((0.3–0.5)\) at similar conditions (e.g., Moore et al., 1997; Tesei et al., 2018). The argillite has a strong positive dependence of \(\mu\) on both effective normal stress and temperature (Fig. 6); at higher effective normal stress and temperature \((\text{e.g., } \sigma_n^{\text{eff}} = 180\ \text{MPa and } T = 150°C; \ Fig. 6)\), the argillite is frictionally stronger than the serpentinite. Similar trends have been observed for pure phyllosilicates such as biotite, chrysotile, and montmorillonite (Moore et al., 2004; Lu and He, 2014; Mizutani et al., 2017), illite/quartz and muscovite/quartz mixtures (i.e., argillitic lithologies) (den Hartog et al., 2012a, 2013), and phyllosilicate-bearing natural fault gouges (Niemeijer et al., 2016). Moore et al. (2016) also reported that for water-saturated gouges derived from the Franciscan metasedimentary rocks, the \(\mu_{ss}\) at shear displacement of \(<5\) mm gradually increased.
from 0.47 to 0.52 with increasing temperature ($T = 25$–250°C and $V = 1 \ \mu\text{m/s}$). The strength of phyllosilicates is a function of the number of water molecules absorbed on the (001) planes, which act as a lubricant to reduce friction. The observed increase in μ_ss with effective normal stress and temperature might be attributed to gradual loss of the water molecules by compaction and heating, respectively (e.g., Moore et al., 2004). First-principles electronic calculations based on density functional theory also imply that the roughness of potential energy surfaces contributes to macroscopic friction of phyllosilicate (Sakuma et al., 2018).

In metasomatic rocks, the talc schist exhibited very low friction (μ as low as 0.13) at our experimental conditions (Table 1), consistent with previous experimental studies that demonstrate the mechanical weakness of talc-rich rocks (Moore and Lockner, 2008; Escartín et al., 2008; Collettini et al., 2009a; Hirauchi et al., 2013; Moore and Lockner, 2011; Niemeijer and Collettini, 2014). The decreasing trend of frictional strength with increasing temperature (Fig. 6) is similar to that observed for pure talc gouge sheared at similar conditions (Moore and Lockner, 2008). We suggest that the difference in μ between the talc schist and foliated cataclasite (Fig. 6) is attributed to the ratio of serpentine content to talc content (Fig. S1), consistent with previous friction experiments on various mixtures of serpentine and talc (Moore and Lockner, 2011). We note that the presence of 20 vol.% foliated chrysotile (Table S1) also contributes to the frictional weakness of the foliated cataclasite. Similar to the argillite, the tremolite schist also shows a positive dependence of μ on effective normal stress and temperature (Fig. 6); however, at any given experimental condition, the tremolite schist is always frictionally weaker than the argillite, with one exception at $\sigma_\text{eff} = 60 \ \text{MPa}$ and $T = 400^\circ\text{C}$ (Table 1). The observed μ values are intermediate.
of those obtained by Niemeijer and Collettini (2014) for their tremolite-bearing (42–46 wt.%) samples. This can be explained by the presence of 22 wt.% talc in their weaker sample and 43 wt.% calcite in their stronger sample, while our sample is a mixture of chlorite and tremolite. In addition, our tremolite schist sample has \(\mu \) values intermediate between those of pure chlorite and tremolite samples sheared at \(T = 290^\circ C \) and \(\sigma_n^{\text{eff}} = 140 \text{ MPa} \) (Swiatlowski et al., 2017).

Our velocity-step tests demonstrated that the serpentinite gouge exhibits velocity-weakening behavior under certain conditions (Fig. 7A), which is consistent with complex velocity-dependent frictional behavior of lizardite or chrysotile gouge sheared at 25–194°C (Reinen et al., 1994; Moore et al., 1997). However, our experiments on serpentine-bearing samples showed that with increasing talc content (serpentinite, foliated cataclasite and talc schist in order; Fig. S1), the \((a-b) \) values become positive at all experimental conditions tested (Fig. 7), in good agreement with previous work (Moore and Lockner, 2008, 2011). For the argillite, an increase in temperature from 150°C to 400°C resulted in a transition from velocity strengthening to velocity weakening behavior (Fig. 8A), with stick-slip events at 400°C. A similar transition to velocity weakening at elevated temperatures has been observed for illite/quartz and muscovite/quartz gouges sheared at \(\sigma_n^{\text{eff}} = 170 \text{ MPa} \) (den Hartog et al., 2012, 2013) as well as the Franciscan metasedimentary rock sample at \(\sigma_n^{\text{eff}} = 100 \text{ MPa} \) (Moore et al., 2016). This change in velocity-dependence with increasing temperature can be interpreted in the framework of the series of microphysical models for the steady-state and transient frictional behavior of gouges in which thermally activated compaction is possible (Niemeijer and Spiers, 2007, den Hartog and Spiers 2014, Chen and Spiers, 2016). In the microphysical model, velocity weakening is only
attained when dilation due to frictional slip on grain contacts is balanced by compaction through
time-dependent thermally activated process (pressure solution) of the soluble phases (e.g. quartz).
A similar trend with \(a-b \) decreasing with temperature was observed for the tremolite schist (Fig. 8B), while the transition temperature appears to be higher for the tremolite schist than for the argillite. Niemeijer and Collettini (2014) have shown that for tremolite-rich (up to 46 wt.%) fault rocks obtained from the Zuccale fault, values of \(a-b \) change from positive to negative with increasing temperature (25–300°C). Swiatlowski et al. (2017) have demonstrated that at a temperature of 290°C, pure chlorite and tremolite samples are velocity strengthening and velocity weakening, respectively. This indicates that \(a-b \) values for tremolite-rich rocks vary depending on the chlorite content, which would be a function of Al content in the fluids.

5.2. Evolution of frictional behavior via metasomatism along subduction zone faults

As mentioned above, the serpentinite body examined in this study represents abyssal peridotites derived from transform faults/fracture zones or oceanic core complexes developed in the setting of a slow- to ultraslow-spreading ridge (Hirauchi et al., 2008). The peridotites experienced subduction-related high-temperature metamorphism within the stability field of antigorite, and then were exhumed into an argillite-matrix mélange of the Franciscan Complex. On the basis of field and experimental data, we show in Figure 9 a schematic illustration for the lithological and mechanical evolution (Stage I–III) of the serpentinite–argillite contact zone.

During Stage I, the serpentinite body was emplaced as tectonic slices within the Franciscan tectonic mélange (Hirauchi and Yamaguchi, 2007). Along the lithological boundary, the
serpentinite was fragmented and incorporated as competent lenses into an incompetent argillitic matrix (Fig. 3C). This observation indicates that the serpentinite was mechanically stronger than the argillite at conditions of the upper part of the seismogenic zone, which is supported by \(\mu \) values of the two samples sheared at lower effective normal stresses (Fig. 6A). The observed trends in \((a-b)\) as a function of temperature (Figs. 7A and 8A) also suggest that the lithological boundary acted as intrinsically strong patches (asperities) at seismogenic depths, representing preferential sites for hosting earthquake nucleation.

Stage II is characterized by an episode of intense fluid–rock interaction along the lithological boundary (Figs. 2 and 3A, B). Since the intensity of veining associated with brittle deformation increases towards the argillite–serpentinite contact, we suggest that the lithological boundary provided an essential fluid pathway at this stage. The fluid–rock interaction involved the hydration of relict olivine and pyroxenes within the phacoids to form serpentine. After complete serpinentinization, the presence of silica-rich fluids may result in the replacement of serpentine by talc (i.e., Si-metasomatism), according to the following reaction (Manning, 1997):

\[
\text{serpentine} + 2\text{SiO}_2\text{(aq)} = \text{talc} + \text{H}_2\text{O}.
\]

We postulate that the dissolution of quartz grains contained in the argillite (Fig. 4B) supplies significant amounts of silica into the serpentinite. The presence of hydrofractures infilled with talc within foliated cataclasites (Figs. 3B and 4D, E) suggests the attainment of fluid overpressures during fault activity. We also suggest that the serpentinite blocks within the argillite were metasomatized to talc-rich assemblages at this stage. As the tremolite schist occurs in contact with the serpentinite, the source of calcium responsible for the formation of tremolite may be
attributed to the breakdown of pyroxenes within the phacoids (i.e., Ca-metasomatism; Peacock, 1987).

During continued fault activity (Stage III), strain localization may occur in the talc-rich assemblages owing to their low friction (Fig. 6). The development of shape-preferred orientation of talc (Fig. 4G, H) suggests that frictional sliding on (001) planes is the main deformation mechanism. At this stage, the talc schist acted as an intrinsically weak, ductile shear zone (Fig. 2), which is unlikely to be a nucleation site for earthquake rupture (Figs. 6 and 7C). We also note that decomposition of organic matter dispersed in the argillite contributes to the formation of CO$_2$-bearing veins (i.e., dolomite).

5.3. The role of ultramafic components on the degree of interplate coupling

Geological observations of exhumed subduction complexes have revealed that at depths corresponding to the seismogenic zone, precipitation of SiO$_2$ and CaCO$_3$ proceeds along discrete faults (e.g., Moore et al., 2007). Because quartz and calcite exhibit velocity-weakening behavior at temperatures above 100–150°C (Chester and Higgs, 1992; Verberne et al., 2013), fluid–rock interaction in accretionary prisms will generally promote slip instability and earthquake nucleation. In contrast, in the case that the serpentinite body is in contact with argillaceous sediments, Si- and Ca-metasomatism along the serpentinite–argillite contact will lead to the development of a complex fault zone due to spatial variations in metasomatic alteration (Fig. 2) as well as due to the temperature dependence of frictional properties of all the rock units (Figs. 6–8).

However, we stress that the weak, talc-rich ductile shear zones, which remain velocity
strengthening even at high temperature, represent stable sliding patches on subduction thrust faults.

Along oceanic ridges spreading at <8 cm/yr, numerous long-lived detachment faults exhume lower crustal and upper mantle rocks on the seafloor, forming oceanic core complexes (e.g., Smith et al., 2012). For instance, about half of the northern Mid-Atlantic Ridge axis is experiencing spreading by detachment faulting, implying that up to ~25% of the seafloor is composed of oceanic core complexes (Escartín et al., 2008). The tectonic unroofing leads to extensive serpentinization of the mantle rocks, characterized by pseudomorphic replacement of olivine and pyroxenes by lizardite and/or chrysotile (e.g., Rouméjon et al., 2015). Our experimental results indicate that if the oceanic mantle rocks start to subduct at the trench, they exhibit distinctly different frictional behavior compared to subducting sediments and oceanic crust. In particular, our results suggest the possibility that continuous subduction of the hydrated mantle rocks results in a transition from velocity weakening to velocity strengthening behavior via Si-metasomatism in a plate boundary shear zone. The onset of Si-metasomatism is primarily associated with that of quartz dissolution in underthrusting sediments at a temperature of ~150°C (Moore et al., 2007).

A number of serpentinite mud volcanoes exist in the Izu-Bonin-Mariana (IBM) forearc region, implying the existence of an extensively serpentinized mantle wedge of the Philippine Sea (PHS) plate (e.g., Fryer, 2012). In the Kanto district of central Japan, north of the IBM forearc, the PHS plate is subducting northwestward beneath the continental plate, and the Pacific (PAC) plate is subducting westward beneath the PHS and continental plates. Based on seismic
tomographic data beneath Kanto, Nakajima et al. (2009) found that the wedge-shaped serpentinized mantle in the PHS plate is subducting down to depths of ~80 km due to the low geothermal gradient. Furthermore, Uchida et al. (2009) revealed that on the upper surface of the PAC plate, the plate interface overlain by the serpentinized mantle of the PHS plate is characterized by weak interplate coupling and low seismic activity. Since the dominant serpentine phases present in the serpentinite muds sampled are lizardite and chrysotile (Fryer, 2012), which become velocity weakening particularly at elevated temperatures (Fig. 7A; Moore et al., 1997, 2004), we suggest that metasomatic alteration of lizardite/chrysotile to form talc after subduction enables the plate boundary fault to slip aseismically, lowering the coupling. We caution, however, that the degree of interplate coupling is also influenced by fluid content and topographic reliefs on the subducting plate, which contribute to values of effective normal stress (e.g., Wang and Bilek, 2011; Scholz and Campos, 2012; Heise et al., 2017).

Although the metasomatic reaction zone observed in our study formed at shallow seismogenic depths, our results are applicable to any tectonic setting where ultramafic and crustal rocks are juxtaposed. For instance, Si-rich fluids liberated from the subducting oceanic slab migrate into the overlying forearc mantle wedge, inducing serpentinization and subsequent metasomatic alteration (Manning, 1997; Bebout and Penniston-Dorland, 2016). Seismic tomographic studies indicate that in the warm Nankai subduction zone, the shallow (<60 km depth) mantle wedge is partially serpentinized (e.g., Hirose et al., 2008). The weak interplate coupling along the slab–mantle interfaces (e.g., Yoshioka and Matsuoka, 2013) can be explained by ductile deformation of talc-rich shear zones formed via Si-metasomatism, in addition to stable
frictional sliding of antigorite, a high-temperature serpentine phase, which tends to exhibit velocity strengthening behavior in its stability field (Moore et al., 1997; Takahashi et al., 2011). Indeed, geological studies of exhumed subduction complexes at greenschist to eclogite facies conditions have reported the occurrence of talc- or tremolite-bearing metasomatic reaction zones between mantle wedge-derived antigorite serpentinite and pelitic schist (Aoya et al., 2013). On the other hand, in the cold Tohoku subduction zone, the degree of interplate coupling is found to be spatially heterogeneous on the slab–mantle interface (Suwa et al., 2006). Yamamoto et al. (2008) shows a close correlation between areas of high V_p/V_s ratios within the shallow (<60 km) mantle wedge and weak interplate coupling, suggesting that low-temperature serpentinization and subsequent metasomatic alteration allow the plate interface to slip stably.

Conclusions

Metasomatic alteration at the ultramafic–sedimentary contact leads to the formation of a reaction zone consisting of hydrous minerals. To investigate the evolution of frictional strength and slip stability via Ca- and Si-metasomatism, we performed a series of hydrothermal frictional sliding experiments on simulated gouge prepared from the metasomatic (talc and tremolite schists) and non-metasomatic (serpentineite and argillite) rocks in the Franciscan accretionary complex. On the basis of our mechanical data, we can conclude the following:

1. Pseudomorphic serpentineite as tested in this study is frictionally strong, with the coefficient of friction (μ) ranging from 0.5 to 0.6.

2. Talc schist has a very low μ (as low as 0.1), with a negative dependence of μ on temperature.
3. Argillite and tremolite schist exhibit an increase in μ with increasing effective normal stress and temperature, up to 0.7 and 0.6, respectively. The former is frictionally stronger than the latter at a given experimental condition.

4. With increasing talc content, serpentine-bearing rock becomes more velocity strengthening. Talc schist has a positive dependence of $(a-b)$ on sliding velocity.

5. For argillite and tremolite schist, friction transitions from velocity strengthening to velocity weakening with increasing temperature. The temperature transitioning to velocity weakening is lower for the former than for the latter.

6. The metasomatic growth of talc in ultramafic systems plays a role in reducing friction, stabilizing slip, and preventing earthquake propagation along the fault.

Acknowledgments

We appreciate the advice of Christopher Spiers and Colin Peach when using the Utrecht ring shear machine. We greatly appreciate constructive comments by Diane Moore and Telemaco Tesei. Raman spectroscopic and XRD analyses were carried out with the help of Tatsuhiko Kawamoto and Keishi Okazaki, respectively. We would also like to thank Jun Kameda for his help in conducting XRD-RockJock analyses. Technical support in maintaining the ring shear machine was provided by Thony van der Gon Netscher, Gert Kastelein and Eimert de Graaff. This study was funded by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 26109005) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, under its Earthquake and Volcano Hazards Observation and Research Program.
References

Moore, D.E., Lockner, D.A., Ma, S., Summers, R., Byerlee, J.D., 1997. Strengths of serpentine...

Moore, J.C., Rowe, C., Meneghini, F., 2007. How accretionary prisms elucidate seismogenesis in
subduction zones. In: Dixon, T., Moore, J.C. (Eds.), The Seismogenic Zone of Subduction

area, Japan: Effect of slab-slab contact and overlap on seismicity. Journal of Geophysical
Research 114, B08309.

Niemeijer, A.R., 2018. Velocity-dependent slip weakening by the combined operation of pressure
solution and foliation development. Scientific Reports 8, 4724.

Niemeijer, A.R., Boulton, C., Toy, V.G., Townend, J., Sutherland, R., 2016. Large-displacement,
hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand:

Niemeijer, A.R., Collettini, C., 2014. Frictional properties of a low-angle normal fault under in
situ conditions: thermally-activated velocity weakening. Pure and Applied Geophysics 171,
2641–2664.

gouges under hydrothermal conditions: Results from ultra-high strain rotary shear
experiments. Tectonophysics 460, 288–303.

talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence
from the high-pressure subduction mélange of New Caledonia. Contributions to Mineralogy

talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence
from the high-pressure subduction mélange of New Caledonia. Contributions to Mineralogy

the frictional properties of serpentinite-bearing gouge in the Bartlett Springs Fault, northern
California. Geological Society of America, Abstracts with Programs, v. 49, no. 6, #288-17.

transient response of serpentine (antigorite) gouge to stepwise changes in slip velocity under

Tesei, T., Harbord, C.W.A., De Paola, N., Collettini, C., Viti, C., 2018. Friction of
mineralogically controlled serpentinites and implications for fault weakness. Journal of
Geophysical Research 123, 6976–6991.

frictional instability in argillaceous subduction zone sediments. Tectonophysics 665,
177–185.

coupling?: Evidence for abrupt change in coupling across a border between two overlying

Captions

Figure 1. (A) Geologic map of the western margin of central California, showing rock units, major faults, modified from Jennings (1958) and King et al. (2003). (B) Enlargement of the area shown in (A) (black rectangle), showing sample localities at Sand Dollar Beach and Jade Cove, Monterey County. All samples except for sample G02 were collected from outcrop.
Figure 2. Occurrence of a reaction zone between argillite and serpentine within the Franciscan Complex at Jade Cove. (A) Outcrop photograph showing lenses and layers of talc schist embedded within tremolite schist. (B and C) Stereoplots illustrating poles to foliation (B) and lithological contacts between foliated cataclasite and tremolite schist (C). All plots are shown on lower hemisphere, equal area projections. Blue squares: foliated cataclasite, green square: talc schist, red squares: tremolite schist.

Figure 3. Outcrop photographs showing metasomatic features at Jade Cove. (A) Blocky serpentine crosscut by serpentine and talc veins. (B) Close up of a lithological boundary between foliated cataclasite and tremolite schist. The foliated cataclasite is accompanied with vein networks of talc. (C) Lenticular serpentinite (now altered to talc-rich assemblages) blocks embedded in tremolite schist. (D) Close up of talc schist in Figure 2A.

Figure 4. Optical photomicrographs of metasomatic (talc and tremolite schists) and non-metasomatic (argillite and serpentine) rock samples used for friction experiments. The photomicrographs were taken in plane-polarized light (B) and in cross-polarized light (A, C, D, E, F, G and H). (A and B) Argillite (sample no.: 11121002) with preferentially oriented illite/muscovite (I/M) aggregates (A) and dark pressure-solution seams and soluble minerals such as quartz and plagioclase (B). (C) Massive serpentine (sample no.: 10122109) exhibiting mesh (hourglass) texture (MT) and bastite (Bs). Note crosscutting veins of lizardite (liz) and talc (tlc).
(D and E) Foliated cataclasite (sample no.: 10122102) in which serpentine clasts exhibiting interpenetrating texture of antigorite (Atg) (D) and mesh (hourglass) texture (E) are contained in a matrix of fine-grained, randomly-oriented talc, along with minor dolomite (Dol). Cr: mesh core, Rm: mesh rim. (F) Tremolite schist (sample no.: 10122101) consisting of tremolite (Tr) and minor chlorite (Chl) overgrowing the previous metamorphic foliation. (G) Talc schist (sample no.: G02) showing a shape-preferred orientation of fine-grained talc. (H) Close up of aligned talc blades in Figure G.

Figure 5. (A) Coefficient of friction (μ) as a function of shear displacement sheared at pore fluid pressures (P_{fluid}) of 40, 80 and 120 MPa, effective normal stresses ($\sigma_{n\text{eff}}$) of 60, 120 and 180 MPa, and a temperature (T) of 20°C. (B) Enlargement of the area shown in (A) (black rectangle), showing the details of velocity steps in the first normal-stress sequence. Numbers adjacent to curves correspond to sliding velocity (μm/s). Note that the same velocity steps were applied to the second and third normal-stress sequences.

Figure 6. Summary of friction data. All plotted measurements were taken at 4 mm shear displacement in each normal-stress sequence. (A) Coefficient of friction (μ) versus effective normal stress at a temperature (T) of 150°C. (B) Coefficient of friction (μ) versus temperature at a pore fluid pressure (P_{fluid}) of 80 MPa and an effective normal stress ($\sigma_{n\text{eff}}$) of 120 MPa.

Figure 7. Plots of the friction rate parameter ($a-b$) as a function of sliding velocity for serpentine...
A, foliated cataclasite (B) and talc schist (C) sheared at temperatures of 20, 150 and 300°C and an effective normal stress (σ_{eff}) of 120 MPa.

Figure 8. Plots of the friction rate parameter ($a-b$) as a function of sliding velocity for argillite (A) and tremolite schist (B) sheared at temperatures of 20, 150, 300 and 400°C and an effective normal stress (σ_{eff}) of 120 MPa.

Figure 9. Schematic diagram showing metasomatic alteration of a contact zone between argillite and serpentine in the Franciscan Complex. Cata.: cataclasite. See the text for more details.

Figure S1. X-ray diffraction (XRD) patterns for serpentinite (A), foliated cataclasite (B) and talc schist (C) used in our experiments. Ch: chlorite, Sp: serpentine, Tc: talc.

Figure S2. X-ray diffraction (XRD) patterns for argillite (A) and tremolite schist (B) used in our experiments. Ch: chlorite, I/M: illite/muscovite, Qz: quartz, Tr: tremolite.

Figure S3. Raman spectra of serpentine minerals in the range of 250–1200 cm$^{-1}$ obtained for the serpentinite (A) and foliated cataclasite (B) samples. A: antigorite, C: chrysotile, L: lizardite.

Figure S4. Hydrothermal ring shear machine installed at Utrecht University, the Netherlands. (A) The ring shear drive system and pressure vessel located inside the Instron loading frame. (B)
two internal pistons assembled with the pressure-compensated piston plus upper sealing head. The two insulating mullite tubes, sheathed with stainless steel, and the furnace element are normally located inside the pressure vessel. (C) The two internal pistons plus sample-confining rings. (D) Schematic cross section of the piston–sample assembly.

Figure S5. Coefficient of friction (μ) as a function of shear displacement sheared at pore fluid pressures (P_{fluid}) of 40, 80 and 120 MPa, effective normal stresses (σ_{eff}) of 60, 120 and 180 MPa, and temperatures (T) of 150 (A), 300 (B) and 400°C (C).

Figure S6. Plots of shear stress as a function of effective normal stress (σ_{eff}) for serpentine (A), foliated cataclasite (B) and talc schist (C) sheared at temperatures of 20, 150 and 300°C. Shear stress was measured at 4 mm shear displacement in each normal stress step. The slope of the linear best fit represents the average coefficient of friction (μ).

Figure S7. Plots of shear stress as a function of effective normal stress (σ_{eff}) for argillite (A) and tremolite schist (B) sheared at temperatures of 20, 150, 300 and 400°C. Shear stress was measured at 4 mm shear displacement in each normal stress step. The slope of the linear best fit represents the average coefficient of friction (μ).
Figure 1. (A) Geologic map of the western margin of central California, showing rock units, major faults, modified from Jennings (1958) and King et al. (2003). (B) Enlargement of the area shown in (A) (black rectangle), showing sample localities at Sand Dollar Beach and Jade Cove, Monterey County. All samples except for sample G02 were collected from outcrop.
Figure 2. Occurrence of a reaction zone between argillite and serpentinite within the Franciscan Complex at Jade Cove. (A) Outcrop photograph showing lenses and layers of talc schist embedded within tremolite schist. (B and C) Stereoplots illustrating poles to foliation (B) and lithological contacts between foliated cataclasite and tremolite schist (C). All plots are shown on lower hemisphere, equal area projections. Blue squares: foliated cataclasite, green square: talc schist, red squares: tremolite schist.
Figure 3. Outcrop photographs showing metasomatic features at Jade Cove. (A) Blocky serpentinite crosscut by serpentine and talc veins. (B) Close up of a lithological boundary between foliated cataclasite and tremolite schist. The foliated cataclasite is accompanied with vein networks of talc. (C) Lenticular serpentinite (now altered to talc-rich assemblages) blocks embedded in tremolite schist. (D) Close up of talc schist in Figure 2A.
Figure 4. Optical photomicrographs of metasomatic (talc and tremolite schists) and non-metasomatic (argillite and serpentinite) rock samples used for friction experiments. The photomicrographs were taken in plane-polarized light (B) and in cross-polarized light (A, C, D, E, F, G and H). (A and B) Argillite (sample no.: 11121002) with preferentially oriented illite/muscovite (I/M) aggregates (A) and dark pressure-solution seams and soluble minerals such as quartz and plagioclase (B). (C) Massive serpentinite (sample no.: 10122109) exhibiting mesh (hourglass) texture (MT) and bastite (Bs). Note crosscutting veins of lizardite (liz) and talc (tlc). (D and E) Foliated cataclasite (sample no.: 10122102) in which serpentinite clasts exhibiting interpenetrating texture of antigorite (Atg) (D) and mesh (hourglass) texture of lizardite/chrysotile (E) are contained in a matrix of fine-grained, randomly-oriented talc, along with minor dolomite (Dol). Cr: mesh core, Rm: mesh rim. (F) Tremolite schist (sample no.: 10122101) consisting of tremolite (Tr) and minor chlorite (Chl) overgrowing the previous metamorphic foliation. (G) Talc schist (sample no.: G02) showing a shape-preferred orientation of fine-grained talc. (H) Close up of aligned talc blades in Figure G.
Figure 5. (A) Coefficient of friction (μ) as a function of shear displacement sheared at pore fluid pressures (P_{fluid}) of 40, 80 and 120 MPa, effective normal stresses (σ_n^{eff}) of 60, 120 and 180 MPa, and a temperature (T) of 20°C. (B) Enlargement of the area shown in (A) (black rectangle), showing the details of velocity steps in the first normal-stress sequence. Numbers adjacent to curves correspond to sliding velocity (μm/s). Note that the same velocity steps were applied to the second and third normal-stress sequences.
Figure 6. Summary of friction data. All plotted measurements were taken at 4 mm shear displacement in each normal-stress sequence. (A) Coefficient of friction (μ) versus effective normal stress at a temperature (T) of 150°C. (B) Coefficient of friction (μ) versus temperature at a pore fluid pressure (P_{fluid}) of 80 MPa and an effective normal stress ($\sigma_{n\text{eff}}$) of 120 MPa.
Figure 7. Plots of the friction rate parameter $(a-b)$ as a function of sliding velocity for serpentine (A), foliated cataclasite (B) and talc schist (C) sheared at temperatures of 20, 150 and 300°C and an effective normal stress (σ_{eff}) of 120 MPa.
Figure 8. Plots of the friction rate parameter $(a-b)$ as a function of sliding velocity for argillite (A) and tremolite schist (B) sheared at temperatures of 20, 150, 300 and 400°C and an effective normal stress $(\sigma_{n\text{eff}})$ of 120 MPa.
Figure 9. Schematic diagram showing metasomatic alteration of a contact zone between argillite and serpentine in the Franciscan Complex. Cata.: cataclasite. See the text for more details.
<table>
<thead>
<tr>
<th>Run no.</th>
<th>Sample</th>
<th>Temperature (°C)</th>
<th>Pore fluid pressure (MPa)</th>
<th>Effective normal stress (MPa)</th>
<th>Sliding velocity (µm/s)</th>
<th>Friction coefficient (µ)</th>
<th>Initial gouge thickness (mm)</th>
<th>Total displacement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH-20</td>
<td>tremolite schist</td>
<td>150</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.36, 0.41, 0.46</td>
<td>1.12</td>
<td>49.9</td>
</tr>
<tr>
<td>KH-22</td>
<td>talc schist</td>
<td>20</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.21, 0.21, 0.23</td>
<td>1.27</td>
<td>54.3</td>
</tr>
<tr>
<td>KH-23</td>
<td>argillite</td>
<td>20</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.43, 0.43, 0.46</td>
<td>1.35</td>
<td>54.4</td>
</tr>
<tr>
<td>KH-24</td>
<td>serpentine</td>
<td>20</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.54, 0.55, 0.55</td>
<td>1.46</td>
<td>54.5</td>
</tr>
<tr>
<td>KH-25</td>
<td>foliated cataclasite</td>
<td>20</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.21, 0.21, 0.27</td>
<td>1.32</td>
<td>55.1</td>
</tr>
<tr>
<td>KH-26</td>
<td>tremolite schist</td>
<td>20</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.35, 0.39, 0.45</td>
<td>1.14</td>
<td>56.9</td>
</tr>
<tr>
<td>KH-27</td>
<td>argillite</td>
<td>150</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.45, 0.53, 0.58</td>
<td>1.15</td>
<td>54.2</td>
</tr>
<tr>
<td>KH-28</td>
<td>serpentine</td>
<td>150</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.54, 0.56, 0.56</td>
<td>1.28</td>
<td>26.4</td>
</tr>
<tr>
<td>KH-29</td>
<td>talc schist</td>
<td>150</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.17, 0.19, 0.21</td>
<td>1.27</td>
<td>54.7</td>
</tr>
<tr>
<td>KH-30</td>
<td>serpentine</td>
<td>150</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.30, 0.31, 0.33</td>
<td>1.35</td>
<td>55.9</td>
</tr>
<tr>
<td>KH-31</td>
<td>foliated cataclasite</td>
<td>150</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.60, 0.56, 0.51</td>
<td>1.34</td>
<td>54.7</td>
</tr>
<tr>
<td>KH-32</td>
<td>serpentine</td>
<td>300</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.55, 0.59, 0.55</td>
<td>1.38</td>
<td>53.8</td>
</tr>
<tr>
<td>KH-33</td>
<td>argillite</td>
<td>300</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.52, 0.61, 0.68</td>
<td>1.36</td>
<td>53.6</td>
</tr>
<tr>
<td>KH-34</td>
<td>serpentine</td>
<td>300</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.40, 0.47, 0.53</td>
<td>1.29</td>
<td>53.4</td>
</tr>
<tr>
<td>KH-35</td>
<td>tremolite schist</td>
<td>300</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.13, 0.14, 0.16</td>
<td>1.36</td>
<td>53.8</td>
</tr>
<tr>
<td>KH-36</td>
<td>talc schist</td>
<td>300</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.13, 0.16, 0.19</td>
<td>1.28</td>
<td>54.0</td>
</tr>
<tr>
<td>KH-37</td>
<td>serpentine</td>
<td>400</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.32, 0.30, 0.27</td>
<td>1.34</td>
<td>53.2</td>
</tr>
<tr>
<td>KH-38</td>
<td>foliated cataclasite</td>
<td>400</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.51, 0.53, 0.59</td>
<td>1.44</td>
<td>53.3</td>
</tr>
<tr>
<td>KH-39</td>
<td>argillite</td>
<td>400</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.51, 0.59, 0.63</td>
<td>1.32</td>
<td>53.1</td>
</tr>
<tr>
<td>KH-40</td>
<td>tremolite schist</td>
<td>150</td>
<td>40, 80, 120</td>
<td>60, 120, 180</td>
<td>0.3, 1, 3, 10, 30, 100</td>
<td>0.36, 0.39, 0.43</td>
<td>1.25</td>
<td>53.3</td>
</tr>
</tbody>
</table>
Supplementary material
Click here to download Supplementary material for online publication only: hirauchi_suppl.docx
Click here to download Supplementary material for online publication only: hirauchi_figS1.pdf
Figure S4
Click here to download Supplementary material for online publication only: hirauchi_figS4.pdf
Figure S6
Click here to download Supplementary material for online publication only: hirauchi_figS6.pdf
Table S2
Click here to download Supplementary material for online publication only: hirauchi_tableS2.pdf
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: