Mathematical models for cell migration: a non-local perspective

Citation for published version:

Digital Object Identifier (DOI):
10.1098/rstb.2019.0379

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
Philosophical Transactions of the Royal Society B: Biological Sciences

Publisher Rights Statement:
© 2020 The Author(s)

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Mathematical models for cell migration: a nonlocal perspective

Li Chen, Kevin Painter, Christina Surulescu, and Anna Zhigun

Abstract

We provide a review of recent advancements in nonlocal continuous models for migration, mainly from the perspective of its involvement in embryonal development and cancer invasion. Particular emphasis is placed on spatial nonlocality occurring in advection terms, used to characterise a cell’s motility bias according to its interactions with other cellular and acellular components in its vicinity (e.g., cell-cell and cell-tissue adhesions, nonlocal chemotaxis), but we also shortly address spatially nonlocal source terms. Following a brief introduction and motivation, we give a systematic classification of available PDE models with respect to the type of featured nonlocalities and review some of the mathematical challenges arising from such models, with a focus on analytical aspects.

Keywords: cell-cell and cell-tissue adhesion; nonlocal and local chemotaxis; haptotaxis; classes of nonlocal models; integro-differential equations; mathematical challenges.

1 Introduction

Collective movement arises when individuals correlate their motion with others, generating migration at a population level. Paradigms include flocks, swarms and crowds [107], but it also occurs for bacteria [5], embryonic populations, immune and invading cancer cells [45, 83]. Scales span enormous ranges, from a few cells clustered over a few microns to millions or billions of organisms distributed over kilometres, e.g. large-scale fish schools [80] and locust swarms [100]. An adoption of theoretical approaches has helped understand these phenomena. Agent-based modelling (ABMs) is a popular approach, with its individual-level representation facilitating data fitting. For cell populations, ABM approaches range from cells aligned in an anisotropic to mobile clusters, including single or multi-site cellular automata [52, 30], descriptions of cells as overlapping spheres [33], deformable ellipsoids [97] or dynamic boundaries [102]. For organisms, collective movement models are often founded on point-based individuals moving with velocities determined by their interactions with neighbours (see the review in [13]). Despite their many advantages, problems persist with ABMs that motivate complementary approaches. First, a lack of standard analytical methods leads to heavy reliance on computation which, inevitably, becomes burdensome as population size increases. Second, how should one compare the results emerging following different approaches applied to the same problem, e.g. between a lattice- and off-lattice model used to describe cell sorting behaviour? Precise quantitative matching is clearly unrealistic, so when can one state that two methods generate equivalent behaviour? Third, different implementations of the same method can also generate quantitatively distinct results when applied to the same problem [101]. This typically escalates with the sophistication/detail of the ABM, with variations arising from, say, ambiguously stated assumptions or distinctions in the numerical implementation. Overall, these issues highlight the general challenge of appropriately “benchmarking” ABMs, and we refer to [92] for a more detailed consideration.

While it would be disingenuous to state that continuous models are free from such issues, in principal their solutions are reproducible: well-posed problems generate unique solutions for a given set of initial conditions. Further, with their roots in classical theory, well-developed analytical methods exist that provide generic insights: the analysis necessary to demonstrate the self-organising capacity of Turing’s counterintuitive reaction and diffusion theory of morphogenesis [112] is not restricted to precise reactions, parameters, etc. Phenomenological derivations start with a mass conservation equation, where movement is modelled via stipulating an appropriate flux. Coupled to reaction/birth/death processes, governing equations are stated for the key variables (cells, organisms, chemicals, etc.), each represented by continuous density distributions. Models derived in this way typically fall into the class of reaction-diffusion-advection (RDA) equations,

$$\frac{\partial u}{\partial t} = \nabla \cdot (D(\cdot) \nabla u) - \nabla \cdot (a(\cdot) u) + f(u, \cdot),$$

where $u(x, t)$ denotes the population density at position x at time t. Diffusion describes a non-oriented dispersal process, for example due to simple random meandering by individuals and is characterised by diffusion coefficient

\[D(\cdot)\] and \[a(\cdot)\]. Advection captures the correlation of movement with others, giving a non-oriented flux of individuals. Reaction terms account for processes that change the population density, such as birth, death, etc., with $f(u, \cdot)$ representing any nonlocal sources or sinks.
Advection could be passive (e.g. environmental flow) or due to active navigation by individuals, and is described by an advective velocity \(\mathbf{a}(\cdot) \). Reaction describes the population birth/death, etc. A vast number of models fall in the above class, including numerous landmark works: textbooks such as [91, 89] offer scope of this framework. Models of type (1.1) can also be derived as the continuous limiting equation of a biased random walk description for biological particle movement (e.g. see [28]).

Models in the RDA framework typically have a local nature, i.e. terms that depend pointwise. For example, in the well-known Keller-Segel model [65] for chemotaxis, the advection term describes population drift along a local chemoattractant gradient: specifically, \(\mathbf{a} = \chi \nabla v \), for some chemoattractant \(v \) and function \(\chi \). Effectively, cells (or animals) are assumed to detect and migrate in the direction of a local gradient. This is often logical, viewed at a macroscopic level: cells such as leukocytes orient according to the concentration difference of attractant across its body axis, but at the scale of a tissue this can be regarded as a pointwise calculation.

Local assumptions may not, however, always hold or be convenient. Population densities may be high: classical diffusive fluxes (e.g. Fickian) assume diluteness, and at high densities the impact of long range effects may be important [89]. Moreover, many particles sense the environment over extended regions: filopodia/cytotemes permit cells to detect signals multiple cell diameters away [69]; sensory organs grant organisms with highly nonlocal perception fields (e.g. [99, 74, 41, 60]). Approximating information originating over large regions to, say, a local gradient, could clearly be overly-reductive. Dispersal distances may also be nonlocal, for example seeds can be transported significant distances from source while various studies have implicated “Lévy-type” behaviour in migration paths, where short range movements are interspersed with occasional long transits (e.g. [54]). Local formulations can also create analytical problems, exemplified in the “blow-up” phenomena in certain formulations of chemotaxis models (e.g. see [10]). Here, the coupling between a population’s pointwise production of its own attractant and movement up the local gradient leads to runaway aggregation and singularity formulation. Such phenomena are powerful indicators of the inherent self-organisation, yet formation of infinite cell densities is, ultimately, unrealistic.

These considerations and others have led to a range of spatially-nonlocal RDA models, and their modelling and mathematical properties have attracted significant interest. This brief survey focuses on some aspects of modelling through such a framework. Nonlocality is, of course, a broad concept and can be included in various ways, for example into any or all of the diffusion, advection or reaction terms. We primarily focus on the use of nonlocal advection models that feature spatial integral operators inside advection terms. These have typically been developed to replace the gradient-type terms often used to describe taxis-type movement and, in particular, have come into vogue as a method of modelling collective movement processes in cells and organisms.

2 Applications in development and cancer

Nonlocal advection models have received considerable attention for their capacity to include cell-cell (and cell-matrix) adhesion into models for tissue dynamics. Adhesion occurs when juxtaposing membranes link certain transmembrane adhesion proteins, fastening cells together and forming clusters [2]. Moreover, cell-cell adhesion confers self-organisation, with famous studies revealing how mixed cell types can self-rearrange into distinct configurations, implying a capacity to “recognise” others of same type [110]. The Differential Adhesion Hypothesis (DAH) of Steinberg [105] suggested that distinct adhesion can provide this “tissue-affinity”, with the ratio of self- to cross-adhesion strengths determining the configuration; various experiments corroborate this theory (e.g. [106]). Models of adhesion should ideally exhibit clustering/sorting, and many ABMs indeed reproduce these phenomena (e.g. see [92]). The discrete cell representation is optimal: adhesion easily enters as an attracting force over a range of cell-cell separations, coalescing cells until their compression generates a counteracting repulsion. Incorporating adhesion into continuous models, however, can prove challenging. Attempts starting from an initial discrete random walk process have certainly generated continuous models, yet these can be ill-posed (backward diffusion) or seemingly incapable of displaying more complicated behaviour such as sorting (e.g. [4, 61, 62]).

Phenomenological approaches founded on nonlocal concepts appear to be more successful. Such models capture cell-neighbour interactions through the proposed movement of cells according to the density of others in their vicinity. An early model of this type was proposed in [103], although subsequent analysis focused on a localised form derived under expansion. The nonlocal model for adhesion proposed in [6] was explored regarding its ability to recapitulate the sorting behaviour predicted by the DAH and its relative success has led to various extensions: [49] performed a more comprehensive analysis; [88, 27] replaced the overly-reductive linear diffusion terms with nonlinear forms, generating the sharp cell boundaries often observed experimentally; [96] extended to more general cell-cell contact phenomena, for example allowing repulsive interactions as found in Eph-Ephrin interactions [108]; the model of [67] has extended to allow dynamic adhesion regulation.

Typical applications lie in morphogenesis and cancer. The former has witnessed nonlocal advection models used to describe somitogenesis [7], mesenchymal condensation in early limb development [50, 16], neuronal positioning in early brain development [82, 111] and zebrafish gastrulation [67]. Notably, many of these studies integrate modelling with experimental data. The formulation of nonlocal advection models for cancer invasion has addressed the question of how cell-cell and cell-matrix adhesion interact with other mechanisms to facilitate cancer invasion.
e.g. [48, 66, 95, 3, 31, 39, 19]. As one example, the study of [31] recapitulates various observed tumour infiltrative patterns, as well as the characteristic morphologies of ductal carcinomas and fibroadenomas. Other cellular applications of nonlocal advection models include the interactions between liver hepatocyte and stellate cells for in vitro culture systems [53]. Nonlocal models of cell migration and spread including adhesion, have also been extended to account for further structure, such as cellular age and the level of bound receptors, see [31, 32, 36, 39]. Including variables characterising subcellular dynamics opens the way for multiscale.

Nonlocal advection models have also been applied extensively to problems of animal movement, particularly animal swarming/flocking behaviour. The pioneering model of [85] featured a nonlocal advection based on a convection, modelling the attracting and repelling interactions between neighbouring swarm members. This model has sparked various extensions and significant analysis, for example see [71, 109, 15, 43, 42, 40]. In the context of swarming, hyperbolic approaches have been developed in which nonlocal interactions are included in the turning behaviour of swarm members, allowing extensions to orientation alignment (see the review in [37]). Nonlocal advection models have also been used to incorporate perceptual range into the model [41, 60], i.e. animal movement according to information drawn from potentially large regions of their environment.

3 Classes of nonlocal models for cell migration

We can extend (1.1) to a general RDA equation of the form (3.1), describing the evolution of a subpopulation density \(u_i \) as a part of an ensemble \(u = (u_1, \ldots, u_n) \) of \(n \in \mathbb{N} \) components representing cell densities, densities of a surrounding fibrous environment (e.g., natural or artificial tissue), concentrations of nutrients and chemical signals, etc.:

\[
\partial_t u_i = \nabla \cdot (a_{i0}(u)\nabla u_i) - \nabla \cdot \left(\sum_{j=1}^{m-1} a_{ij}(u)\nabla b_{ij}(u) \right) + a_{im}(u). \tag{3.1}
\]

Here \(\nabla = \nabla_x \) is the spatial gradient, \(m \in \mathbb{N} \), and the coefficients have the following meaning: \(a_{i0}(u) \) is the diffusion coefficient (normally nonnegative), \(a_{ij}(u) \) and \(b_{ij}(u) \) for \(j \in \{1, \ldots, m-1\} \) describe tactic sensitivities and signal functions, respectively, and, finally, \(a_{im}(u) \) is the reaction-interaction term. As previously remarked, nonlocality can be introduced in multiple ways into such PDEs. Often, it takes the form of an integral operator w.r.t. time \(t \) and/or position \(x \) in a spatial set \(O \subset \mathbb{R}^d, d \in \mathbb{N} \), but other independent variables (e.g., orientation/speed or age/phenotype/individual state, etc.) can also be involved. A typical spatial nonlocal operator can be described as follows:

\[
\mathcal{I}v(x) := \int_O J(x, y)v(y) \, dy,
\]

where \(J \) is some kernel defined in \(O \times O \). If, for instance, \(O = \mathbb{R}^d \) and \(J = J(x-y) \), then the so-called convolution notation is used:

\[
\mathcal{I}v = J \ast v.
\]

It can be seen e.g., as the combined ability (over the whole spatial region \(O \)) of some extracellular trait (mediated by a density distribution function \(J \)) and some quantity \(v \) (density/volume fraction/etc.), to determine the cell density at a specific location \(x \).

Nonlocalities of orders zero, one, or two can be distinguished according to whether a coefficient function, a first-, or a second-order differential operator is replaced by a nonlocal one. For example, a zero-order nonlocality is present if an \(a_{ij} \) is made dependent upon \(\mathcal{I}u \). Moreover, nonlocality can be introduced into the reaction, taxis, or diffusion terms, leading to another possible classification. In the subsequent text we address these and other possibilities in more detail.

3.1 Spatial nonlocality in advection terms

There are (at least) four ways to include a nonlocality into the advective flux, see Table 1. Hereafter \(B_r \) and \(S_r \) denote the open \(d \)-dimensional ball and the \((d-1) \)-dimensional sphere, respectively, which are centred at the origin and have radius \(r \), termed the sensing radius. The operator \(\mathcal{A} \) denotes the usual averaging over the set upon which the integration takes place. For the precise mathematical formulations consult the references in Table 1. Constructions in lines 1 and 2 in the Table can be viewed as zero order nonlocalities. The former describes, e.g., the situation of long-range interactions of individuals having density \(v_1 \) with their environment containing a signal of concentration \(v_2 \) (think of cells extending protrusions towards sites with higher concentrations of some chemoattractant, i.e. directing themselves towards the gradient of such concentrations). If the chemical signal itself is assumed to move much faster than the cells -which is often the case-, then \(v_2 \) can actually be expressed as a function of \(v_1 \), possibly in a nonlocal way, too, thus leading to a flux of the form \((J_1 \ast v_1)\nabla(J_2 \ast v_1)\), as e.g., in
A nonlocal chemotaxis model was introduced in \cite{1} and references therein for formal deductions of such models. Other versions characterising the nonlocal space-time dynamics of one or several interacting species (cell populations, soluble and insoluble signals) have also been addressed \cite{2, 3, 4, 5}. Very recently, a model class was introduced \cite{6}, which uses $\mathcal{T}_r \nabla$ (resp. $S_r \nabla$) rather than \mathcal{A}_r (resp. ∇). There, it was pointed out that on the one hand
\begin{equation}
\mathcal{A}_r u = \mathcal{T}_r (\nabla u), \quad \nabla_r u = S_r (\nabla u) \quad \text{in} \; \Omega_r := \{x \in \Omega : \text{dist}(x, \partial \Omega) > r\},
\end{equation}
whereas, on the other hand, e.g. for $\Omega = (-1, 1)$ and $u \equiv 1$ in Ω
\begin{equation}
\mathcal{T}_r (u') = 0 = u', \quad \int_{-1}^{1} |\mathcal{A}_r u| \, dx = 1 \quad \text{for} \; r \in (0, 1).
\end{equation}
In \cite{6} Ω_r was termed \textit{domain of restricted sensing} since there cells a priori cannot directly perceive signals from outside the domain of interest Ω. For $r \to 0$ it tends to cover the whole of Ω. In contrast, a cell inside the r-thick boundary layer Ω_r can potentially reach beyond $\partial \Omega$. Of course, if r is larger than the diameter of Ω, then each cell can do that. However, if the population is kept in a Petri dish or it is confined within comparatively hard barriers, e.g. bone material, then the cell flux through the boundary $\partial \Omega$ vanishes. This leads to cell densities such as u from above. As \cite{6} shows, in such cases the outputs under operators \mathcal{A}_r and $\mathcal{T}_r \nabla$ are equal in Ω_r, but may disagree substantially inside $\Omega \setminus \Omega_r$ even for very small r. In case of impenetrable boundaries and r close to zero, the study in \cite{6} supports the idea that cells actively adjust their movement after suitably sampling signal gradients rather than densities. We refer to that reference for a detailed discussion.

Other continuous models have been obtained by starting from a particle description, e.g. accounting for long range attraction and short range repulsion between individuals in a population alongside Brownian dispersal. In the limit of sufficiently large populations these lead to nonlinear PDEs for one-component models \cite{7, 8} containing, for instance, a degenerate diffusion $a_{10} (u) = u$ as well as an operator J in the advection. Further models in this category have been proposed in \cite{9, 10}. Models accounting for cell interactions with attraction or repulsion have also been studied in \cite{11, 12}. A related approach \cite{13} employs an off-lattice ABM and derives a continuum approximation able to account for correlations between moving cells. A mean-field approximation of the evolution equations obtained for one- and two-cell density functions starting from Langevin equations for cell movement leads

\footnote{Thereby $J \star v$ can be seen to represent the average density felt by the individual.}

\begin{table}[h]
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
Integrals & $J \star v_1 \nabla v_2$ & References \\
\hline
is placed before ∇ & $\nabla (J \star v)$ & \cite{1} \\
\hline
is placed inside ∇ & $\nabla_x (J \star v(x)) = \frac{1}{V} \int_{B_1(x)} v(x + \xi) \mathcal{F}_r (|\xi|) \, d\xi$ & adhesion velocity \cite{1, 2} \\
\hline
replaces ∇ & $\nabla (J \star v) = \frac{1}{V} \int_{B_1(x)} v(x + \xi) \mathcal{F}_r (|\xi|) \, d\xi$ & nonlocal chemotaxis \cite{3, 4} \\
\hline
is applied to ∇ & $\mathcal{T}_r \nabla v(x) = \frac{1}{V_0} \int_{B_1(x)} (\nabla v(x + s\xi) \cdot \xi) \frac{\mathcal{F}_r (|\xi|)}{|\xi|} \, d\xi \, ds$ & \cite{5} \\
& $S_r \nabla v(x) = \frac{1}{V_0} \int_{S_1(x)} (\nabla v(x + s\xi) \cdot \xi) \xi \, ds \, ds$ & \cite{5} \\
\hline
\end{tabular}
\end{center}
\caption{Nonlocal modifications of the gradient operator applied to a function v (or $v = (v_1, v_2)$).}
\end{table}
Thus, understanding and overcoming challenges met when analysing such equations is essential for developing a general mathematical theory applicable to nonlocal problems. Consequently, the basic representative of the class, equation (3.5), has received significant attention by analysts. While models involving first-order nonlocalities have received considerably less study, they are particularly relevant for applications, particularly in the context of collective motion phenomena (cf. Section 2).

4.1 Analysis of models with spatial nonlocalities in reaction terms

The analysis of reaction-diffusion equations featuring nonlocalities in source terms is highly challenging, in large part down to classical techniques that rely on comparison principles being no longer valid. A general theory seems presently out of reach, since the analysis heavily depends on the exact form of involved nonlocality, where key features of the corresponding settings are revealed, for example see [98, 29, 21]. If one includes a parameter where,
as it is formally sent to zero, the nonlocal equation becomes local, then one can expect that results for the local equation can be suitably generalised to the nonlocal setting. As for the corresponding local case, studies of general nonlocal models such as (3.5) include results on global well-posedness, blow-up, and stationary solutions. Specific solutions, such as stationary, radially symmetric, travelling wave solutions, or monotone wave fronts have also received attention due to their relevance in applications. To exemplify, consider the relatively well understood nonlocal Fisher-KPP equation (3.5) for the case $\gamma = 0$. For $J = 1$, which corresponds to the situation of blind competition, and with general $\alpha, \beta \geq 1$, a global bounded solution has been shown to exist both for bounded and unbounded domains [18, 17]. When the kernel J is replaced by the Dirac delta function, (3.5) reduces to a classical, local reaction-diffusion equation. There, results on global well-posedness, asymptotic stability of nontrivial stationary solutions, as well as other solution behaviours such as hair trigger effect\(^3\), extinction and quenching, have been intensively investigated, see for example [44, 8, 77]. If instead $J > 0$ in a ball of positive radius, then the nonlocality can have a profound impact. For instance, the constant solution $u = 1$ can lose the stability of the corresponding local case with a periodic-in-space stationary solution bifurcating from it [20, 47, 51]. This phenomenon has been observed in the study of travelling wave solutions, and numerically tested for the time dependent version in [72]. On the other hand, if J has an everywhere-positive Fourier transform or if it approximates the Dirac delta function, then there are travelling waves connecting $u = 0$ and $u = 1$ for $\alpha = 1$ (see [14]), and [72] shows that for $1 \leq \alpha < 1 + \frac{2\mu}{\gamma}$ the hair trigger effect appears, while for large μ values $u = 1$ can indeed become unstable and Turing patterns occur [90]. Similar results have been obtained for the bistable case [73]. As observed in [72], the concrete solution behaviour, in particular w.r.t. pattern formation, depends strongly on the shape of the interaction kernel. Even for (3.5) the integral kernel must be fixed to study in detail long-time behaviour. For systems of PDEs with nonlocalities in the reaction terms the situation is even more complicated and, to our knowledge, there has been no breakthrough in the study of behaviour in this context.

4.2 Analysis of models with spatial nonlocalities in advection terms

The rigorous analysis of local RDA systems has enjoyed great popularity over recent decades. The Keller-Segel systems are among the best studied [10, 59, 116], a model class corresponding to $\mathcal{M} = \nabla$ in (3.2). In contrast, only a few studies consider problems including one of the four nonlocal operators introduced in Table 1 that lead to first order nonlocalities. At a general level, combining local diffusion with nonlocal advection appears to preclude the existence of an energy functional satisfying a precise dissipation identity, as known for various formulations of local Keller-Segel model and providing a key for their analysis. Owing to this drawback, only settings where the nonlocal advection is effectively dominated by diffusion have been investigated so far. This is generally the case when the operators \mathcal{A}_r or ∇_r are involved, since they replace a differential operator by an integral one, leading to an increase (rather than a decrease) in regularity. In the absence of other effects this allows well-posedness to be established. Moreover, it turns out that the uniform boundedness of solutions can be guaranteed under quite general assumptions, including even cases where the corresponding local system exhibits finite time blow-up. Even situations in which $a_{ij} \to a_{ij} \varepsilon_n, b_{ij} \to 0$ is somehow negative can be covered. In the corresponding local setting this implies negative self-diffusion and, generally, non-existence of solutions. A detailed analysis of a nonlocal chemotaxis system was carried out in [56]. Several studies, in particular [35, 34, 25, 104, 39, 1] address equations or systems featuring the adhesion operator \mathcal{A}_r or its extension to a possibly unbounded sensing region [57]. Some works exploit specific solutions which are particularly relevant for applications, including steady states and their stability, existence of travelling waves, etc., see [115] and [56, 35, 34, 26, 94] for models with ∇_r and \mathcal{A}_r, respectively.

Overall, operators ∇_r and \mathcal{A}_r form a powerful alternative to the local gradient, particularly as they allow modelling a broader range of aggregative mechanisms without fear of potential blow-up. Moreover, as formal Taylor expansions performed in [55] and [48] respectively indicate, ∇_r and \mathcal{A}_r approach the local gradient ∇u for some fixed smooth u and vanishing r. In [56] the question was therefore raised concerning convergence of solutions to a family of nonlocal chemotaxis systems as $r \to 0$. This corresponds to the sensing region of a cell almost shrinking to its respective position, i.e. the sensing is effectively local. However, as the example from Subsection 4.1 indicates, blow-up may appear in the gradient limit on the boundary of the spatial domain. Using $\nabla_r \mathcal{M}$ or $\mathcal{M} \nabla_r$ instead excludes this undesired effect. These operators are, however, computed based on the gradient and they are closer to it both quantitatively and qualitatively. Consequently, the domination of diffusion over advection demands much stronger conditions on coefficients a_{ij} and b_{ij}. Suitable conditions have been found and existence and rigorous convergence (of a subsequence) of solutions proved in [70].

The issue of connecting spatially local and nonlocal models acting on the same (macroscopic) scale has also been addressed, e.g., in [71] (upon performing an adequate scaling) and, as mentioned above, in [55, 48] upon Taylor approximations (for small r) of functions inside the nonlocal operators. Those deductions are, however, formal, whereas [70] provides a rigorous approach.

\(^3\)meaning that an initially very small cell density can evolve in the long time into a cell mass completely filling the space, i.e. at maximum density
Several challenges arise in connection with nonlocal models, some of which we already mentioned. Here we focus on models for cell migration, but most mathematical issues also apply to systems of this type characterising other real-world phenomena.

From the *modelling* viewpoint, the settings can be extended to account for various aspects of cell migration and growth. For instance, tumor heterogeneity can be w.r.t. cell phenotypes, motility, treatment response, etc.; each of these are influenced by the composition of the tumor microenvironment, which in turn is dynamically modified by the cells, according to their population behavior. This results in ODE-PDE systems with intricate couplings and nonlinearities, even if only spatial nonlocality is considered. Including several populations of cells structured by further variables, as addressed at the end of Subsection 3.2, leads to multiscale descriptions, involving hyperbolic and/or parabolic PDEs with various nonlocalities. The latter can also occur in a pure macroscopic framework with only spatial nonlocality. When the cell densities evolve in a bounded domain one has to provide adequate boundary conditions. Depending on the complexity of the system accounting for interactions of cells between themselves and their surroundings, deriving them together with the population level dynamics is often nontrivial and calls for a careful modelling starting on lower scales and performing appropriate upscalings. Connections between local and nonlocal settings retain their relevance also in this context. From the *numerical* viewpoint, nonlocal models present significant challenges: integrating across a nonlocal region carries a substantial extra burden over classical local RDA models, compounded as one moves into higher (e.g. three) dimensions. Numerically efficient techniques can be developed (e.g. see [48, 49]), although they typically rely on, e.g. convenient boundary conditions or static sensing regions. Continued development of efficient methodologies is therefore a must for further, more intricate applications.

From an *analytical* viewpoint, it is desirable to support initially formal deductions by performing a rigorous limit procedure wherever it is possible. Notwithstanding, qualitative properties, such as the well-posedness, the long-time behaviour including the possibility of a blow-up, the limit behaviour w.r.t. to some vanishing parameter, etc., need to be addressed for the resulting models. Overall, these key aspects have remained open for many cell migration models, and that includes even local, single-scale ones. Introducing a nonlocality into a well-understood local model can lead to additional challenges since it breaks the original structure, see the discussions in Section 4.

References

