Possible effect of hala extract (Pandanus tectorius) on immune status, anti-tumour and resistance to Yersinia ruckeri infection in rainbow trout (Oncorhynchus mykiss)

Citation for published version:
Awad, E, Austin, D, Lyndon, A & Awaad, A 2019, 'Possible effect of hala extract (Pandanus tectorius) on immune status, anti-tumour and resistance to Yersinia ruckeri infection in rainbow trout (Oncorhynchus mykiss)', Fish and Shellfish Immunology, vol. 87, pp. 620-626. https://doi.org/10.1016/j.fsi.2019.02.012

Digital Object Identifier (DOI):
10.1016/j.fsi.2019.02.012

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
Fish and Shellfish Immunology

Publisher Rights Statement:
© 2019 Elsevier Ltd.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Possible effect of hala extract (*Pandanus tectorius*) on immune status, anti-tumour and resistance to *Yersinia ruckeri* infection in rainbow trout (*Oncorhynchus mykiss*)

Elham Awad, Dawn Austin, Alastair Lyndon, Amani Awaad

PII: S1050-4648(19)30086-5
DOI: https://doi.org/10.1016/j.fsi.2019.02.012
Reference: YFSIM 5914

To appear in: *Fish and Shellfish Immunology*

Received Date: 10 December 2018
Revised Date: 6 February 2019
Accepted Date: 8 February 2019

Please cite this article as: Awad E, Austin D, Lyndon A, Awaad A, Possible effect of hala extract (*Pandanus tectorius*) on immune status, anti-tumour and resistance to *Yersinia ruckeri* infection in rainbow trout (*Oncorhynchus mykiss*), *Fish and Shellfish Immunology* (2019), doi: https://doi.org/10.1016/j.fsi.2019.02.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Possible effect of hala extract (*Pandanus tectorius*) on immune status, antitumour and resistance to *Yersinia ruckeri* infection in rainbow trout

(*Oncorhynchus mykiss*)

Elham Awada,b,*, Dawn Austina, Alastair Lyndona, Amani Awaadc.

a,b Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, UK

b Department of Hydrobiology, National Research Center, Cairo, Egypt

c Pharmacognosy Department, College of Pharmacy, Salman Bin Abdulaziz University, Al-Kharj, Saudi Arabia

*Corresponding author: *E. Awad, Department of Hydrobiology, National Research Centre, Cairo, Egypt.

E-mail address: elhamsawad@yahoo.com

Tel.: +20-1003060046

Fax: +20-233370931

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
Abstract:

The possible effect of dietary administration of hala extract (Pandanus tectorius) on rainbow trout (Oncorhynchus mykiss) immune status as well as its effect as an anti-tumour agent was studied. Fish were divided into 4 groups before feeding with commercial diet (0%, control; 0.5%, 1% and 2% of hala extract) for 2 weeks. The effect of diet on the humoral immune parameters, ie total protein, myeloperoxidase content, antiproteases, lysozyme and bactericidal activities were studied. Also, the effect of the diets on the expression of some immune-related genes in rainbow trout head-kidney (TNF, LYZ2, IL-8 and CD-4) as well as tumour suppressor gene (WT-1a) was investigated. At the end of the feeding trial fish groups were challenged with Yersinia ruckeri. The results demonstrated enhancement in all the immune parameters in fish fed hala extract diets compared to control fish especially with the highest dose (2%) which recorded the highest significant increase (p < 0.05) in some parameters (total protein, myeloperoxidase content, antiproteases, and bactericidal activities) compared to the control. The results obtained from challenge with Y. ruckeri revealed reduction in the mortalities in fish groups fed with 1% and 2% doses of hala extract. Feeding with hala extract provoked upregulation in all immune-related genes. Again, the highest dose of hala extract showed a significant upregulation in WT1a expression (p < 0.05). The current study suggest that the hala extract, especially the highest dose, could be considered a good food additive to improve the immune status, resist tumour formation and to resist or control infectious diseases of rainbow trout.

Key words: Rainbow trout, Pandanus tectorius, immune response, Yersinia ruckeri, anti-tumour.
1. Introduction:

Aquaculture is considered to provide a valuable source of essential protein required for human health. However, the intensive and extensive aquaculture industry is subject to disease outbreaks [1]. However, controlling fish diseases by antibiotics and chemotherapeutics has caused the development of drug resistant pathogens in addition to accumulation of residues in environment and fish tissue and subsequently in humans [2]. On the other hand, medicinal plants provide a promising, alternative method for resisting and/or controlling fish diseases [3]. The world tends to use medicinal plants for treatment not only because they are cost effective, biodegradable, and safe but also for long lasting effects than the synthetic drugs provide and which have faster recovery rates [4]. It is worth mentioning that many medicinal plants have antioxidant properties which delay or prevent oxidative damage, therefore playing a vital role in disease prevention. [5].

Previous studies showed a marked enhancement of the fish immune system after administration of different parts of medicinal plants (roots, leaves, seeds, and flowers). Moreover, various levels of immune response depended upon plant concentrations, time and method of administration [3]. For example, dietary supplement with three doses of fenugreek seeds improved the immune status of gilthead seabream (Sparus aurata L.) especially with the highest dose (10%) [6]. Moreover, common carp (Cyprinus carpio) showed enhancement in immune parameters after administration of a diet supplemented with a 2% dose of Achillea wilhelmsii leaf extract [7]. Interestingly, catfish (Clarias gariepinus) injected with 50 mg/kg of leek leaf extract showed an increase in humoral immune response one month post-injection [8].
Hala tree (Pandanus tectorius) belongs to the family Pandanaceae that comprises around 600 members. [9]. This tree was initially cultured in Asia and extends to tropical northern Australia and Pacific islands of Oceania [10]. It contains triterpenoids and flavonoids [11], thus it was successfully used in folk medicine in many countries. In Kiribati, the leaves are used as therapy for cold, influenza, asthma, hepatitis, boils and cancer, while the roots are used to treat haemorrhoids. Fruits, flowers and aerial roots are used to treat digestive and respiratory disorders in Hawaii. While, In Palau, roots and leaves are used to alleviate stomach cramps and vomiting, respectively [10].

Previous studies recorded antioxidant, antibacterial, anticoagulant, anti-inflammatory, hepatoprotective, antidiarrheal, anticonvulsant, diuretic and anti-cancer activities for leaf extract [10, 12]. However, there has been no investigation carried out on the effect of hala leaf extract on the immune system of fish. Thus the current study was carried out to investigate the possible effects of dietary supplement of hala leaf extract on rainbow trout immune response either in serum or in cell by examine the expression of some immune-related genes (TNF, LYZ2, IL-8 and CD-4) in head kidney as well as study its effect as anti-tumour agent by examination of the expression of WT-1a gene (tumour suppressor gene).

2. Materials and methods:

2.1. Preparation of plant extract and diets:

Hala (Pandanus tectorius) leaves were collected from a local market in Saudi Arabia. About one kilogram of dried powder of hala was extracted using 95% alcohol (Merck, Germany) by percolation till exhaustion (4 X 4 l) and filtered off by filler paper. The combined filtrates of the plant were evaporated under reduced pressure and low temperature using rotator.
evaporator. The obtained residue (250 g) was used in preparing the diets. Four different concentrations were prepared; commercial diet non-supplemented (0%, control), commercial diet supplemented with 0.5 g (0.5%), 1 g (1%) and 2 g (2%)/100 g of hala extract.

2.2. Fish, experimental design and sampling:

Rainbow trout (*Oncorhynchus mykiss*) of average weight 18 ± 1 g were obtained from a commercial fish farm in Scotland, and acclimatized in aerated free flowing freshwater (14 ± 2°C). During acclimatization, fish were fed three times daily with a commercial diet (Biomar). Fish were distributed randomly into 4 groups each with 30 fish (10 per replicate) and fed for 14 days with 0.5 g (0.5%), 1g (1%) and 2 g (2%)/100 g of hala extract. Controls were fed with commercial diet only to examine the possible mode of action and effect on immune status. Blood was collected from fish anaesthetised using 3- amino benzoic acid ethyl ester; Sigma-Aldrich, Basingstoke, U.K.) by syringe before transfer to Vacuettes without heparin (Greiner, Stonehouse, U.K.) and left to clot for 2 h at 4°C, prior to centrifugation (1600 g, 25 min, 4°C), and stored at -20°C until use. The fish were then sacrificed using an overdose of the above anaesthetic.

2.3. Humoral immune parameters:

2.3.1. Lysozyme activity:

Serum lysozyme activity was measured according to [13]. Briefly, 60 µL of serum was added to 2 mL of a suspension of *Micrococcus lysodeikticus* (0.2 mg ml⁻¹ in a 0.05 M sodium phosphate buffer (pH 6.2) and absorbance was measured at 530 nm after 0.5 and 4.5 min on a spectrophotometer. A unit of lysozyme activity was defined as the sample amount causing a decrease in absorbance of 0.001 min⁻¹.
2.3.2. Total protein content

Total protein was measured by Bradford assay using bovine serum albumin (BSA) as the standard. Briefly, 2 mg ml\(^{-1}\) solution of BSA was prepared and serial dilutions made with phosphate buffer saline (PBS). Around 20 µl of each dilution was added to 1 ml of Bradford reagent (Sigma-Aldrich) before incubated at room temperature for 15 min. The standard curve was prepared by measuring the absorbance of each sample at 595 nm verses the sample concentration. Serum samples were diluted (1: 100) in PBS before 20 µl of each serum dilution was added to 1 ml of Bradford reagent. After incubation for 15 min, the absorbance of the unknown samples was taken and plotted onto the standard curve to obtain the total protein content for each sample [14].

2.3.3 Antiproteases activity

The serum anti-trypsin activity was measured according to Lange, Gudmundsdottir [15]. Thus, 20 µl of standard trypsin solution (Sigma-Aldrich, 5 mg ml\(^{-1}\)) was incubated with 20 µl of serum for 10 min at 22˚C. Subsequently, 200 µl of 0.1 M PBS (PH 7.2) and 250 µl of 2% azocasein solution (Sigma-Aldrich, 20 mg ml PBS\(^{-1}\)) were added. The mixture was incubated for 1 h at 22˚C before stopping with the addition of 500 µl of 10 % (v/v) trichloro acetic acid (TCA). Then, the mixture was incubated for 30 min at 2˚C before centrifuging at 6000 x g for 5 min. About 100 µl of the supernatant was transferred to a 96 microwell flat bottom plate containing 100 µl of 1 N NaOH well\(^{-1}\). The absorbance was read in the ELISA reader at 410 nm. Positive control (100%) was prepared by replacing the serum with buffer. For a negative control, buffer replaced both serum and trypsin. The percentage inhibition of trypsin activity was calculated by comparing with a positive control sample.
2.3.4. Myeloperoxidase content:

The myeloperoxidase content of serum was measured according to [16]. Briefly, 50 µl serum was diluted with 135 µl of Ca\(^{2+}\) and Mg\(^{2+}\) free HBSS (Sigma-Aldrich) in flat-bottomed 96-well plates. Then, 50 µl of 20 mM 3,3’,5,5’-tetramethylbenzidine hydrochloride (TMB, Sigma-Aldrich) and 5 mM H\(_2\)O\(_2\) (Sigma-Aldrich) were added (both substrates of peroxidase). The reaction was stopped by adding 50 µl of 4 M sulphuric acid (H\(_2\)SO\(_4\)) after 2 min. The absorbance was read at 450 nm by ELISA reader. Blank sample was without serum.

2.3.5. Bacterial culture and bactericidal activity:

Yersinia ruckeri was identified and obtained from Heriot Watt University before inoculation into TSA media (Oxoid) for 48 h at 25 °C. The culture was centrifuged for 10 min at 3000 ×g at 4 °C and the pellet resuspended in 0.9% of saline. The bacterial suspensions were counted using a hemocytometer slide at a magnification of 400× on a light microscope.

Serum bactericidal activity was done according to Kajita, Sakai [17] using *Yersinia ruckeri*. Briefly, 100 µl of serum was mixed with 100 µl of bacterial suspension, before incubation for 1 h at 25 °C. A blank control was also prepared by replacing serum with sterile PBS. The mixture was then diluted with 0.05 M sodium phosphate buffer, PBS (pH 6.2) at a ratio of 1:10. Around 50 µl of mixture was plated onto the nutrient agar plates and incubated for 48 h at 25 °C before the number of colonies was counted.

2.4. Challenge with *Yersinia ruckeri*:

All challenge experiments were done under a UK Home Office Project License (held by A.R. Lyndon) and a UK Home Office Personal License (held by D. A. Austin) and approved by the Heriot-Watt University Ethics Committee.
Yersinia ruckeri was grown in nutrient broth (Oxoid) for 24 h at 25°C. The culture was centrifuged at 3000 x g for 10 min at 4°C, before the supernatants were discarded, and the pellets resuspended in 0.9% (w/v) saline. The challenge test was carried out on fish by intraperitoneal injection with 0.1 ml volumes containing 10^3 cells/fish, as preliminary experiments had determined this to be the LD80 for the challenge strain of *Y. ruckeri*. Mortalities were recorded for up to 10 days [18].

2.5. Gene expression by real time PCR:

Total RNA was extracted from the head kidney and liver using RNA extraction kit (Applied biosystem, UK). The quantity of RNA was measured using nanodrop. Around 1 ug of RNA was used in Reverse transcription by using cDNA kit from Fermentas (York, UK).

The expression of *TNF*, *LYZ2*, *IL-8*, *CD-4*, β -actin, and WT-1a genes (Table 1) in head kidney were analysed by real-time PCR machine (ABI PRISM 7500 instrument, Applied Biosystems) using SYBR Green PCR Core Reagents (Applied Biosystems). Mixture (comprised of 10 ml of SYBR Green supermix, 5 ml of primers (0.6 mM each) and 5 ml of cDNA template) were incubated for 2 min at 95 °C, followed by 40 cycles of 15 s at 95 °C, 1 min at 60 °C, and finally 15 s at 95 °C, 1 min at 60 °C and 15 s at 95 °C. Gene expression was corrected by the reference gene, β-actin in each sample. The primers used are shown in Table 1. Gene expression of the samples compared to the controls was calculated according to the following equation:

$$\text{Ratio} = \frac{(E_{\text{target}})^{\Delta C}_{T \text{ target (control} - \text{sample)}}}{(E_{\text{EF1a}})^{\Delta C}_{T \text{ target (control} - \text{sample)}$$

2.6. Statistical analysis
Data were expressed as fold increase (mean ± standard error, SE), obtained by dividing each sample by the mean control value. Values higher than 1 express an increase while values lower than 1 express a decrease in the indicated gene. Data were analyzed by one-way analysis of variance (ANOVA). When differences were found among treatments, Tukey’s test was used to compare means by Minitab statistical software (Minitab, Coventry, UK). Differences were considered significant at P < 0.05.

3. Results:

3.1. Humoral immune parameters:

In Lysozyme activity and Myeloperoxidase content (Fig. 1 & 2), the highest significant values (p < 0.05) were reported in fish groups fed with 0.5% and 2% of hala extract with respect to the values found in the control group (0%). Although all doses of hala extract showed highly serum total protein compared to the control (0%) none of them showed significant differences compared to the values found in control group (Fig.3). The antiprotease activity (Fig.4) was increased in specimens fed with 0.5% or 2% doses of hala extract (compared to control), although only in the group fed 2% dose the increases were statistically significant, compared to the values found in control (p < 0.05). Regarding bactericidal activity (Fig. 5), all groups fed with hala extract showed high activity compared to the control group (especially with 2% dose) but without significant differences.

3.2. Challenge with *Yersinia ruckeri*

Fish groups fed with diets supplemented of hala extract for 2 weeks resulted in reduction in mortalities after challenge with *Y. Ruckeri* (Fig.6). The resistance to *Y. ruckeri* infection was increased in fish groups fed for 2 weeks with 2% and 1% doses of hala extract where the survival percent was 26.67% and 21.43 %, respectively, compared to control group (33.3 %). However, the difference was not significant.

3.3. Gene expression:
The results revealed an increase in the expression of immune related genes (TNF, LYZ2, IL-8 and CD-4) in the head kidney of rainbow trout after administration of diets enriched with 0.5% and 1% of hala extract for 2 weeks compared to the expression recorded in the control group (Fig. 7). Interestingly, the lowest dose (0.5%) showed the highest expression compared to other groups and control group while only being statistically significant (p < 0.05) for TNF and IL-8 compared to the control.

Moreover, the results showed significant up-regulation in WT-1a gene of head kidney (p < 0.05), in fish fed with 1% and 2% doses of hala extract compared to control. The highest expression was recorded in the dose of 2%.

Discussion:

Lysozyme is an important non-specific immune parameter which plays a vital role in fish defence mechanisms against diseases. It is responsible for opsonin, and thus activates the complement system and phagocytes [19]. Our results revealed a significant enhancement in serum lysozyme activity of the fish group fed 0.5% and 2% of hala extract, respectively, for 2 weeks compared to the control group (0%). This could be attributed to a dose dependent effect of hala extract on rainbow trout. Similar observation was reported in lysozyme activity of rainbow trout fed for 2 weeks with 0.5% and 1% of tetra (Cotinus coggyria) [20], and 1% & 2% of black cumin oil (Nigella sativa) [21]. Also, the highest activity depended mainly on the dose administration.

Myeloperoxidase is an important enzyme expressed mainly in neutrophils, which have the ability to produce hypochlorous acid from one of the oxidative radicals (H\textsubscript{2}O\textsubscript{2}) [22]. This process has a great benefit to kill invading microorganisms [23]. The results showed an increase in myeloperoxidase content in all treatment groups with hala extract, especially in those fed with 0.5 % and 2% where a significant value (p < 0.5) was recorded compared to control group. Similar to our study, myeloperoxidase was increased significantly in rainbow trout fed for two weeks with 1% and 2% of lupin (Lupinus perennis), mango (Mangifera indica), and nettle (Urtica dioica) [3]. Also, the highest
myeloperoxidase content and lysozyme activity values were recorded in rainbow trout fed 0.1% and 0.5% of caper leaf extract for 4 weeks [19]. It is worth mentioning that time and dosage are two important factors which control the efficiency of plant immunostimulants. For example, Christybapita, Divyagnaneswari [24] noticed a significant increase in common tilapia fed with diets containing different concentrations of false daisy leaf for 1 week, while feeding for 2 or 3 weeks didn't show any significant increase.

Serum protein is an important parameter in humeral immune system in fish. Its composition plays a vital role in keeping fish healthy. Moreover, the most important role played by acute phase proteins is in limiting the spread of infectious agents through repairing tissue damage and killing microorganisms [25, 26]. Present results also demonstrated enhancement in total protein value in all groups that received different concentration of hala extract groups as compared to the control (especially with the dose of 2%). This is in agreement with Dügenci, Arda [27] who reported increases in serum protein levels in rainbow trout fed with 0.1% and 1% of ginger (*Zingiber officinale*), nettle (*Urtica dioica*) and mistletoe (*Viscum album*). Several studies reported an increase of serum protein levels in fish species after using dietary supplement with plants as immunostimulants [6, 7, 28, 29]. Moreover, they suggested that elevation in fish total protein were probably a result of enhancement of the non-specific immune response.

Antiproteases or protease inhibitors are active molecules in the non-specific immune system that inhibit the action of proteases either by binding to their active sites or by ‘trapping’ the protease to prevent protein hydrolysis [30] and thus limiting the growth of invading bacteria in fish [31]. In the present study, the highest dose of hala extract recorded the highest significant enhancement in serum antiproteases compared to the control. In agreement with our result several studies recorded enhancement in fish species after administration of diets supplemented with medicinal plants [6, 32, 33]. It is worth emphasizing that the increase in fish immune response depend mainly on dose and time of administration. Moreover, the response also depends on fish species. For example, 0.5% dose
of garlic reported the highest antiprotease activity in rainbow trout after feeding for 2 weeks [33]. Although, the highest antiprotease in Asian seabass fed for 2 weeks was reported at 1.5% dose of garlic [34].

Various humoral molecules involved in non-specific immune response have a power to protect the fish from invading microbes [35]. Serum bactericidal activity is a lysin mechanism known for the killing and clearing of pathogenic organisms in fish [31]. In our study, Y. ruckeri was used as a model to examine the activity of hala extract to kill the bacterial infection. The strength of immune molecules in fish serum to kill Y. ruckeri can detected by the lowest number of bacterial colonies grown on media. Fish groups fed with hala extract revealed higher bactericidal activity compared to control, especially in the group fed with the highest dose (2%). Similarly, using the highest dose of black cumin seed (3%) as food supplement in rainbow trout diet caused higher bactericidal against Aeromonas hydrophila, [21]. Also, rohu (Labeo rohita) recorded an enhancement in serum bactericidal activity against A. hydrophila after feeding for 2 weeks with doses of prickly chaff-flower seed and the activity was elevated with higher concentration of seeds [35].

Challenge with target pathogen is one of the most valuable tests to evaluate the efficiency of immunostimulant to resist microbes. The resistance level of fish can be recognized from the survival percent after a bacterial infection [36]. The results revealed that dietary supplement with hala extract relatively increased the resistance of rainbow trout against Y. ruckeri, where the highest doses (2% and 1% respectively) recorded the highest resistance. In agreement with our study using stinging nettle (Urtica dioica) as food supplement of rainbow trout diet increased the resistance to Y. ruckeri, especially with the highest dose [37]. However, some immunostimulant can enhance the resistance of fish against some bacteria but failed to resist the other. For example an improvement in survival percent of rainbow trout fed with probiotic for 2 weeks was recorded following challenge with Aeromonas salmonicida, Vibrio ordalii, and Y. ruckeri, but not so with V. anguillarum [38]. Previous studies showed reduction in mortality against bacterial infections in fish after using plant immunostimulant [3, 39, 40].
TNF-α, is one of pro-inflammatory cytokines, that mainly produced by activated monocytes/macrophages and regulate the expression of many cytokines [41]. Many studies revealed that using plant immunostimulants in fish can induce pro-inflammatory responses. For example, using 0.1% of caper as supplement in rainbow trout diet caused up-regulation in the expression of TNF-α of head kidney [42]. Also, an up-regulation in TNF-α expression was observed in common carp treated with Rehmannia glutinosa in spleen, head kidney and gut [43]. Moreover, common carp fed with different concentrations of guava leaf powder showed an increase in TNF-α expression in the head-kidney, hepatopancreas, and intestine [44]. Similarly our study demonstrated up-regulation of TNF-α expression of head kidney in fish groups fed with hala extract compared to control. Increasing in the TNF-α levels could be attributed to the activity of the compounds in hala extract like flavonoids and antioxidant [12].

IL-8 is another pro-inflammatory cytokine, that produced in response to many stimulation factors like cytokines, LPS and viruses [45]. It plays an important role in attract T-lymphocytes and neutrophils to sites of inflammation [46]. Similar to TNF-α expression, result demonstrated an increase in IL-8 in rainbow trout head kidney in groups received 0.5% and 1% doses of hala extract. Although, only 0.5% dose recorded significant difference with the control. In agreement with this study, IL-8 expression increased in rainbow trout head kidney after fed diets supplemented with 1% and 2% of stinging nettle [47] and 0.1% of caper [42]. Interestingly, IL-8 expression in rainbow trout spleen was unaffected by the green tea supplementation, while in head kidney the expression showed significant increase especially in fish fed with 500 mg kg⁻¹ of green tea [48]. Similarly, gilthead seabream fed dietary supplement with 10% fenugreek showed enhancement in IL-8 expression of head kidney after 4 weeks [6].

CD4 is an important co-receptor has been reported in teleosts, expressed on T-helper cell, monocytes and macrophages [49]. CD4 is binding to major histocompatibility complex (MHC) class I molecules on the antigen-presenting cells, stabilizing the interaction between the T cell receptor
complex (TCR) and the MHC [50]. The results demonstrated an increase in CD4 expression in head kidney in group fed with hala extract compared to control group. Similar observations have been in other fish species after administration immunostimulant. For example; Atlantic salmon (Salmo salar) injected with lipopolysaccharide (LPS) and β-glucan as immunostimulant, showed an enhancement in the expression of CD4 in head kidney [51]. Also, an increase in CD4 expression of posterior intestine of European sea bass (Dicentrarchus labrax) has been reported after feeding diets contain low level of synbiotic additive (mannan oligosaccharides) [52]. The slightly higher expression values of CD4 of fish group fed with hala extract may indicate an early adaptive immune response.

Lysozyme gene is a bactericidal enzyme that mainly present in lymphoid tissue like head kidney and thymus as well as serum, mucus, gills [53]. There is two types of lysozyme (types I and II), have been identified in the kidney of rainbow trout. Particular, lysozyme type II (LYZ2) showed a potential antibacterial activity against four gram-negative bacteria. Such finding supports the role which lysozyme plays in non-specific immune defence in fish [54]. Our study reported the highest level of LYZ2 expression in head kidney of fish group fed with the lowest dose of hala extract (0.5%), this is agreement with the result obtained from analysis serum lysozyme level for the same group. Similar observation have been reported in common carp fed for 8 weeks with diet supplements with date palm fruit (200 ml kg\(^{-1}\)) where showed a remarkable increase in the expression level of lysozyme gene in head kidney (LYZ2) and serum lysozyme compared to control [55].

The kidney is plays important functions in fish, not only in immune system for production the leucocytes but also as osmoregulatory function [56]. Thus any malfunction in this organ in really preferable. Wilms’ tumour suppressor WT1 is a tumor suppressor gene, any mutation can led to Wilms’ tumour, a pediatric kidney cancer [57]. WT1 is a modulatory gene involved in cell growth and development of the urogenital system development (kidney and gonad) [58]. WT1 have been identified in fish species [59-61]. The suppression of WT1 led to appear the edema in zebrafish which suggest that it is involved in pronephros development [62]. WT1a and WT1b are two types have been reported from WT1 in zebrafish. Inactivation of wt1a leads to the absence of glomeruli while targeting of wt1b resulted in the formation of renal cysts [60]. The result showed an increase in WT1a
expression in head kidney of fish group treatment with hala extract, especially in the group fed with
2% which recorded the highest value. This could be contributed to the activity of ROS in plant extract
compounds to activate the tumour suppressor gene and suggest the role of this plant to work as anti-
tumour agent in kidney.

In conclusion, our results demonstrated that dietary supplement with hala extract to rainbow trout for
two weeks stimulates the non-specific immune response and increase its resistance toward *Y. ruckeri*
infection. The current results suggest that the hala extract, specially the highest dosage (2%) could be
considered as a good fish food supplements to enhance the immune system and resist and/or control
pathogenic bacterial, in addition to its potential effect to resist the tumour formulation. Future
investigations could focus on the effects of long feeding time on the immune status and general health
status of fish.

References:

32. Awad ES. Studies on plant based dietary supplements for control of Aeromonas hydrophila infections in rainbow trout (Oncorhynchus mykiss Walbaum): Heriot-Watt University; 2010.
46. Nootash S, Sheikhzadeh N, Baradaran B, Oushani AK, Moghadam MRM, Nofouzi K, et al. Green tea (Camellia sinensis) administration induces expression of immune relevant genes and

Table 1. Primers used for real-time PCR.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Primer sequences (5’- 3’)</th>
<th>Products size</th>
<th>GenBank number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster of differentiation (CD4)</td>
<td>GCCCTGCAGAGGACAAATCT TACAAAGGCCACTGGAGCTG</td>
<td>171</td>
<td>NM_001124539.1</td>
</tr>
<tr>
<td>Lysozyme II (LYZ2)</td>
<td>TCCAGATCAACAGGCCGCTAC GATTCGGTTCGGGTCAACA</td>
<td>149</td>
<td>NM_001124716.1</td>
</tr>
<tr>
<td>Interleukin 8 receptor (IL-8)</td>
<td>CGGTGCGGTCATATTCCCTGT GGTCCAGGGACTGTTGACTG</td>
<td>110</td>
<td>NM_001124279.1</td>
</tr>
<tr>
<td>Beta-actin (β -actin)</td>
<td>ATGGGCCAGAAGACAGCTACGTTG CTTCATGTCGCCAGTTG</td>
<td>186</td>
<td>AJ438158.1</td>
</tr>
<tr>
<td>Tumor necrosis factor</td>
<td>CAAGATTGTAACCTCATTCA GCTTCGCCACATAAAG</td>
<td>130</td>
<td>NM_001124374</td>
</tr>
<tr>
<td>TNF</td>
<td>GCTGCTGCCACATAAAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilms’ tumor suppressor 1a (WT-1a)</td>
<td>ATGTTCCAGCAACGGACCCTA GAACCTGGAGGGTG</td>
<td>129</td>
<td>NM_001124294.1</td>
</tr>
</tbody>
</table>
Figure 1. Serum lysozyme activity of rainbow trout fed for 2 weeks with dietary hala extract supplemented doses: 0% (control), 0.5%, 1% and 2%. Data are presented as mean ± S.E. Asterisk represents significant difference from control p ≤ 0.05. Bars = mean ± S.E.
Figure 2. Serum Myeloperoxidase content of rainbow trout fed for 2 weeks with dietary hala extract supplemented doses: 0% (control), 0.5%, 1% and 2%. Data are presented as mean ± S.E. Asterisk represents significant difference from control p ≤ 0.05. Bars = mean ± S.E.
Figure 3. Serum total protein of rainbow trout fed for 2 weeks with dietary hala extract supplemented doses: 0% (control), 0.5%, 1% and 2%. Data are presented as mean ± S.E. Asterisk represents significant difference from control $p \leq 0.05$. Bars = mean ± S.E.
Figure 4. Serum Antiprotease of rainbow trout fed for 2 weeks with dietary hala extract supplemented doses: 0% (control), 0.5%, 1% and 2%. Data are presented as mean ± S.E. Asterisk represents significant difference from control \(p \leq 0.05 \). Bars = mean ± S.E.
Figure 5. Serum bactericidal activity of rainbow trout fed for 2 weeks with dietary hala extract supplemented doses: 0% (control), 0.5%, 1% and 2%. Data are presented as mean ± S.E. Asterisk represents significant difference from control p ≤ 0.05. Bars = mean ± S.E.
Figure 6. Survival of rainbow trout fed for 2 weeks with dietary hala extract supplemented doses: 0% (control), 0.5%, 1% and 2% followed by challenge with *Yersinia ruckeri*. Data are presented as mean ± S.E. Asterisk represents significant difference from control p ≤ 0.05. Bars =mean ±S.E.
Figure 7. Expression of immune related genes (TNF, LYZ2, IL-8 and CD-4) and tumour suppressor genes (WT-1a) in the head kidney of rainbow trout fed dietary hala extract supplemented doses of 0.5%, 1% and 2% for 2 weeks. Data are expressed as fold increase (mean ± standard error, SE), obtained by dividing each sample value by the mean control value at the same sampling time. Values higher than 1 express an increase while values lower than 1 express a decrease in the indicated gene. Asterisks denote significant differences between control and treatment groups (P < 0.05).
Effects of hala extract (Pandanus tectorius) on the immune status of rainbow trout
Hala extract provoked significant up-regulation in most of immune-related.
Hala extract can use to resist tumour formation.
Feeding with hala extract increased resistance toward Yersinia ruckeri infection