A New Balanced-to-Unbalanced Filtering Power Divider With Dual Controllable Passbands and Enhanced In-Band Common-Mode Suppression

Citation for published version:

Digital Object Identifier (DOI):
10.1109/TMTT.2018.2883100

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Microwave Theory and Techniques

Publisher Rights Statement:
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 22. Apr. 2021
A New Balanced-to-Unbalanced Filtering Power Divider With Dual Controllable Passbands and Enhanced In-Band Common-Mode Suppression

Feng Huang, Jianpeng Wang®, Jiasheng Hong®, Fellow, IEEE, and Wen Wu, Senior Member, IEEE

Abstract—A new microstrip balanced-to-unbalanced power divider with dual bandpass filtering response is presented in this paper. The generalized mixed-mode scattering matrix for the filtering balanced-to-unbalanced power divider is derived to guide the design. Differential-mode (DM) dual-band filtering response is analyzed under the odd-mode excitation to show that the frequency ratio \(\frac{k_1}{k_2}\) and bandwidth of these two passbands could be flexibly controlled. For the even-mode excitation, two intrinsic transmission zeros generated by additional open-ended stub are introduced, aiming to achieve the enhancement of in-band common-mode (CM) suppression. In addition, good in-band isolation and port matching are realized by introducing a grounded resistor. To validate the design concept, two prototypes centering at 1 and 2.5 GHz (\(k = 2.5\)), as well as 0.76 and 2.75 GHz (\(k = 3.62\)) are implemented following the given design procedure. Tested results of the two fabricated circuits, well agreeing with the simulated ones, exhibit high performances in terms of DM response, in-band CM suppression, port-to-port isolation, and port matching.

Index Terms—Balanced-to-unbalanced, common-mode (CM) suppression, dual passband, filtering response, power divider.

I. INTRODUCTION

The bandpass filter and the power divider are two essential passive components in modern wireless communication systems. Typically, an excessive area would be occupied when these two devices coexist in the same radio frequency (RF) front end. To tackle this problem, one effective approach for size miniaturization is to integrate these two devices into a single component, i.e., the filtering power divider, possessing the functions of power splitting/combining, and frequency selectivity simultaneously. During the past decade, many works dealing with this multifunction embedded component have been reported in the open literature, and thus a wide variety of circuit implementations are available today with different design methods [1]–[8]. Among them, the representative works include combining the power divider with the filter directly [1], [2], replacing two quarter-wavelength transmission line with the filtering units [3]–[5], and introducing three-line coupled structures [6]–[8]. Note that all the aforementioned works are focused on the single-ended filtering power dividers.

On the other hand, balanced circuits, such as balanced filter [9] and balanced diplexer [10], have been widely utilized due to their high common-mode (CM) rejection and immunity against noise. Recently, the differential technology has been applied to design balanced power dividers as well [11]–[15], which can be served as a good candidate in a fully balanced RF front end. In addition, a balanced power divider with bandpass filtering response is presented in [16] based on a ring structure. Other balanced-to-balanced filtering power dividers using microstrip [17] and SIW [18] technologies have also been reported.

Compared with the above-mentioned fully balanced power divider, the balanced-to-unbalanced filtering power divider exhibits more flexibility to integrate balanced circuits with single-ended ones. Fig. 1 shows a typical application case of such a device in RF front-end transceivers for the dual-band operation. As is shown, in the transmitting path, the magnified differential signal from the balanced power amplifier can be converted into two-way dual-band single-ended signals by the balanced-to-unbalanced filtering power divider, and then delivered to the antenna array. While for the receiving path, the single-ended signals from the antenna array are fed back to the balanced low-noise amplifier in a differential type, again through the proposed power divider.

In order to realize the functions of balanced-to-unbalanced signal conversion and dual-band filtering performance, a conventional solution by directly cascading balun, power divider, and dual-band filters is shown in Fig. 2(a). Obviously, this approach suffers from enlarged overall size and high insertion loss. Thus, a trend of integration design shown in Fig. 2(b) is
meaningful for size reduction and impedance matching. Although balanced-to-unbalanced power dividers implemented by using a four-wire coupled-line and T-shaped structures [19], coupled-lines [20], [21], transmission lines [22]–[24] have been reported, none of these works can block the input signal outside their desired operating bands. Recently, the authors have proposed two balanced-to-unbalanced power dividers with filtering response on branch lines and several stubs [25]. In addition, coupled-line based balanced-to-unbalanced filtering power dividers have been also developed in [26]. Despite the fact that wideband filtering response with high selectivity is achieved, the CM suppression and single-ended port responses are not ideal within the whole wide passband, thus needing to be further improved.

To the best of our knowledge, only limited work has been carried out on the dual-band balanced-type filtering power dividers. In [27], a differential filtering power divider with dual passbands is designed without addressing the isolation between output ports. Another dual-band balanced-to-unbalanced filtering power divider based on coupled ring resonators [28] cannot control its dual passbands flexibly and is just suitable for the design with two closely located passbands.

The main motivation of this paper is to present a new codesign of balanced-to-unbalanced filtering power divider with dual controllable passbands. This power divider not only can simultaneously convert the input differential signals into single-ended ones at two designated frequencies with equal power division and bandpass-filtering response but also have the advantage of rejecting the undesired in-band CM signals. Theoretical analysis, closed-form equations, as well as detailed design procedure are presented to guide the proposed design. Finally, two practical prototypes with different frequency ratios of \(k = f_2/f_1 = 2.5\) and 3.62 are designed, fabricated, and measured for experimental validation. Both simulated and measured results of the implemented circuits are recorded and good agreement between them is obtained. Overall, compared with state-of-the art primary advantages of the proposed power divider reported in this paper are summarized as follows.

1) **Single Circuitry:** The proposal is a highly integrated design, which can provide multifunctions of balanced-to-unbalanced signal conversion, power division, frequency selectivity, dual-band operation, port-to-port isolation, and CM suppression simultaneously with only one single circuitry.

2) **Concise Analysis:** The generalized mixed-mode scattering matrix is at first derived and found only related to the individual odd- and even-mode S-parameters, thus facilitating the proposed design by using even–odd-mode method.

3) **Flexible Band Ratio:** The proposed dual-band admittance inverter structures could operate under the condition of either the band ratio, \(k < 3\) or \(k > 3\), thus ensuring the filtering power divider works at two passbands with great flexibility.

4) **Improved Performance:** The desired dual-band filtering response is effectively obtained under the odd-mode excitation, while the in-band CM suppression is enhanced significantly due to a pair of introduced transmission zeros.

II. THEORETICAL ANALYSIS

The circuit model of the proposed dual-band balanced-to-unbalanced filtering power divider is depicted in Fig. 3. It has one balanced or differential input port A, which is formed up by physical ports 1 and 3, and two single-ended output ports 2 and 4. Two step-impedance resonators \((Z_3, \theta)\) and \((Z_2, 2\theta)\) are coupled each other by a pair of dual-band admittance inverters \(J_{12}\) to facilitate the basic dual-band responses. Four extended transmission lines \((Z_4, 4\theta)\) and \((Z_4, 2\theta)\) at each port are employed for dual-band impedance matching. Note that the open-circuited stub \((Z_s, \theta)\) loading on the symmetrical line is introduced to enhance the CM suppression. In addition, a grounded resistor \(R\) is added on the middle of the transmission line \((Z_4, 4\theta)\) to achieve good isolation and port matching.

A. Generalized Mixed-Mode Scattering Matrix Analysis

First, let us consider the standard scattering matrix \([S_{std}]\) of the proposed balanced-to-unbalanced filtering power divider in Fig. 1. Since this configuration can be deemed as a
symmetrical and reciprocal four-port network, \([S_{sd}]\) could be defined as
\[
[S_{sd}] = \begin{bmatrix}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{bmatrix} = \begin{bmatrix}
a & b & c & d \\
b & e & d & f \\
c & d & a & b \\
d & f & b & e
\end{bmatrix}.
\]
(1)

On the other hand, with reference to the port assignment (balanced port A and two single-ended ports 2 and 4) shown in Fig. 3, the required mixed-mode scattering matrix \([S_{mm}]\) is expressed as below according to [29]
\[
[S_{mm}] = \begin{bmatrix}
S_{ddAA} & S_{dcAA} & S_{dc2A} & S_{ddA4} \\
S_{cdAA} & S_{ccAA} & S_{cc2A} & S_{cdA4} \\
S_{sd2A} & S_{sc2A} & S_{sc24} & S_{sd24} \\
S_{sd4A} & S_{sc4A} & S_{sc42} & S_{sd44}
\end{bmatrix}
\]
(2)

where the subscripts \(d, c, \) and \(s\) represent the differential mode (DM), CM, and single-ended port, respectively. By taking advantage of the matrix transformation technique provided in [30], the mixed-mode scattering matrix \([S_{mm}]\) is attained as (3a), shown at the bottom of this page. Moreover, according to [31], the individual odd-/even-mode S-parameters can be indicated as
\[
S_{i,j}^o = S_{i,j} - S_{i,n+j}
\]
\[
S_{i,j}^e = S_{i,j} + S_{i,n+j}
\]
(4a) \hspace{1cm} (4b)

where symbols \(o\) and \(e\) correspond to the odd- and even-mode equivalent subcircuits \(i, j = 1, 2, n = 2, \) and \(S_{i,j}\) and \(S_{i,n+j}\) stand for the internal elements in the standard matrix \([S_{sd}]\).

Consequently, by substituting (4) into (3a), the generalized mixed-mode scattering matrix \([S_{mm}]\) can be simplified into (3b), shown at the bottom of this page. As we can see, all the mixed-mode S-parameters are related to the individual odd-/even-mode S-parameters. In this context, it is very convenient to characterize the proposed new design in terms of the desired DM dual-band filtering response, the CM suppression, the port-to-port isolation, as well as the port matching condition by the well-known even–odd-mode method.

**B. Odd-Mode Analysis**

When an odd-mode excitation is applied to ports 1 and 3, the plane along the symmetrical line can be deemed as an electrical wall and the resultant odd-mode equivalent circuit is presented in Fig. 4(a), which is equivalent to a two-port second-order dual-band filter. The operating frequencies of two passbands are determined by the dual-passband resonator consisting of two impedance sections of \(Z_2\) and \(Z_3\) with identical electrical length of \(\theta\). The first two resonant frequencies are given by [32] as
\[
f_1 = \frac{2f_0}{\pi} \arctan \sqrt{R_z}
\]
\[
f_2 = \frac{2f_0}{\pi} \left( \pi - \arctan \sqrt{R_z} \right)
\]
(5a) \hspace{1cm} (5b)

where \(f_0\) is the central frequency of \(\theta = \pi/2\) and \(R_z\) is defined as the impedance ratio of \(Z_3/Z_2\). Thus, the frequency ratio of two passbands is given by
\[
k = \frac{f_2}{f_1} = \frac{\pi - \arctan \sqrt{R_z}}{\arctan \sqrt{R_z}}.
\]
(6)

The bandwidth control is discussed next. As shown in Fig. 4(b), two types of dual-band \(J\)-inverters consisting of
Two types of the proposed dual-band admittance inverters.

In order to ensure type A and B admittance inverters are suitable for dual-band operation, the total ABCD parameters of these two configurations should be equal to an ideal admittance inverter at the two designated frequencies of \( f_1 \) and \( f_2 \), illustrated as follows:

\[
\begin{bmatrix}
1 & 0 \\
-j \cot \theta & 1 \\
0 & j J_{12} \\
-j J_{12} & 0
\end{bmatrix}
\begin{bmatrix}
\cos 2\theta & j Z_c \sin 2\theta \\
j Z_c \sin 2\theta & \cos 2\theta \\
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
-j \cot \theta & 1 \\
0 & j J_{12} \\
-j J_{12} & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & j J_{12} \\
-j J_{12} & 0
\end{bmatrix}
\]

(7a)

(7b)

After theoretical simplification, the following design equations are derived:

\[
Z_c = \frac{1 + R_c}{2 \sqrt{R_c J_{12}}} \\
Z_d = \frac{Z_c}{R_c - 1} \\
Z_c = \frac{1 + R_c}{2 \sqrt{R_c J_{12}}} \\
Z_d = \frac{2 R_c Z_c}{1 - R_c}.
\]

(8a)

(8b)

Evidently, the impedance ratio \( R_c \) must be greater than 1 in (8a) for type A and smaller than 1 in (8b) for type B. This means, according to (6), that the type A dual-band admittance inverter is applicable under the condition of frequency ratio \( k < 3 \), while the type B inverter is suitable to operate for frequency ratio \( k > 3 \).

As detailed in [33], the required coupling degrees \( M_{12} \) and \( M_{12} \) can be established as

\[
M_{12} = \frac{\text{FBW}_1}{\sqrt{8182}} = \frac{J_{12}}{b_1} \\
M_{12} = \frac{\text{FBW}_2}{\sqrt{8182}} = \frac{J_{12}}{b_2}
\]

(9a)

(9b)

where \( \text{FBW}_i (i = 1, 2) \) is the fractional bandwidth of the first or second passband, \( g_i (i = 1, 2) \) is normalized element in the low-pass filter prototype, and \( b_i (i = 1, 2) \) is the susceptance slope parameter [33], which can be calculated by

\[
b_i = \frac{f_2}{2} \frac{\partial \text{Im}(Y_{\text{in1}} + Y_{\text{in2}})}{\partial f} \bigg|_{f = f_1, f_2}
\]

(10)

where \( Y_{\text{in1}} \) and \( Y_{\text{in2}} \) are input admittances as labeled in Fig. 4(a).

The expression for the two susceptance slope parameters at each operating frequency can be simplified as

\[
b_1 = \frac{1}{2} \frac{1}{Z_3} \frac{\theta_1 \sec^2 \theta_1 + \frac{1}{2} Z_2 \theta_1 \csc^2 \theta_1}{\theta_1} \\
b_2 = \frac{\pi}{\theta_1} b_1 - b_1.
\]

(11a)

(11b)

Combining with (6), (8), (9), and (11), we have obtained the following identities:

\[
\begin{align*}
\text{FBW}_1 &= \frac{\Delta \text{BW}_1/f_1}{\text{FBW}_1} = \frac{f_2}{f_1} \\
\text{FBW}_2 &= \frac{\Delta \text{BW}_2/f_2}{\text{FBW}_1} = \frac{(1 + R_c) Z_3 \sqrt{8182}}{\sqrt{R_c Z_c (\theta_1 \sec^2 \theta_1 + R_c \theta_1 \csc^2 \theta_1)}}
\end{align*}
\]

(12a)

(12b)

From (12a), we can find that the absolute bandwidth (ABW) of both passbands is always kept identical, which makes it very suitable for the application requiring dual constant absolute bandwidths. Moreover, (12b) reveals the relationship between \( \text{FBW}_1 \) and the impedance \( Z_c \) under different values of \( Z_3 \) and \( R_c \). In other words, the bandwidths of our design can be controlled flexibly with different frequency ratios.

Furthermore, the circuit parameter \( Z_c \) can be easily determined according to the specific design requirement of the given FBWs once the dual-passband resonator is confirmed.

As for the external quality factors \( Q_{ei} [33] (i = 1, 2) \), they can be derived as

\[
Q_{ei} = Q_{\text{out1}} = Q_{\text{out2}} = \frac{g_{0i} g_{1i}}{\text{FBW}_i}.
\]

(13)

In our design, the dual-band impedance transformers \( (Z_1, 2\theta) \) are tapped to the dual-band resonator in order to satisfy the input \( Q \)-factors. Analogously, as discussed in [34], the electrical lengths of the dual-band impedance transformers are set as \( 2\theta \), and the characteristic impedance \( Z_1 \) is calculated as

\[
Z_1 = \sqrt{Z_0 Q_{ei}}.
\]

(14)

After \( Z_1 \) is decided, a fine tuning of \( Z_4 \) is required to ensure that the output \( Q \)-factors coincide with the derived ones as given in (13).

Till now, based on the odd-mode equivalent circuit shown in Fig. 4(a), the DM responses including operating frequencies, bandwidths, as well as the external quality factors are well analyzed, which is very meaningful to guide our design. Next, the approach of achieving enhanced CM suppression, good port matching and isolation for dual passbands will be described in detail in Section II-C.
C. Even-Mode Analysis

Under the even-mode excitation, the symmetrical plane can be viewed as a magnetic wall, and the even-mode equivalent circuit is shown in Fig. 5, which is utilized to realize improved CM suppression, good isolation, and port matching.

As we can observe, the additional stub, just loaded in the symmetrical plane, is introduced to generate extra transmission zeros for the enhancement of CM rejection without interfering the DM response. By analyzing this CM equivalent circuit, the first three transmission zeros are obtained as

\[ f_{z1} = \frac{2f_0}{\pi} \arctan \sqrt{\frac{2Z_s}{Z_2}} \]  
\[ f_{z2} = f_0 \]  
\[ f_{z3} = \frac{2f_0}{\pi} \left( \pi - \arctan \sqrt{\frac{2Z_s}{Z_2}} \right) \]

where \( Z_s \) is the characteristic impedance of the loaded stub.

For direct demonstration, a set of CM transmission coefficients with and without the loaded stub are plotted in Fig. 6. As expected, the CM signal can be greatly rejected at \( f_{z1} \) and \( f_{z3} \) compared to \( f_{z2} \). Therefore, the isolation and port matching performance can be enhanced a lot by relocating transmission zeros \( f_{z1} \) and \( f_{z3} \) at the DM resonant frequencies.

Next, it is to show how a proper grounded resistor \( R \) can be chosen to achieve high performance of port matching and isolation. According to (3b), the isolation and port-matching condition could be characterized by

\[ S_{ss2} = 0.5(S_{ss} - S_{ss}^0) \]  
\[ S_{ss2} = 0.5(S_{ss} + S_{ss}^0) \]

In order to achieve good isolation and port matching, the following relations should be complied in both designed passbands:

\[ \text{Re}(S_{ss2}^0) = \text{Im}(S_{ss2}^0) = 0 \]  
\[ \text{Re}(S_{ss2}^0) = \text{Im}(S_{ss2}^0) = 0 \]

where \( \text{Re} \) and \( \text{Im} \) represent the real part and imaginary part, respectively.

Note that (17a) would be established without doubt when the desired DM filtering response is determined. That is to say, we have to select appropriate parameters to satisfy (17b). Since the characteristic impedance of the loaded stub \( Z_s \) is determined by the CM performance, the isolation and port matching are mainly related to the resistor \( R \). In this context, by varying the value of \( R \), we can find an optimal value to make (17b) tenable to the greatest extent for good isolation and port matching performance.

D. Design Procedure

To clarify the design of the proposed dual-band balanced-to-unbalanced filtering power divider, the detailed design procedure is described as follows.

1) Design of the DM Dual-Band Filtering Response: First, selecting proper type of the dual-band admittance inverter based on two given central frequencies \( f_1 \) and \( f_2 \). Then, determining the impedance \( Z_c \) and \( Z_d \) to obtain the desired FBWs according to (8) and (12). Finally, calculating \( Z_1 \) using (14) to achieve the expected \( Q \)-factors at input port, and then selecting proper \( Z_4 \) for output \( Q \)-factors.

2) Enhancement of the CM Suppression: Based on (15), by means of tuning the impedance of the loaded stub on the symmetrical plane, enhanced in-band CM rejection can be acquired with the relocation of the transmission zeros \( f_{z1} \) and \( f_{z3} \) in the DM dual passbands.

3) Implementation of In-Band Single-Ended Port Responses: Since in-band port matching and isolation are related to the resistor \( R \) based on the above analysis, choosing proper value of \( R \) to satisfy (17b) as far as possible.

4) Optimization Process of the Design Circuit: Embedding the short or open stubs \( (Z_d, \theta) \) in the proposed dual-band admittance inverters into the dual-band resonators for size compactness, and executing the final optimization of the realized entire circuit layout relying on the commercial EM simulator.

III. EXPERIMENTS, MEASUREMENTS, AND COMPARISON

In this section, two prototypes have been implemented on Rogers RO4003C substrate \( (\varepsilon_r = 3.55, \tan \delta = 0.0027) \) with a thickness of 0.508 mm to validate the design theory. Simulation is accomplished by the commercial full-wave simulator ANSOFT HFSS, while the measurement is carried out in the Agilent N5244A four-port vector network analyzer.
Fig. 7. Layout of Prototype I with dimensions denoted. [L_{11} = 7.57, L_{12} = 6.26, L_{13} = 15, L_{14} = 6.82, L_{21} = 12.01, L_{22} = 5.48, L_{23} = 11.7, L_{24} = 11.51, L_{31} = 11.25, L_2 = 52, L_3 = 26.3, L_4 = 26, W_1 = 0.58, W_2 = 1.5, W_3 = 0.5, W_4 = 0.5, W_c = 0.24, W_s = 1.6, and d = 0.6 (unit: in millimeters). R = 50 \Omega].

Fig. 8. Extracted output Q-factors of Prototype I versus Z_4.

Fig. 9. Simulated Re(S_{22}) and Im(S_{22}) of Prototype I with varied R.

Fig. 10. Simulated and measured results of Prototype I. (a) DM responses. (b) CM responses. (c) Single-ended port responses.

input quality factors Q_{in1} = 3.82, Q_{in2} = 9.55. Fig. 8 depicts the extracted output Q-factors using the method in [35] under different impedance values of Z_4. Thus, the selection of Z_4 = 71 \Omega can give us the desired two values simultaneously as far as possible. With the aim of improving the in-band CM rejection, Z_s = 35 \Omega is selected accordingly. Fig. 9 plots different Re(S_{22}) and Im(S_{22}) with varied R, which indicates that the resistor with R = 50 \Omega can promise good in-band port matching and isolation in the design.

Final physical dimensions are provided in Fig. 7. The overall size of the fabricated circuit displayed in the inset of Fig. 10(c) is about 0.39\lambda_g \times 0.53\lambda_g, where \lambda_g is the guided wavelength at 1.0 GHz. Simulated and measured results, portrayed in Fig. 10, are in good agreement with each other. As shown in Fig. 10(a), Prototype I exhibits two DM operating frequencies at 1.0 and 2.5 GHz with 1-dB FBWs of 21.3% and 8.6%. The measured in-band DM return losses for two
Fig. 11. Layout of Prototype II with dimensions included. $L_{11} = 7.55, L_{12} = 6.22, L_{13} = 15, L_{14} = 7.21, L_{21} = 10.5, L_{22} = 5.4, L_{23} = 13.2, L_{24} = 11, L_{31} = 12.8, L_{32} = 10, L_{33} = 5.9, L_{34} = 12.9, L_{41} = 17, L_{42} = 26, L_{43} = 17.3, L_2 = 52, L_3 = 26.6, L_4 = 25.5, W_1 = 0.61, W_2 = 0.68, W_3 = 1.6, W_4 = 0.45, W_c = 0.2, W_s = 3.2, \text{ and } d = 0.6 \text{ (unit: in millimeters).}$ $R = 60 \Omega$.

Fig. 12. Extracted output $Q$-factors of Prototype II for both two passbands versus the impedance $Z_4$.

Fig. 13. Simulated $\text{Re}(S_{22}^c)$ and $\text{Im}(S_{22}^c)$ of Prototype II with varied $R$.

passbands are better than 25 and 22 dB, while the insertion losses at 1.0 and 2.5 GHz are 3.6 and 3.9 dB, respectively. From Fig. 10(b), the CM suppression is well enhanced to 35 dB in both of the two DM operation passbands with the help of two extra transmission zeros. In addition, the mode conversion of balanced port A, i.e., $S_{dcAA}$, is better than 40 dB over both passbands. Moreover, return losses of two unbalanced output ports are both better than 24 dB, and the tested isolations are greater than 21 dB within two whole passbands as indicated in Fig. 10(c).

Fig. 14. Simulated and measured results of Prototype II. (a) DM responses. (b) CM responses. (c) Single-ended port responses.

As compared with Prototype I, the Prototype II balanced-to-unbalanced dual-band filtering power divider, with the increased frequency ratio as $k = 3.62$ is proposed as shown in Fig. 11. Alternatively, Prototype II is designed with two DM central frequencies of 0.76 and 2.75 GHz, two FBWs of 19% and 5.3% with 0.043-dB ripple level. Different from Prototype I, type B dual-band $J$-inverter is used herein for the condition of $k > 3$ in Prototype II. Corresponding design parameters $Z_c = 114 \, \Omega, Z_d = 434 \, \Omega, Z_1 = 78 \, \Omega, \text{ and } Z_4 = 20 \, \Omega$ are derived with $Z_3 = 40 \, \Omega$ following the design procedure. In addition, $Z_4 = 79 \, \Omega$ are properly selected for the extracted output quality factors from Fig. 12. As for the isolated resistor, it is chosen with $R = 60 \, \Omega$ herein based on the variation curves of $\text{Re}(S_{22}^c)$ and $\text{Im}(S_{22}^c)$ in Fig. 13. Practical design geometric parameters are denoted in Fig. 11 with the overall size of $0.3\lambda_g \times 0.4\lambda_g$, where $\lambda_g$ is the guided wavelength at 0.76 GHz.
Fig. 14 depicts the final results of simulation and experiment, from which two DM passbands are centered at 0.76 and 2.75 GHz with 1-dB FBWs of 22.4% and 6%. The tested insertion losses at two central frequencies are 3.8 and 4.1 dB, and the return losses are greater than 25 and 22 dB inside each passband for the DM operation. From Fig. 14(b), CM rejection levels to unbalanced ports are greatly improved to approximately 34 dB across both passbands as expected, and the conversion between DM to CM at balanced port A is better than 45 dB for both passbands. In addition, in Fig. 14(c), the unbalanced ports return losses are better than 22 dB, and the isolation is larger than 24 dB within two DM passband regions.

A detailed comparison of the proposed designs with other balanced-type filtering power dividers is provided in Table I. It can be observed from Table I that the proposed balanced-to-unbalanced filtering power dividers provide dual working passbands with controllable frequency ratio and DM bandwidth. Moreover, compared with other counterparts, both our proposals show very nice in-band performances in terms of the port-to-port isolation, the port matching, and especially the CM suppression.

IV. CONCLUSION

In this paper, a new balanced-to-unbalanced filtering power divider design with dual operation passbands has been proposed. Generalized mixed-mode S-parameters are initially derived to reveal the operation principle. Not only has the DM dual-band filtering response been illustrated with theoretical formulations but also the CM signals across dual passbands have been significantly rejected with resorting to two extra transmission zeros engendered by the added open-ended stub. In addition, nice in-band isolation and port matching are easily achieved by means of one grounded resistor. Consequently, two prototypes with different frequency ratios are presented following the design procedure, and the final results from both simulation and experiment are in good agreement with each other, well corroborating our design approach. In a nutshell, the developed dual-band balanced-to-unbalanced filtering power divider can be served as a good candidate in balanced or differential circuits and systems due to its high performance.

REFERENCES


TABLE I

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Type</th>
<th>f_i or (f_1, f_2)</th>
<th>DM Bandwidth</th>
<th>DM Insertion Loss</th>
<th>In-Band CM Suppression</th>
<th>In-Band Isolation</th>
<th>Output Port Return Loss</th>
<th>Dimension (d x l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[16]-I</td>
<td>Single-Band BTB FPD</td>
<td>2.02 GHz</td>
<td>170 MHz</td>
<td>8.4%</td>
<td>&gt;20 dB</td>
<td>&gt;20 dB</td>
<td>&gt;13 dB</td>
<td>0.87 x 0.97</td>
</tr>
<tr>
<td>[17]</td>
<td>Single-Band BTB FPD</td>
<td>2.385 GHz</td>
<td>131 MHz</td>
<td>5.5%</td>
<td>6.6 dB</td>
<td>&gt;19 dB</td>
<td>&gt;9.1 dB</td>
<td>/</td>
</tr>
<tr>
<td>[25]-II</td>
<td>Single-Band BTB FPD</td>
<td>1.88 GHz</td>
<td>95 MHz</td>
<td>5.0%</td>
<td>3.7 dB</td>
<td>&gt;21 dB</td>
<td>&gt;15 dB</td>
<td>/</td>
</tr>
<tr>
<td>[26]-I</td>
<td>Dual-Band BTB FPD</td>
<td>2.0 GHz</td>
<td>1.61 GHz</td>
<td>80.5%</td>
<td>3.4 dB</td>
<td>&gt;10 dB</td>
<td>&gt;15 dB</td>
<td>&gt;15 dB</td>
</tr>
<tr>
<td>[27]</td>
<td>Dual-Band BTB FPD</td>
<td>1.8, 2.4 GHz</td>
<td>396, 624 MHz</td>
<td>22%, 26%</td>
<td>3.2, 4.1 dB</td>
<td>&gt;30 dB</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>[28]</td>
<td>Dual-Band BTB FPD</td>
<td>2.82, 3.2 GHz</td>
<td>79, 99 MHz</td>
<td>2.8%, 3.1%</td>
<td>/</td>
<td>&gt;15 dB</td>
<td>&gt;15 dB</td>
<td>&gt;18 dB</td>
</tr>
</tbody>
</table>

BTB FPD: Balanced-to-balanced filtering power divider; BTB FPD: Balanced-to-unbalanced filtering power divider; d: Guided wavelength at the central frequency f_i or the first frequency band f_1; ABW: Absolute bandwidth; FBW: Fractional bandwidth.


