Spatial Correlations of a 3D Non-Stationary MIMO Channel Model with 3D Antenna Arrays and 3D Arbitrary Trajectories

Citation for published version:

Digital Object Identifier (DOI):
10.1109/LWC.2018.2878210

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
IEEE Wireless Communications Letters

Publisher Rights Statement:
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Spatial Correlations of a 3D Non-Stationary MIMO Channel Model with 3D Antenna Arrays and 3D Arbitrary Trajectories

Qiuming Zhu, Member, IEEE, Ying Yang, Cheng-Xiang Wang, Fellow, IEEE, Yi Tan, Jian Sun, Member, IEEE, Xiaomin Chen, Weizhi Zhong

Abstract—By considering the three dimensional (3D) antenna arrays and 3D arbitrary trajectories of a mobile station (MS), a generic non-stationary geometry-based stochastic model (GBSM) for multiple-input multiple-output (MIMO) channels is proposed. Under 3D non-isotropic Von Mises Fisher (VMF) scattering scenarios, the theoretical and approximate expressions of time-variant spatial correlation function (SCF) are also derived and analyzed. Simulation results show that the SCFs of proposed model match well with the ones of existing models for the special cases of 1D linear and 2D curve trajectories. In addition, the derived theoretical SCFs also have good agreements with simulated and measured results.

Index Terms—non-stationary MIMO channels, geometry-based stochastic model (GBSM), spatial correlation (SC), Von Mises Fisher (VMF), arbitrary trajectories.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) technologies have drawn attention for their ability to increase spectral efficiency and system capacity significantly [1]. Meanwhile, despite difficulty and high price in realization, the three dimensional (3D) antenna array is a promising solution to improve directional performance of MIMO systems. However, insufficient antenna spacing or lack of scattering would reduce these benefits due to increased spatial correlation (SC). Therefore, the exploitation of SC is vital for design, optimization, and performance evaluation of wireless MIMO communication systems. Especially, the closed-form expressions of spatial correlation functions (SCFs) are essential to derive the theoretical results of system performance [2], [3], i.e., capacity, energy efficiency, and bit error rate (BER).

Most of SCFs in the literature [3], [4] were investigated for the stationary MIMO channels with wide-sense stationarity (WSS) assumption. Measurement campaigns have proved that the WSS assumption is only valid for short time intervals and the non-stationarity should be considered [1]. Recently, a few 3D non-stationary MIMO channel models have been presented in [5]–[10]. However, the models in [5]–[8] only considered 3D scattering environments but assumed the mobile station (MS) moving with a constant velocity (or 1D linear trajectory). The authors in [9] and [10] took the velocity variations of MS into account, but they only considered 2D curve trajectories on the azimuth plane. For simplicity purpose, the MS in [5]–[10] was configured with a uniform linear array or 2D antenna array. In addition, the corresponding SCFs were usually analyzed numerically due to complex mathematical derivations. This paper aims to fill these research gaps. Overall, the major contributions and novelties of this paper are summarized as follows:

1) This paper develops a new generic 3D non-stationary geometry-based stochastic model (GBSM) for MIMO channels. The proposed GBSM allows for 3D scattering environments, 3D antenna arrays, and 3D arbitrary trajectories of the MS, which makes it more realistic and suitable for a wide variety of communication scenarios.

2) We derive the theoretical and approximate expressions of time-variant SCFs for our proposed GBSM under 3D von Mises-Fisher (VMF) scattering scenarios which are flexible and allow the dependence between azimuth angles and elevation angles.

The remainder of this paper is organized as follows. Section II gives a new generic 3D non-stationary GBSM. In Section III, the theoretical and approximate expressions of SCF for our proposed GBSM under 3D VMF scattering scenarios are derived. In Section IV, the SCFs of proposed model for three typical trajectories are simulated and validated. Finally, some conclusions are given in Section V.

II. THE GENERIC 3D NON-STATIONARY GBSM

Let us consider a non-stationary MIMO channel under 3D scattering environments between a base station (BS) equipped with S antennas and a MS equipped with U antennas. There are two coordinate systems, i.e., the BS coordinate system $\hat{x}\hat{y}\hat{z}$ and the MS coordinate system $x\hat{y}z$. In the BS coordinate system, $d_s^{\text{BS}} = [d_s^{\text{BS},x}, d_s^{\text{BS},y}, d_s^{\text{BS},z}]^T$ denotes the 3D location of BS antenna element s, while $\phi_{n,m}^{\text{BS}}(t)$ and $\theta_{n,m}^{\text{BS}}(t)$ represent the azimuth angles of departure (A AoDs) and elevation angles of departure (E AoDs) of the mth ray within the nth path,
respectively. Note that the MS coordinate origin is the center of MS and x axis is the initial movement direction of MS. The time-variant velocity vector of MS is denoted by $\mathbf{v}_{MS}(t)$. Consequently, the 3D location of MS antenna element u in the MS coordinate system should be time-variant and is denoted as $\mathbf{d}_{u,n}^{MS}(t) = \begin{bmatrix} \mathbf{d}_{u,n,x}^{MS}(t) \\ \mathbf{d}_{u,n,y}^{MS}(t) \\ \mathbf{d}_{u,n,z}^{MS}(t) \end{bmatrix}^T$. The azimuth angles of arrival (AAoAs) and the elevation angles of arrival (EAoAs) of the nth ray within the nth path are denoted by $\phi_{MS,n}(t)$ and $\theta_{MS,n}(t)$, respectively. In this paper, the twin-cluster approach in [11] is adopted. The first and last clusters denoted by A_n and Z_n, respectively, are considered having random velocities denoted as $\mathbf{v}_{A_n}(t)$ and $\mathbf{v}_{Z_n}(t)$, respectively, while ϕ_{A_n}/ϕ_{Z_n}, ϕ_{A_n}/ϕ_{Z_n}, and ϕ_{A_n}/ϕ_{Z_n} denote their amplitudes, azimuth, and elevation angles, respectively. The rest of clusters are described by several virtual links. Note that the mean angles of AAoDs and EAoDs are denoted by $\bar{\phi}_{MS}(t)$ and $\bar{\theta}_{MS}(t)$, respectively, while the mean angles of AAoAs and EAoAs are denoted by $\bar{\phi}_{n,m}(t)$ and $\bar{\theta}_{MS}(t)$.

The small-scale fading channel between the BS and MS can be expressed by an $U \times S$ complex matrix. Each element $h_{u,s}(t, \tau)$ denotes the complex channel impulse response (CIR) between the uth BS antenna and the sth MS antenna, and it can be modeled as [8]

$$h_{u,s}(t, \tau) = \sum_{n=1}^{N(t)} \sqrt{P_n(t)} \delta(t - \tau_n(t))$$

(1)

where $N(t)$ multiple paths are characterized by a path delay $\tau_n(t)$, path power $P_n(t)$, and channel coefficient $\bar{h}_{u,s,n}(t)$.

It should be mentioned that the channel parameters of (1) such as $N(t)$, $P_n(t)$, and $\tau_n(t)$ are time-invariant in WINNER+ model. Here, they are upgraded to be time-variant to capture the non-stationarity of real channels. Moreover, our previous 3D non-stationary GBSMs in [8] as well as other existing GBSMs only considered 1D or 2D trajectories and antenna arrays of the MS. In order to take 3D arbitrary trajectories and antenna arrays into account, this paper models $\bar{h}_{u,s,n}(t)$ as

$$\bar{h}_{u,s,n}(t) = \lim_{M \to \infty} \sqrt{\frac{T}{M}} \sum_{m=1}^{M} e^{j(\Phi_{n,m}(t) + \Phi_{L,n,m}(t) + \phi_{d,n,m})}$$

(2)

where M denotes the number of rays, and $\Phi_{L,n,m}(t)$ and $\phi_{d,n,m}$ is a random initial phase uniformly distributed over $[0, 2\pi]$. In (2), $\Phi_{D,n,m}(t)$ and $\Phi_{L,n,m}(t)$ denote the time-variant phases caused by Doppler frequency variations and antenna location variations, respectively, and they can be further modeled as [12]

$$\Phi_{D,n,m}(t) = \int_0^t k(T_v^{MS}(t') - T_v^{Z_n}(t')) \tilde{S}_{n,m}(t') dt'$$

(3)

and

$$\Phi_{L,n,m}(t) = k(T_v^{MS}(t) - T_v^{MS}(t)) \mathbf{R_v}(t - \mathbf{d}_{n,m}^{MS,fo} + \bar{S}_{n,m}(t)) \mathbf{d}_{S}^{BS}$$

(4)

where k is the wave number, $\mathbf{d}_{n,m}^{MS,fo}$ denotes the initial 3D location of the uth MS antenna, $\tilde{S}_{n,m}(t)$ and $\bar{S}_{n,m}(t)$ are the equivalent spherical unit vectors of the nth ray within the nth path of arrival and departure signals, respectively, and can be expressed as

$$\tilde{S}_{n,m}(t, \theta_{MS,n}(t)) = \begin{bmatrix} \cos(\theta_{MS,n}(t)) \cos(\phi_{MS,n}(t)) \\ \cos(\theta_{MS,n}(t)) \sin(\phi_{MS,n}(t)) \\ \sin(\theta_{MS,n}(t)) \end{bmatrix}$$

(5)

Note that the time-variant rotation matrix $\mathbf{R_v}(t)$ in (4) takes the effect of 3D arbitrary trajectories into account and can be calculated by

$$\mathbf{R_v}(t) = \begin{bmatrix} \cos(\phi_v(t)) \cos(\chi_v(t)) & -\sin(\chi_v(t)) & \sin(\phi_v(t)) \\ \cos(\phi_v(t)) \sin(\chi_v(t)) & \cos(\chi_v(t)) & -\sin(\phi_v(t)) \\ \sin(\phi_v(t)) & 0 & \cos(\phi_v(t)) \end{bmatrix}$$

(6)

where $\phi_v(t)$ and $\chi_v(t)$ denote the azimuth and elevation angles of $\mathbf{v}_{MS}(t)$, respectively.

III. SCFS UNDER 3D VMF SCATTERING SCENARIOS

A. Theoretical SCFs of the generic 3D non-stationary GBSM

The normalized time-variant SCF of the nth path between two different pairs of antennas can be defined as

$$p_{\tilde{u}_2,\tilde{u}_1,n}(t; \mathbf{d}) = E\left\{ \hat{h}_{\tilde{u}_1,n}(t) \hat{h}_{\tilde{u}_2,n}(t) \right\}$$

(7)

where $\hat{h}_{\tilde{u}_1,n}(t)$ and $\hat{h}_{\tilde{u}_2,n}(t)$ are considered independent, the normalized SCF can be rewritten as

$$p_{\tilde{u}_2,\tilde{u}_1,n}(t; \mathbf{d}) = p_{\tilde{u}_1,n,\tilde{u}_2,n}(t; \mathbf{d}) p_{\tilde{u}_1,n,\tilde{u}_2,n}(t; \mathbf{d})^{*}$$

(8)

where $p_{\tilde{u}_1,n,\tilde{u}_2,n}(t; \mathbf{d})$ and $p_{\tilde{u}_1,n,\tilde{u}_2,n}(t; \mathbf{d})^{*}$ denote normalized SCFs at the BS and the MS, respectively. By substituting (2)–(4) into (7), they can be calculated as

$$p_{\tilde{u}_1,n,\tilde{u}_2,n}(t; \mathbf{d}) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{j(k(\tilde{S}_{n,m}(t) - \bar{S}_{n,m}(t)))^T \mathbf{d}}$$

$$\cdot \mathbf{R_v}(t - \mathbf{d}_{n,m}^{BS,fo} + \bar{S}_{n,m}(t)) \mathbf{d}_{S}^{BS}$$

(9)

where $\mathbf{d}_{n,m}^{BS,fo} = \mathbf{d}_{n,m}^{BS} - \mathbf{d}_{n,m}^{BS}$ denotes the space lag at the BS which does not change over time, $\mathbf{d}_{n,m}^{BS}(t) = \mathbf{R_v}(t) \cdot \mathbf{d}_{n,m}^{BS,fo}$ denotes the time-variant space lag at the MS, and $\mathbf{d}_{n,m}^{BS,fo} = \mathbf{d}_{n,m}^{BS,fo} - \mathbf{d}_{n,m}^{BS,fo}$ means the initial space lag. In (9) and (10), $p_{\tilde{u}_1,n,\tilde{u}_2,n}(t; \mathbf{d})$ represents the time-variant joint probability density function (PDF) of random angles, i.e., AAoDs $\phi_{BS,n}(t)$ and EAoDs $\theta_{BS,n}(t)$, or AAoAs $\phi_{MS,n}(t)$ and EAoAs $\theta_{MS,n}(t)$.

B. Approximate expressions of SCFs

For several standard channel models, e.g., WINNER+ model and 3GPP-3D model, the azimuth and elevation angles of AoAs and AoDs are supposed to be independent and obey Gaussian and Laplacian distributions, respectively. However, the authors in [4] demonstrated that they are related under some scenarios and the flexible VMF distribution can fit measurement data better. The PDF of VMF distribution is defined as

$$p(\phi, \theta) = \frac{\kappa}{4\pi \sinh(\nu)} \cos(\phi \cos(\theta - \bar{\phi}) + \sin(\phi \sin(\theta - \bar{\phi}))$$

(11)

where $-\pi \leq \phi \leq \pi$, $-\pi/2 \leq \theta \leq \pi/2$, $\bar{\phi}$ and $\bar{\theta}$ represent the mean values of azimuth and elevation angles, respectively, and κ controls the concentration of VMF distribution.
By substituting (11) into (9) and (10), the theoretical SCFs at the BS and MS under VMF scattering scenarios can be obtained. However, it is difficult to derive the accurate closed-form expressions of SCFs. In this paper, we will derive the corresponding approximate expressions, which are very helpful to investigate the impact of 3D arbitrary trajectories on the SCFs. Let us take \(\rho_{u_1,u_2,n}(t;\Delta d^{\text{MS}}) \) as an example. By setting \(\theta_n^{\text{MS}}(t) = \bar{\theta}_n^{\text{MS}}(t) + \zeta \) and \(\phi_n^{\text{MS}}(t) = \bar{\phi}_n^{\text{MS}}(t) + \upsilon \) and substituting them into (10), it yields

\[
\rho_{u_1,u_2,n}(t;\Delta d^{\text{MS}}) = \int \frac{A^{\text{MS}}(\zeta,\upsilon)}{4\pi \sin(\zeta)} d\zeta d\upsilon
\]

where

\[
A^{\text{MS}} = e^{\kappa (\cos(\bar{\theta}_n^{\text{MS}}(t)+\zeta)\cos(\bar{\phi}_n^{\text{MS}}(t))\cos(\upsilon)+\sin(\bar{\phi}_n^{\text{MS}}(t)+\zeta))\sin(\bar{\theta}_n^{\text{MS}}(t))}
\]

\[
B^{\text{MS}} = e^{\kappa(\bar{\theta}_n^{\text{MS}}(t)+\upsilon,\bar{\phi}_n^{\text{MS}}(t)+\zeta)R_v(t)\Delta d^{\text{MS},t_0}}
\]

Finally, combining (8) and (14)-(17), the approximate SCF of the proposed generic 3D non-stationary GBSM can be obtained.

IV. SIMULATION RESULTS AND ANALYSIS

In the simulation, the time-variant speed and direction models in [13] are adopted, i.e., \(v(t) = v_0 + a \cdot t, \phi_V(t) = \phi_0 + \omega_\phi \cdot t, \) and \(\theta_V(t) = \theta_0 + \omega_\theta \cdot t, \) where \(v_0 \) is the initial speed, \(a \) is the acceleration of speed, \(\phi_0 \) and \(\theta_0 \) are the initial azimuth and elevation of movement, respectively, \(\omega_\phi \) and \(\omega_\theta \) are the corresponding angular speeds. To verify the effectiveness of proposed generic GBSM and the derived theoretical SCF, three kinds of trajectories with the same start point and end point, i.e., 1D linear trajectory, 2D curve trajectory, and 3D arbitrary trajectory, were selected and rest simulation parameters are summarized in Table I. Note that our proposed model is suitable for all three paths, while the models in [8]–[10] chosen to compare only support Path I or Path II as shown in Table I.

According to the definition of (9) and (10), the absolute values of theoretical SCFs of our generic 3D non-stationary GBSM for Paths I–III at \(t = 4 \) s are shown in Fig. 1. For comparison purpose, the SCFs of 3D non-stationary GBSMs in [8]–[10] for Path I or Path II at \(t = 4 \) s are also given. It can be observed that the SCFs of our model agree well with the one in [8] for Path I, and the ones in [9] and [10] for Path II, which means the proposed generic GBSM is compatible with existing ones under 1D and 2D trajectories. In addition, it also shows that different trajectories have a great impact on the correlation properties of channel models.

The theoretical results of SCFs at \(t = 0 \) s, 4 s, and 8 s of proposed GBSM for path III are compared with the simulated and approximate results in Fig. 2. It clearly shows that SCFs change over time due to the movement of the MS. Meanwhile, the measurement results in [14] are also shown in Fig. 2. The good agreement between measured, theoretical, approximate, and simulated SCFs shows the correctness of both the proposed model and theoretical derivations.

V. CONCLUSIONS

We have proposed a generic 3D non-stationary GBSM incorporating 3D arbitrary trajectories and 3D antenna arrays of the MS in this paper. The proposed model is compatible with the existing 3D non-stationary GBSMs for 1D and 2D trajectories. In addition, the corresponding theoretical and approximate expressions of SCFs under VMF scattering

| PARAMETERS OF THREE DIFFERENT TRAJECTORIES. |
|-------------------|------|------|------|------|------|
| Path | Valid | \(v_0 \) (m/s) | \(a \) (m/s²) | \(\phi_0 \) (°) | \(\omega_\phi \) (°/s) | \(\theta_0 \) (°) | \(\omega_\theta \) (°/s) |
| 1D(Linear) | ① ② ③ | 10 | 0 | 0 | 0 | 0 | 0 |
| 2D(Curve) | ② ③ | 10 | 0.065 | 5π/36 | 0 | 0 | 0 |
| 3D(ARBITRARY) | ③ | 10 | 0.045 | π/12 | 0 | 0 | 0 |

① the models in [5]–[8], ② the models in [9], [10], ③ the proposed model
scenarios have also been derived and verified by simulations and measurements. These results can significantly improve the efficiency of analyzing the SC and performance of MIMO communication systems. In the future, we will further analyze other time-varying statistical properties of this proposed GBSM, i.e., the autocorrelation function (ACF) and Doppler power spectrum density (DPSD), and investigate the impact of different trajectories on the system performance.

ACKNOWLEDGMENT

This work was supported by the EU H2020 ITN 5G Wireless project (Grant No. 641985), EU H2020 RISE TESTBED project (Grant No. 734325), EPSRC TOUCAN project (Grant No. EP/L020009/1), National Key Scientific Instrument and Equipment Development Project (Grant No. 2013YQ200607), NSF of China (Grant No. 61631020 and No. 61827801), Open Foundation for Graduate Innovation of NUAA (Grant No. KJJ20170405), and Taishan Scholar Program of Shandong Province.

REFERENCES