Auto-Tandem Catalysis: PdII-Catalysed Dehydrogenation/Oxidative Heck Reaction of Cyclopentane-1,3-diones

Citation for published version:

Digital Object Identifier (DOI):
10.1002/chem.201704442

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Chemistry - A European Journal

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Synthetic Methods

Auto-Tandem Catalysis: PdII-Catalysed Dehydrogenation/Oxidative Heck Reaction of Cyclopentane-1,3-diones

Claire J. C. Lamb, Bryan G. Nderitu, Gemma McMurdo, John M. Tobin, Filipe Vilela,* and Ai-Lan Lee*[a]

Abstract: A PdII catalyst system has been used to successfully catalyse two mechanistically distinct reactions in a one-pot procedure: dehydrogenation of 2,2-disubstituted cyclopentane-1,3-diones and the subsequent oxidative Heck coupling. This auto-tandem catalytic reaction is applicable to both batch and continuous flow processes, with the latter being the first example of a tandem aerobic dehydrogenation/oxidative Heck in flow. In addition, a telescoped reaction involving enantioselective desymmetrisation of the all-carbon quaternary centre was successfully achieved.

Introduction

Efficient methods to synthesise the 2,2-disubstituted cyclopentene-1,3-dione core is widely sought after, as this motif is present in several biologically active compounds[1] and natural products such as madindolines A and B,[2] ochroleucin A\textsubscript{3}, and similin A\textsubscript{4} as well as metabolites such as involutone[5] and preussidone[6] (e.g. Figure 1). Towards this end, we have recently developed a PdII catalysed oxidative Heck[7,8] strategy to desymmetrise the achiral precursor 1, thereby providing an expedient way of enantioselectively desymmetrising the all-carbon quaternary centre[9] (1→2, Scheme 1 A).[10,11] Alternative approaches include elegant organocatalytic methods by Mukherjee and Enders,[12] Cu- or Rh-catalysed conjugate additions to 1 by Mikami[13] and Hayashi[14] respectively, and silver-catalysed desymmetrisations by Singh and Wang.[15]

Figure 1. Examples of natural products containing the 2,2-disubstituted cyclopentene-1,3-dione core.

![Figure 1](image-url)
Stahl's conditions are very different to the oxidative Heck conditions in Scheme 1A, and has only been applied to ketones such as 5/6 rather than 1,4-diketone motifs (e.g., 4), we were intrigued by the possibility of utilising the same PdII catalyst to carry out both the dehydrogenation of 4\texttextsuperscript{1}1 and the oxidative Heck coupling 1\texttextsuperscript{1}2 in a one-pot reaction (Scheme 1 D). Such an auto-tandem catalytic reaction[19] if successful, will clearly maximise the efficiency of the desymmetrisation strategy towards 1: by reducing the number of discrete steps, maximising the efficiency of the PdII catalyst by enabling it to catalyse two mechanistically distinct reactions, and avoiding the use of stoichiometric copper salts and thereby its corresponding stoichiometric halogenated waste.

In related work, Kim and co-workers recently demonstrated a PdII-catalysed one-pot procedure towards flavones from chromanones 6\texttextsuperscript{a},[20] and Hong and co-workers synthesised functionalised cyclic enaminoes and enolones from dihydroquinolinones 6\texttextsuperscript{b} and chromanones 6\texttextsuperscript{a}, respectively[21, 22] Nevertheless, we envisioned that the one-pot process 4\texttextsuperscript{1}2 that we have set out to develop would be challenging: while the one-pot procedures mentioned above[18, 21] utilise dehydrogenation 6\texttextsuperscript{1}8 previously demonstrated by Stahl[17] the PdII-catalysed aerobic dehydrogenation of molecules with 1,4-diketone motifs such as 4 is unprecedented. Furthermore, the one-pot PdII-catalysed dehydrogenation/oxidative Heck process 4\texttextsuperscript{1}2 has the potential to be rendered enantioselective, which is once again unprecedented.

We herein disclose the successful development of the one-pot dehydrogenation/oxidative Heck reaction of 2,2-disubstituted cyclopentane-1,3-diones 4 and its corresponding substrate scope. Furthermore, the methodology can be successfully adapted for use in a continuous flow reactor, which constitutes the first example of an auto tandem catalytic aerobic dehydrogenation/oxidative Heck in flow. Finally, we demonstrate that the reaction can also be adapted for the enantioselective desymmetrisation of the all-carbon quaternary centre in 4, through a telescoped reaction.

Results and Discussion

We initiated our studies by investigating the PdII-catalysed aerobic dehydrogenation of 4\texttextsuperscript{1}1, since this reaction has not previously been studied and would therefore require separate optimisation before the one-pot procedure 4\texttextsuperscript{1}2 could be attempted. Rather than Stahl's original conditions ([DMSO]_2Pd(TFA)2 in AcOH (TFA = trifluoroacetate), Scheme 1 C), we chose to investigate the use of 1,10-phenanthroline as ligand (entries 4–5).

In principle, the oxidative Heck process 4\texttextsuperscript{1}2 as ligand (entries 4–5).

Increasing the reaction temperature to 120 °C provided a decent conversion of 72% in 72 h (entry 4). Finally, increasing the catalyst and ligand loading to 10 mol% at 120 °C resulted in full conversion within 48 h, and an 85% isolated yield of 1 (entry 5).

With these optimised conditions in hand for the first oxidation step 4\texttextsuperscript{1}1, we proceeded to investigate the one-pot procedure by carrying out the oxidation reaction at 120 °C for approximately 30 h, followed by addition of aryloboroxine 3a (prepared by dehydrating the corresponding arylboronic acid), and allowing the oxidative Heck reaction to proceed at 70 °C (this is the optimal temperature for the separate oxidative Heck step[16] for 43–93 h (Scheme 2). Following extensive optimisation (see Supporting Information), the oxidative Heck product 2a was successfully formed in up to 60% yield. Frustratingly, however, the one-pot procedure under these conditions produced very inconsistent results, with yields ranging from 23–60% (see Supporting Information).

Whenever the yield of desired product 2aa was lower than expected, unreacted starting material 4a and intermediate 1a was usually present in varying amounts (see Supporting Information). At this point, we therefore surmised that the first conditions (entry 2). Pleasingly, dmphen 12 turned out to be a good ligand for this oxidation step (entry 3), however, its use as a ligand in the subsequent oxidative Heck step 1\texttextsuperscript{1}2 results in poor conversion. Ligand 12 is therefore unsuitable for the one-pot reaction despite being the best ligand for dehydrogenation 4\texttextsuperscript{1}1. We therefore proceeded to optimise the oxidation step using 1,10-phenanthroline 10 as ligand (entries 4–5).

Increasing the reaction temperature to 120 °C provided a decent conversion of 72% in 72 h (entry 4). Finally, increasing the catalyst and ligand loading to 10 mol% at 120 °C resulted in full conversion within 48 h, and an 85% isolated yield of 1 (entry 5).

With these optimised conditions in hand for the first oxidation step 4\texttextsuperscript{1}1, we proceeded to investigate the one-pot procedure by carrying out the oxidation reaction at 120 °C for approximately 30 h, followed by addition of aryloboroxine 3a (prepared by dehydrating the corresponding arylboronic acid), and allowing the oxidative Heck reaction to proceed at 70 °C (this is the optimal temperature for the separate oxidative Heck step[16] for 43–93 h (Scheme 2). Following extensive optimisation (see Supporting Information), the oxidative Heck product 2a was successfully formed in up to 60% yield. Frustratingly, however, the one-pot procedure under these conditions produced very inconsistent results, with yields ranging from 23–60% (see Supporting Information).

Whenever the yield of desired product 2aa was lower than expected, unreacted starting material 4a and intermediate 1a was usually present in varying amounts (see Supporting Information). At this point, we therefore surmised that the first

Table 1. Selected optimisation of the PdII-catalysed aerobic dehydrogenation step.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Temp [°C]</th>
<th>Time [h]</th>
<th>Conv. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>100</td>
<td>72</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>100</td>
<td>72</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>100</td>
<td>72</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>100</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>100</td>
<td>48</td>
<td>100 (85)</td>
</tr>
</tbody>
</table>

[a] Anhydrous conditions used. [b] Conversions by 1H NMR analysis. [c] Isolated yield.
oxidation step 4a to 1a was the cause of the inconsistent results. If the conversion of 4a to 1a is incomplete before the addition of 3a and cooling of the reaction to 70 °C, then no further oxidation of 4a to 1a can take place at the lower temperature. Fortunately, a quick investigation of the oxidative Heck step showed that the reaction is equally effective at higher temperatures of 100 or 120 °C. Therefore, we proceeded to re-investigate the full one-pot reaction at 120 °C, in the hope that the first oxidation step will be less inconsistent at this higher temperature (Table 3). Unfortunately, this still did not lead to higher yields of desired 2a.

Another possible reason for the inconsistent oxidation step 4a to 1a was thought to be the stability of the active PdII catalyst under anhydrous conditions.

With much more consistent oxidation conditions in hand, the one-pot procedure was investigated once again using the increased ligand loading (Table 4). While the oxidation of 4a to 1a was now consistently proceeding to completion (as evidenced by the absence of recovered starting material 4a), the oxidative Heck reaction 4a to 2a now proved problematic. Although the oxidative Heck reaction goes to completion when carried out as a separate step, it struggles to go to completion under superficially similar conditions in the one-pot reaction. Various attempts at portion-wise addition of boroxine at a range of temperatures failed to improve the yield of 2aa (Entries 1–4, Table 4). Significant amounts of side products resulting from the boroxine 9, such as homocoupling and phenol formation, is usually observed in the one-pot procedure. Stahl proposes that the first PdII-catalysed aerobic dehydrogenation produces hydrogen peroxide as the by-product, and it is therefore likely that the presence of peroxide is facilitating the unwanted side-product formation in the one-pot reaction.

In order to overcome this problem, the boron coupling partner was changed from arylboroxine 3a to the less reactive arylboronic esters ArBpin 9a. Pleasingly, this modification finally provided consistent and reproducible results (Scheme 4A). The desired product 2ab can now be formed from 4a in a one-pot procedure and consistent 65–67% yields over the two steps (increases to 72% under non-anhydrous conditions, see later).

Table 2. Effect of temperature on the oxidative Heck reaction.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>48</td>
<td>100</td>
<td>n.d.</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>30</td>
<td>100</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>24</td>
<td>95</td>
<td>75</td>
</tr>
</tbody>
</table>

[a] Anhydrous conditions used. [b] Determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as internal standard.

Table 3. Increasing temperature of the second step does not improve yield.

<table>
<thead>
<tr>
<th>Entry[a]</th>
<th>Temp [°C]</th>
<th>2aa [%][b]</th>
<th>1a [%][b]</th>
<th>4a [%][b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>44</td>
<td>–</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>44</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

[a] Anhydrous conditions used. [b] Determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as internal standard.

Table 4. One-pot reaction with increased ligand loading.

<table>
<thead>
<tr>
<th>Entry[a]</th>
<th>T [°C]</th>
<th>t1 + t2 [h]</th>
<th>y [equiv]</th>
<th>2aa [%][b]</th>
<th>1a [%][b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>29 + 46</td>
<td>2 + 1.5</td>
<td>41</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>22 + 73</td>
<td>2 + 1.5</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>17 + 69</td>
<td>2 + 1.5</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>20 + 68</td>
<td>2 + 1.5</td>
<td>28</td>
<td>40</td>
</tr>
</tbody>
</table>

[a] Anhydrous conditions used. [b] Determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as internal standard.

Scheme 3. Increasing ligand-Pd ratio significantly improves reproducibility of oxidation step.

Scheme 4. Optimised one-pot dehydrogenation/oxidative Heck reaction.
Another advantage of using ArBpin 9 is that it allows for a more practical procedure, as it can be added to the reaction from the outset. This is in contrast to aryloboroxine 3, which had to be added only after oxidation of 4 to 1 was complete; yields were otherwise low due to more side-product formation from the aryloboroxine 3.

With reproducible and optimal one-pot conditions in hand, we set out to investigate the substrate scope of the reaction. Firstly, the aryl pinacol boronic ester scope 9 was investigated using model dione substrate 4a (Table 5). Unfortunately, the optimal conditions for PhBpin 9b shown in Scheme 4A proved not to be general, and much lower yields were frustratingly observed when 9a and 9c were used (43 and 34% of 2aa and 2ac, respectively, Table 5). Increasing the catalyst and ligand loading to 15 and 30 mol % led to no significant improvement (45% and 35% of 2aa and 2ac, respectively).

At this point, our reasoning for this setback was that aryl pinacol boronic esters 9 are a less reactive coupling source than our original aryloboroxine or arylboronic acid coupling partners.[23–24] Under strictly anhydrous conditions, it was thought that the aryl pinacol boronic esters 9 struggle to transmetallate in the absence of base, thereby resulting in low yields of 2aa and 2ac. This prompted us to attempt the reaction under “wet conditions”. Non-anhydrous solvent and non-dried glassware used (“wet conditions”). Isolated yields.

Results in Table 5 demonstrate that the one-pot reaction works well for Ph- and naphthyl–pinacol boronic esters (72% 2ab and 61% 2ad), Para- and meta-substitution are tolerated well (70% 2ae and 68% 2af), but a drop in yield to 44% is observed for the ortho-substituted tolyl 2ag, presumably due to steric factors. Both electron-donating (2ae–ag, 2a j, 2al) and electron-withdrawing (2a c, 2ah–ai, 2ak) substituents are tolerated. For a selection of these pinacol boronic esters, however, the yields were fairly moderate using the standard conditions A (e.g. 2ac 32%). The use of a higher catalyst loading (15 mol %, conditions B) significantly improved the yields (e.g. 2ac 68%) and conditions B were thus adopted for the less reactive coupling partners. Although this is admittedly a relatively high catalyst loading, the fact that it is used to carry out two distinct reactions in one-pot still renders the reaction more efficient than the separate two-step procedure, which would require 10 mol % of Pd(OAc)2 catalyst in each distinct step to go to completion under a similar timescale.

Finally, carbonyl containing substituents on the aryl ring results in low to moderate yields (47% 2al and 18% 2am) regardless of catalyst loading. Interestingly, these functional groups were tolerated well under the separate oxidative Heck conditions.[10] These results imply that the amide and ester functionality is sensitive to the first dehydrogenation step, rather than the oxidative Heck coupling itself. Once again, it is possible that the hydrogen peroxide generated in the first step[17] may be responsible for the lower yields of 2al and 2am.

Table 5. Aryl pinacol boronic ester scope in the one-pot reaction.

<table>
<thead>
<tr>
<th>Conditions A:</th>
<th>Conditions B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(OAc)2 (10 mol%)</td>
<td>Pd(OAc)2 (15 mol%)</td>
</tr>
<tr>
<td>O2, DMF, 120 °C, 72 h</td>
<td>O2, DMF, 120 °C, 72 h</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>9</td>
</tr>
<tr>
<td>9b</td>
<td>2h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions A:</th>
<th>Conditions B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(OAc)2 (10 mol%)</td>
<td>Pd(OAc)2 (15 mol%)</td>
</tr>
<tr>
<td>O2, DMF, 120 °C, 72 h</td>
<td>O2, DMF, 120 °C, 72 h</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>9h</td>
</tr>
<tr>
<td>9b</td>
<td>2h</td>
</tr>
</tbody>
</table>

[a] Non-anhydrous solvent and non-dried glassware used ("wet conditions"). Isolated yields.

[b] Extra Pd(OAc)2 (5 mol%) added after 72 h and reaction left for a further 20 h. [c] Determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as internal standard.
Next, the 2,2-disubstituted cyclopentane-1,3-dione (4) scope was investigated using aryl pinacol boronic esters 9h as the model coupling partner (Table 6). Replacing the Ph ring in 4a with a bulkier naphthyl ring in 4b still produced the desired product 2bh in a good 79% yield. Replacing the benzyl substituent in 4a with aromatic rings (4c–e) is also tolerated, with 2ch, 2dh and 2eh formed in 75%, 77% and 71% yields, respectively. An aryl/benzyl substituent on the cyclopentane-1,3-dione 4 is not necessary for good reactivity, as demonstrated by the formation of 2fh in a good 80% yield. An ester group is tolerated (2gh, 67%) as is the benzyl protected alcohol (2hh, 54%). Finally, the spirocyclic 4i reacted smoothly to form 2ih in 68% yield.

Following the successful development of the one-pot procedure in batch, we proceeded to investigate the reaction under continuous flow. Continuous flow chemistry is an attractive alternative to traditional batch chemistry as it allows for strict regulation of specific parameters (i.e. temperature, pressure, flow rate) to control reactions which are otherwise too reactive, exothermic or hazardous for conventional use.\[27\] The increased surface to volume ratio is especially useful for facilitating scale-up of gas-liquid reactions where a segmented flow can be beneficial for improving interface mixing.\[27a\] In our case, it should allow for more efficient \(\text{O}_2 \) facilitated catalyst turnover. Furthermore, the scaled-up reaction can be carried out more safely and practically under flow conditions compared to batch, especially when a flammable gaseous reagent such as oxygen is employed.\[28\] We therefore sought to demonstrate this by carrying out the first auto-tandem catalytic dehydrogenation/oxidative Heck under flow conditions.\[29\]

The continuous flow reaction was initially investigated on 0.15 mmol of substrate 4 before it was scaled up to 1.0 mmol of substrate (Scheme 5). Initial optimisation was carried out by varying the flow rate of both the reaction mixture (pump A) and oxygen (pump B, see Supporting Information). A flow rate of 0.4 mL min\(^{-1}\) and a reactor temperature of 120 °C was found to be optimal for achieving full conversion to product 2ah in 3 days. Pleasingly, scaling the reaction up to 1.0 mmol under the same conditions also results in full conversion, furnishing 2ah in 55% yield after 3 days.

Finally, we aimed to extend the one-pot procedure to the enantioselective version (Scheme 6). Buc-PyOx ligand 13 was previously used to successfully desymmetrise 1e via oxidative Heck coupling to produce 2ea in 90:10 e.r.\[10\] We therefore initiated our studies by investigating whether the less reactive Pd(OAc)\(_2\)/ligand 13 catalyst combination could oxidise 1e → 4e. The oxidation did indeed proceed to completion at 120 °C, but required 72 h using 13 as ligand (see Supporting Information) compared to 18 h using phenanthroline 10 as ligand (Scheme 3). Nevertheless, this was deemed promising enough to employ in the full on-pot procedure (Scheme 6).

In addition to the longer reaction times, a few further modifications were required compared to the racemic procedure. Primarily, the second oxidative Heck step needs to be carried out at a lower temperature of 50 °C for optimal enantioselectivity, whereas the first dehydrogenation step requires 120 °C to proceed. Secondly, in contrast to the phenanthroline 10 ligand system used in the racemic protocol (Tables 5 and 6), switching to PyOx ligand 13 results in noticeable Pd-black formation after dehydrogenation.\(^{(i)} \) Therefore, a second portion of Pd/ligand 13 was added together with the coupling partner 3a during the one-pot procedure (Scheme 6A). Thirdly, the less ligating solvent dimethylacetamide (DMA) was used in order to avoid issues with competitive ligation from DMF.\[26,31\]

Although the one-pot reaction proceeded to a satisfactory yield of 60%, the enantioselectivity was moderate at 74:26 e.r. (vs. 90:10 e.r. when the oxidative Heck step is carried out separately).\[10\] The moderate enantioselectivity was attributed to the presence of unligated Pd formed during the aerobic dehydrogenation step in the one-pot reaction. As a result, we proceeded to investigate the telescoped reaction instead, whereby the reaction mixture is filtered through a short plug of silica to remove any unligated Pd prior to addition of the coupling partner 3a (Scheme 6B). To our delight, the telescoped reaction provided a good 70% yield of 2ea over two steps, in 88:12 e.r., which is comparable to the 90:10 e.r. achieved in the separate oxidative Heck procedure.\[10\]

Conclusion

In conclusion, a Pd\(^{II}\) catalyst system has been used to successfully and efficiently catalyse two mechanistically distinct reactions: dehydrogenation of 2,2-disubstituted cyclopentane-1,3-dione.
diones (4–1) and the subsequent oxidative Heck coupling (1–2) in a one-pot procedure. Such auto-tandem catalytic reactions maximise efficiency and cut down on time, cost and waste. The development of the optimal one-pot conditions was initially a challenging prospect, as the optimal conditions for the dehydrogenation step was not suitable for the oxidative Heck step and vice versa. Initial optimisation studies were dogged with reproducibility issues, which was thought to derive from partial decomposition of the active Pd²⁺ catalyst. This problem was solved by increasing the ligand loading (vs. Pd). Secondly, the use of arylboroxine as a coupling partner was no longer optimal in the one-pot protocol as it was susceptible to side-product formation, thought to be facilitated by hydrogen peroxide formation from the aerobic oxidation step. Changing from arylboroxine 3 to the less reactive ArδP 9 coupling partner solved these issues and allowed for consistent and reproducible one-pot dehydrogenation/oxidative Heck reactions.

The first example of a continuous flow auto-tandem catalytic dehydrogenation followed by oxidative Heck coupling was successfully demonstrated. Finally, the one-pot vs. telescoped dehydrogenation/enantioselective oxidative Heck was investigated using chiral PyOx ligand 13. The one-pot reaction provided moderate 74:26 e.r. of 2ea while the telescoped reaction successfully achieved a comparable e.r. to the separate oxidative Heck protocol (88:12 e.r. vs. 90:10 e.r.), in a good 70% yield over two steps.

Experimental Section

Representative batch procedure

A solution of 2-benzyl-2-methylcyclopentane-1,3-dione 4a (20.3 mg, 0.100 mmol, 1.0 equiv), 1,10-phenanthroline 10 (3.6 mg, 20.0 µmol, 0.2 equiv), Pd(OAc)₂ (2.2 mg, 9.8 µmol, 0.1 equiv) and 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane 9a (60.4 mg, 0.296 mmol, 3.0 equiv) in DMF (1 mL) was allowed to stir at room temperature for 20 minutes before being heated to 120 °C under an O₂ atmosphere (balloon) for 71 h. Upon completion of the reaction, 21 Et₂O:EtOAc (30 mL) was added and the resulting mixture washed with H₂O (2×10 mL) and brine (10 mL). The combined organic layers were dried over MgSO₄ and solvent was removed under reduced pressure. The resulting crude product was purified by silica gel column chromatography (25:1–20:1 petroleum ether:EtOAc) to yield 2-benzyl-2-methyl-4-phenylcyclopent-4-ene-1,3-dione 2aa (19.8 mg, 0.072 mmol, 72%) as a yellow crystalline solid.

Full experimental procedures, characterisation for all new compounds and copies of ¹H and ¹³C NMR spectra are provided in the Supporting Information.

Acknowledgements

We would like to thank the Engineering and Physical Sciences Research Council and CRITICAT Centre for Doctoral Training for financial support (Ph.D. studentship to CJCL; Grant code: EP/L016419/1) and Heriot-Watt University for ICS Undergraduate Bursary (GMcM). Mass spectrometry data was acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University. Vapourtec is acknowledged for their technical support.

Conflict of interest

The authors declare no conflict of interest.

Keywords: aerobic oxidation · auto-tandem catalysis · one-pot synthesis · oxidative Heck · palladium

For oxidative Heck followed by dehydrogenation of cyclohexenones to form meta-substituted phenols, see ref. [18b]; in continuous flow, but not the auto-tandem catalytic dehydrogenation/oxidative Heck. For aerobic dehydrogenation in flow, see ref. [17]. For oxidative Heck in continuous flow, see: L. R. Odell, J. Lindh, T. Gustafsson, M. Larhed, Eur. J. Org. Chem. 2010, 2270–2274. See also ref. [22b] for a related reverse sequence.

Under the less reactive PyOx/Pd(OAc) 2 catalyst system used for the enantioselective reaction, the less reactive arylpinacol boronic ester coupling partners 9 no longer couple efficiently. Therefore, the more reactive coupling parter arylboroxine 3 is used.
One-pot auto-tandem catalysis: batch and continuous flow

A PdII catalyst system has been used to successfully catalyse two mechanistically distinct reactions: dehydrogenation of cyclopentane-1,3-diones and the subsequent oxidative Heck coupling in a one-pot procedure. This auto-tandem catalytic reaction is applicable to both batch and continuous flow processes. In addition, a telescoped reaction involving enantioselective desymmetrisation of the all-C quaternary centre was successfully achieved.