Evidence for hard and soft substructures in thermoelectric SnSe

Digital Object Identifier (DOI): 10.1063/1.4986512

Link: Link to publication record in Heriot-Watt Research Portal

Document Version: Publisher's PDF, also known as Version of record

Published In: Applied Physics Letters

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Evidence for hard and soft substructures in thermoelectric SnSe

S. R. Popuri,1 M. Pollet,2,3 R. Decourt,2,3 M. L. Viciu,4 and J. W. G. Bos1,a)
1Institute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
2CNRS, ICMB, UPR 9048, Pessac F-33600, France
3University of Bordeaux, UPR 9048, Pessac F-33600, France
4Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich CH 8093, Switzerland

(Received 30 March 2017; accepted 2 June 2017; published online 21 June 2017)

SnSe is a topical thermoelectric material with a low thermal conductivity which is linked to its unique crystal structure. We use low-temperature heat capacity measurements to demonstrate the presence of two characteristic vibrational energy scales in SnSe with Debye temperatures $\theta_{D1} = 345(9)$ K and $\theta_{D2} = 154(2)$ K. These hard and soft substructures are quantitatively linked to the strong and weak Sn-Se bonds in the crystal structure. The heat capacity model predicts the temperature evolution of the unit cell volume, confirming that this two-substructure model captures the basic thermal properties. Comparison with phonon calculations reveals that the soft substructure is associated with the low energy phonon modes that are responsible for the thermal transport. This suggests that searching for materials containing highly divergent bond distances should be a fruitful route for discovering low thermal conductivity materials. © 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license [http://creativecommons.org/licenses/by/4.0/]. [http://dx.doi.org/10.1063/1.4986512]
shown in Fig. 1(b). The U_{iso} values are large, in particular, for Sn, which is typical for lone-pair containing rocksalt-based thermoelectrics.26 The U_{iso}'s tend toward zero at low temperatures, demonstrating that the structure does not contain significant static disorder.

In order to obtain an estimate of the characteristic energy scales of the atomic motions the U_{iso}'s for Sn and Se were fitted below 800 K using29,30

$$U_{\text{iso}} = \frac{3\hbar^2}{m k_B \theta_D} \left[\frac{1}{4} + \left(\frac{T}{\theta_D} \right)^2 \int_0^{\theta_D/T} \frac{x}{e^x - 1} \, dx \right] + \sigma^2. \quad (1)$$

Here, \hbar is the reduced Planck constant, k_B is Boltzmann’s constant, θ_D is the Debye temperature, and σ^2 is the displacement correlation function. In both cases, $\sigma^2 = 0$, confirming the absence of significant static structural disorder. The fitted θ_D values are 140(2) K for Sn and 195(3) K for Se, and the fits are shown as solid lines in Fig. 1. The 40% larger value for Se is in line with expected trends based on the atomic mass and bond strength. The U_{iso}(T) show considerable non-linearity in the Pnma phase. This is particularly evident for Sn and reflects the highly anharmonic bonding in this material.

The temperature dependence of the heat capacity (C_p) is given in Fig. 2(a) and is characterised by a linear increase beyond the Dulong-Petit value of $3R$/atom, consistent with the high-temperature data in the literature.7,9,19,23 A plot of C_p/T versus T^2 reveals that there is no electronic contribution to the heat capacity at low-temperature, which is in keeping with the semiconducting nature of SnSe [Fig. 2(b)]. A plot of C_p/T^3 versus T reveals an additional low-temperature contribution, which could arise from the contribution of either an Einstein mode or a Schottky anomaly to the specific heat [Fig. 2(c)].

Several models using combinations of Debye and Einstein (or Schottky) modes were tried. The most satisfactory fit was obtained using two Debye terms for the acoustic phonon bath, a low-temperature Schottky contribution to model the peak visible on the C_p/T^3 versus T curve and a lattice dilation term31 to account for the linear increase at a high temperature

$$C_p = \sum_{i=1}^{2} \left[\frac{9n_i R}{\theta_D} \left(\frac{T}{\theta_D} \right)^3 \int_0^{\theta_D/T} \frac{x^4 e^x}{(e^x - 1)^2} \, dx \right]
+ \frac{g}{1 + ge^{-\Delta/T}} + 9Bv\xi^2T. \quad (2)$$

Here, n_i is the number of oscillators for each Debye term, R is the gas constant, θ_D are Debye temperatures, Δ is the energy gap for a two-level Schottky system, g is the ratio of the degeneracies of the lower level to the upper level, $B = 31$ GPa is the isothermal bulk modulus,32 v is the volume
per atom, and α is the thermal expansion coefficient. The thermal expansion coefficient was derived from the temperature evolution of the cell volume as

$$\alpha = (1/V)(dV/dT)\rho.$$

The cell volume was fitted simultaneously (Fig. 3) using the following expression, which was adapted from Hayward et al.33 to include two Debye terms:

$$V = V_0 + a \sum_{i=1}^{2} \int_{0}^{T} 9n_iR\left(\frac{T}{\theta_i}\right)^3 T_{0i}e^{x}\frac{x^4e^{x}}{(e^{x} - 1)^2}dx. \quad (3)$$

The fitted values are $n_1 = 0.96(4)$, $n_2 = 1.04(4)$, $\theta_{D1} = 345(9)$ K, $\theta_{D2} = 154(2)$ K, $g = 0.38(2)$, $\Delta = 64(1)$ K, and $V_0 = 210.32$ Å3, $a = 1.8 \times 10^{-4}$. The model for C_p takes into account all important features of the data including the low temperature peak and the linear increase at a higher temperature (Fig. 2). The $V(T)$ data are fitted well below 600 K, while the experimental volume expands more rapidly at elevated temperatures. The fitted values are $D_2 = 154(2)$ K do not directly map onto the values obtained for Sn and Se from $U_{iso}(T)$. This suggests that different structural fragments are responsible for the different vibrational energy scales observed here. The Pbnm low-temperature structure has three strong and three weak bonds with bond distances of ~ 2.8 Å and ~ 3.4 Å at 300 K. The Debye temperature (highest phonon frequency) $\theta_D \propto \sqrt{nk/m}$, where n is the number density, k is the bond strength, and m is the reduced mass of the oscillator. From the C_p fitting, the number densities of both oscillators are equal and assuming a similar reduced mass, the ratio of the fitted θ_D values is proportional to the square root of the bond strengths. We can approximate the bond strength using bond valence sums (BVS), which are directly calculated from the Sn-Se bond distances. The BVS ratio of 3.5 at 300 K, which is in good agreement with calculated values between 2 and 4 depending on the crystal direction.3

Modelling of low-temperature heat capacity data provides important insight into the link between structure and lattice dynamics. A model using two Debye oscillators of equal abundance was found to give the best fit to the data. This demonstrates that there are two important vibrational energy scales, corresponding to conceptual hard and soft substructures with an equal weighting. As discussed above, $\theta_{D1} = 345(9)$ K and $\theta_{D2} = 154(2)$ K do not directly map onto the values obtained for Sn and Se from $U_{iso}(T)$. This suggests that different structural fragments are responsible for the different vibrational energy scales observed here. The Pbnm low-temperature structure has three strong and three weak bonds with bond distances of ~ 2.8 Å and ~ 3.4 Å at 300 K. The Debye temperature (highest phonon frequency) $\theta_D \propto \sqrt{nk/m}$, where n is the number density, k is the bond strength, and m is the reduced mass of the oscillator. From the C_p fitting, the number densities of both oscillators are equal and assuming a similar reduced mass, the ratio of the fitted θ_D values is proportional to the square root of the bond strengths. We can approximate the bond strength using bond valence sums (BVS), which are directly calculated from the Sn-Se bond distances. The BVS ratio of 3.5, while the ratio of $\theta_{D1}/\theta_{D2} \approx 5$, signalling an almost perfect agreement between bond strength and the θ_D values. The data therefore suggest that the harder substructure ($\theta_{D1} = 345(9)$ K) is linked to the short bonds, while the softer substructure ($\theta_{D2} = 154(2)$ K) is linked to the weaker bonds within and between the rocksalt layers (Fig 1(a)).

Computational and inelastic neutron scattering phonon studies show two discrete regions in the phonon density of states (PDOS).8–10 A lower band spanning 0–13 meV containing 3 acoustic and 9 optic modes and a higher energy band from 13 to 25 meV with the remaining 12 optic modes. The upper energies for these two bands correspond very closely to highest phonon frequency for the fitted Debye modes ($k_B\theta_{D1} = 29.7(8)$ meV and $k_B\theta_{D2} = 13.2(2)$ meV). The equal number of phonon modes in the two bands in the PDOS is in agreement with the equal weighting of the Debye oscillators. It is therefore reasonable to conclude that two Debye modes correspond to the two bands in the PDOS. The phonon calculations reveal that the modes in the lower band are more strongly associated with Sn displacements, with a pronounced peak associated with motions perpendicular to the rocksalt layers.6 The higher energy band in the PDOS is more strongly associated with Se displacements. This is consistent with our link to the weak and strong bonds in the crystal structure, where the weaker bonds allow for low-energy anharmonic Sn displacements, while Se is less strongly displaced.

Finally, we note that the presence of two lattice energy scales is similar to the skutterudite and clathrate Phonon Glass Electron Crystal (PGEC)38 materials.29,39–42 These rattling systems show several characteristic lattice energy scales, typically one high corresponding to the framework and one or several low ones corresponding to weakly bound rattling cations, which are usually described using Einstein modes with $\theta_E < 100$ K (i.e., $\theta_E = 125$ K using θ_E/θ_D ratio of 2.5 at 300 K, which is in good agreement with calculated values between 2 and 4 depending on the crystal direction.7
what is expected for a framework. The slightly higher
University Data Repository.
this publication is based can be accessed via the Heriot-Watt
discovering low thermal conductivity materials.
widely diverging bond distances should be a fruitful route to
thermal properties may help in predicting new thermoelectric
observed for SnSe. This simple link between structural and
strong Umklapp scattering and low thermal conductivities
sible for the thermal transport, which is consistent with the
strong bond divergence in SnSe. Comparison to phonon cal-
structures. These distinct substructures arise because of the
energy scales in SnSe corresponding to hard and soft sub-
be another route to PGEC behavior.

To conclude, heat capacity measurements have been
used to reveal that there are two characteristic vibrational
energy scales. The lower energy vibrational scale (
= 345(9) K is in the range of
what is expected for a framework. The slightly higher
University Data Repository.
this publication is based can be accessed via the Heriot-Watt
discovering low thermal conductivity materials.
widely diverging bond distances should be a fruitful route to
thermal properties may help in predicting new thermoelectric
observed for SnSe. This simple link between structural and
strong Umklapp scattering and low thermal conductivities
sible for the thermal transport, which is consistent with the
strong bond divergence in SnSe. Comparison to phonon cal-
structures. These distinct substructures arise because of the
energy scales in SnSe corresponding to hard and soft sub-
be another route to PGEC behavior.

To conclude, heat capacity measurements have been
used to reveal that there are two characteristic vibrational
energy scales. The lower energy vibrational scale (
= 345(9) K is in the range of
what is expected for a framework. The slightly higher
University Data Repository.
this publication is based can be accessed via the Heriot-Watt
discovering low thermal conductivity materials.
widely diverging bond distances should be a fruitful route to
thermal properties may help in predicting new thermoelectric
observed for SnSe. This simple link between structural and
strong Umklapp scattering and low thermal conductivities
sible for the thermal transport, which is consistent with the
strong bond divergence in SnSe. Comparison to phonon cal-
structures. These distinct substructures arise because of the
energy scales in SnSe corresponding to hard and soft sub-
be another route to PGEC behavior.

To conclude, heat capacity measurements have been
used to reveal that there are two characteristic vibrational
energy scales. The lower energy vibrational scale (
= 345(9) K is in the range of
what is expected for a framework. The slightly higher
University Data Repository.