Dual Gold and Photoredox Catalysed C-H Activation of Arenes for Aryl-Aryl Cross Couplings

Citation for published version:

Digital Object Identifier (DOI):
10.1039/C6SC05469B

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
Chemical Science

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Journal Name

EDGECARTICLE

Dual Gold and Photoredox Catalysed C-H Activation of Arenes for Aryl-Aryl Cross Couplings

V. Gauchot, D. R. Sutherland* and A.-L. Lee*

A mild and fully catalytic aryl-aryl cross coupling via gold-catalysed C-H activation has been achieved by merging gold and photoredox catalysis. The procedure is free of stoichiometric oxidants and additives, which were previously required in gold-catalysed C-H activation reactions. Exploiting dual gold and photoredox catalysis confers regioselectivity via the crucial gold-catalysed C-H activation step, which is not present in the unsellective photocatalysis-only counterpart.

Introduction

The increased drive to develop more sustainable methods for synthesis has led to a surge in research on C-H functionalisations.1 Within this context, direct aryl C-H functionalisations using gold catalysis is a relatively young and overlooked field compared to the more developed palladium, ruthenium and rhodium counterparts. Nevertheless, the mild conditions under which gold-catalysis can activate C-H bonds, as well as the regioselectivity observed in the absence of directing groups,2 provides many golden opportunities for this developing field. In the specific area of aryl-aryl cross-couplings via C-H activation, Lloyd-Jones and Russell elegantly showcased that gold catalysis can be used to site selectively arylate arylsilanes (Scheme 1a).3 More recently, Larrosa disclosed his seminal work on oxidative cross-couplings via double C-H activation to couple electron-poor with electron-rich arenes.4 Despite these advances, there remain several limitations, one of which is the often limited arene substrate scope.24 The other major limitation is the requirement for a stoichiometric oxidant to access the Au(I)/Au(III) cycle required for cross-couplings;5 the benefit of employing C-H activation to avoid arene prefunctionalisation is thus somewhat offset by the generation of stoichiometric organic waste from the oxidant, and the use of the latter can also limit functional group tolerance. There is therefore a clear need to develop couplings that do not require stoichiometric oxidants.2a Within this context, we herein disclose the first dual gold and photoredox catalysed aryl-aryl cross coupling via C-H activation (Scheme 1b), which also constitutes the first gold-catalysed C(sp2)-H activation reaction which does not require the latter.

The use of dual gold and photoredox catalysis2d to access Au(I)/Au(III) catalytic cycles was recently pioneered by Glorius8 and Toste.9,10,11 Its use in cross-couplings has only very recently been reported: Sonogashira-type couplings12 and Suzuki-type couplings were revealed this year, the latter independently by our group13 and Fouquet.14,15 To the best of our knowledge, however, aryl-aryl couplings via C(sp2)-H activation using dual gold and photoredox catalysis has yet to be achieved, although it was recently attempted by Maestri and Malacria.16 Under their conditions, they instead discovered that the coupling between unactivated arenes and diazonium salts could occur under photocatalysis-only conditions (no gold) through mechanistically distinct formal homolytic aromatic substitutions, which does not involve C-H activation. However, poor regioselectivities (mixtures of ortho, meta and para coupling) were observed and 40 equivalents of arene were generally required for this radical reaction.16 Therefore, aryl-aryl couplings via C(sp2)-H activation involving dual gold and photoredox catalysis is clearly desirable, as it will not only prove for the first time that catalytic oxidants can be utilised in the general field of gold-catalysed C-H activations, but it should also significantly improve the regioselectivities and arene equivalents in the aryl-aryl couplings, compared to the mechanistically distinct photocatalysis-only reaction.

Previous seminal work: Stoichiometric oxidant required

\[
\text{Au(I) cat.} \quad \text{PhI(OAc)}_2 (1.3 \text{ equiv.}) \quad \text{CSA} (1.5 \text{ equiv.})
\]

This work: Dual photocatalysis/gold with no stoichiometric oxidant

\[
\text{Ar} + \text{H} \quad \text{SiMe}_3 \quad \text{Au} \quad \text{hv} \quad \text{Ar} \quad \text{Au} \quad \text{Ar} \quad \text{X} \quad \text{Ar} \quad \text{Ar}
\]

Scheme 1 Gold-Catalysed Aryl-Aryl Couplings via C-H Activation
Results and discussion

Since electrophilic Au(III) is known to C-H activate electron rich arenes, and using insights gained from our previous studies, we surmised that a combination of an aryl diazonium salt with PPh3AuNTf2 and a photoredox catalyst should furnish an electrophilic arylAu(III) species capable of C-H activating a suitable arene in order to form our crossed product (see later for mechanism). We thus initiated our studies using mesitylene as the arene and鲁(bpy)3(PF6)2 as the photoredox catalyst (Table 1). To our delight, the coupling product 3aa was observed in a promising 31% yield (Entry 1).

Crucially, control experiments in the absence of gold catalyst, Ru catalyst or light resulted in little or no conversion (see ESI), confirming that it is a dual gold/photoredox coupling reaction under these conditions (see Scheme 2 for further confirmation). Optimisation studies showed that a small excess of arene 1a is beneficial (Entry 3) but a large excess hampers the reaction in this case (Entry 4). Employment of organic dyes eosin Y and fluorescein instead of Ru(bpy)3(PF6)2 proved to be a potentially greener alternative (Entries 5-6), although we opted to continue our studies using the better performing Ru catalyst. Finally, a good 3aa yield of 81% was achieved by increasing the gold catalyst loading (Entry 7).

This yields greener reactions. For example, 3aa gains 80% yield, 3ab 80%, 3ac 63%, 3ad 73%.

With these optimised conditions in hand, an aryl diazonium substrate scope was carried out (Table 2). Ester- (3aa) and amide-substituted (3ak) substrates, as well as halogenated substrates (3ab-3ae) react smoothly (50-80%), as do meta- and para-substituted nitro substrates (3af-3ag). The ortho-substituted 3ah, however, is furnished in a modest 37% yield, presumably due to steric effects.

Yields of 3ai and 3aj were moderate under standard conditions, but the yield of 3ai was successfully improved to 60% under more forcing conditions (10 equiv. 1a and 50 °C). Predictably, electron-rich aryldiazoniums react more sluggishly, with decreasing yields observed with more electron rich aryls (3am-3an 48%, while 3ao <26%).

As for the arene scope, Au(III)-mediated C-H activation is known to proceed via electrophilic aromatic substitution onto Au(III) (see later), thereby rendering electron-poor arenes unsuitable candidates for these conditions. With this in mind, suitable electron neutral and electron rich arenes were evaluated as shown in Table 3. While steric hindrance in the form of double ortho substitution is tolerated in mesitylene 3aa (73%), the yield begins to drop off with increasingly hindered ortho-substituents (3ba, 3ca). Para- and meta-xylene also couples with high yields (82%), as does toluene (3da) and 1,4-butylbenzene (3ea). Predictably, 3da and 3ea are formed as o-/p-isomers, although the major para-3da can be isolated in a good 56% yield. The p-/o- ratio is a good 5.7:1 for the more hindered 3ga.

This is in stark contrast to the photocatalysis-only reaction (Scheme 2). In the absence of gold, yield (30%) and selectivity (0.88:1.0.15 of 3ae:3ae'3ae") are both very poor (Scheme 2b) compared to the fully selective dual catalytic reaction (Scheme 2a). Adopting the literature photocatalysis-only conditions also result in a similarly unsselective reaction, although the conversion is improved (58% combined yield of inseparable isomers, Scheme 2c). These controls show the significant benefit of utilising the regioselectivity conferred by the gold.

Table 2 Aryldiazonium Scope

<table>
<thead>
<tr>
<th>Entry</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Modification</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>-</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>-</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>Eosin Y instead of [Ru]</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>Fluorescein instead of [Ru]</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>-</td>
<td>81</td>
</tr>
</tbody>
</table>

*Method A: 2 mol% arene (3aequiv.) [Ru] and [Au] were dissolved in degassed MeCN, and stirred at under blue LED irradiation. *Method B: 3 equiv. of 1a, 50 °C. *Method C: 10 equiv. 1a, 50 °C. Isolated yields reported.

With these optimised conditions in hand, an aryl diazonium substrate scope was carried out (Table 2). Ester- (3aa) and amide-substituted (3ak) substrates, as well as halogenated substrates (3ab-3ae) react smoothly (50-80%), as do meta- and para-substituted nitro substrates (3af-3ag). The ortho-substituted 3ah, however, is furnished in a modest 37% yield, presumably due to steric effects.

Yields of 3ai and 3aj were moderate under standard conditions, but the yield of 3ai was successfully improved to 60% under more forcing conditions (10 equiv. 1a and 50 °C). Predictably, electron-rich aryldiazoniums react more sluggishly, with decreasing yields observed with more electron rich aryls (3am-3an 48%, while 3ao <26%).

As for the arene scope, Au(III)-mediated C-H activation is known to proceed via electrophilic aromatic substitution onto Au(III) (see later), thereby rendering electron-poor arenes unsuitable candidates for these conditions. With this in mind, suitable electron neutral and electron rich arenes were evaluated as shown in Table 3. While steric hindrance in the form of double ortho substitution is tolerated in mesitylene 3aa (73%), the yield begins to drop off with increasingly hindered ortho-substituents (3ba, 3ca). Para- and meta-xylene also couples with high yields (82%), as does toluene (3da) and 1,4-butylbenzene (3ea). Predictably, 3da and 3ea are formed as o-/p-isomers, although the major para-3da can be isolated in a good 56% yield. The p-/o- ratio is a good 5.7:1 for the more hindered 3ga.

This is in stark contrast to the photocatalysis-only reaction (Scheme 2). In the absence of gold, yield (30%) and selectivity (0.88:1.0.15 of 3ae:3ae'3ae") are both very poor (Scheme 2b) compared to the fully selective dual catalytic reaction (Scheme 2a). Adopting the literature photocatalysis-only conditions also result in a similarly unsselective reaction, although the conversion is improved (58% combined yield of inseparable isomers, Scheme 2c). These controls show the significant benefit of utilising the regioselectivity conferred by the gold.
C-H activation step in the dual gold and photoredox reaction (Scheme 2a) and is further proof that the reaction described here is not a photocatalysis-only reaction.

Table 3 Arene Scope

<table>
<thead>
<tr>
<th>Arene</th>
<th>Reaction Conditions</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>PPh3AuNTf2 (10 mol%) Ru(bpy)3(PF6)2 (2.5 mol%) MeCN, 16 h</td>
<td>3ae 62%</td>
</tr>
</tbody>
</table>

Scheme 2 Dual Gold and Photoredox Catalysis Confers Regioselectivity

Next, mesitylenes bearing electron withdrawing substituents successfully couple (Table 2b, 3a-3j, 3ka-3k), although the yield drops to 37% in the presence of the more withdrawing CN group (3ka). Biphenyl pleasingly reacts exclusively at the para-position to yield triaryl 3la in 56% yield. Finally, very electron rich arenes and heteroarenes such as 1,3,5-trimethoxybenzene and N-methyl indole do not currently cross-couple well under these conditions, due to competing azo coupling (see ESI).

Pleasingly, however, more electron rich arenes are viable arenes for intramolecular C-H couplings, as exemplified by the formation of 5 in 83% yield (Scheme 3). While these cyclisations have been attempted under photocatalysis-only conditions, reported yields were very low (0-25%) due to competing deazotisation. Carbazole27 can also be accessed from 6 in 82% yield, which is of note as traditional Pschorr cyclisations28 do not typically work well for carbazoles. Indeed, 5 and 7 are only formed in 36% and 41% (NMR yields) respectively in the absence of gold. Moreover, the readily oxidisable sulfide (4) and benzyl (6) are tolerated under these conditions, showcasing the potential of dual catalysis to significantly improve the C-H activation cross coupling under mild conditions compared to previously required stoichiometric oxidant conditions.

Scheme 3 Intramolecular Aryl-Aryl Coupling via C-H Activation

* No oxidation of sulfide or benzyl positions

Based on a combination of various literature reports, a plausible mechanism for the cross-coupling is shown in Scheme 4.

Scheme 4 Plausible Mechanism
Initial oxidation of the Au(I) catalyst I via addition of an aryl radical (I→II) is followed by a subsequent SET to form Au(III) intermediate III, regenerating the photocatalyst. Alternatively, quantum yield calculations carried out on related triphenylphosphine gold/visible-light catalysed systems revealed that species II can also undergo SET with another equivalent of diazonium salt, to simultaneously yield the Au(II) species III along with an aryl radical. The arene partner then undergoes electrophilic auration with the Lewis acidic species III to give intermediate IV, which explains the regioselectivities observed. The corresponding intermediate V then reductively eliminates to form the cross-coupled product 3, while regenerating Au(I) catalyst I.

In order to lend support to this mechanism, two reactions were set up using equimolar amounts of PPh3AuNTf2, 1a and 2d, and 2.5 mol% of Ru(bpy)3(PF6)2 in the presence and absence of light respectively. 31p NMR monitoring reveals that a new signal at δ 23.1 ppm appears for the irradiated reaction (Figure 1), but is absent from the dark reaction. The transient species III is highly unstable and cannot be isolated, however, the signal at δ 23.1 ppm corresponds to species VI which is formed by reductive elimination of III. The detection of VI therefore implies that III is present in the reaction.

![Figure 1](image.png)

Furthermore, control experiments using various gold(I) species fail to form the coupling product 3 (see ESI), lending further support to the hypothesis that intermediate III is the key species in the crucial electrophilic auration step. In addition, control experiments shown in Scheme 2 confirm that the mechanism is distinct from the formal homolytic aromatic substitutions observed in the photocatalysis-only reactions, since the regioselectivity observed supports the electrophilic auration step shown in Scheme 4 rather than the former, which is unselective. Additionally, the involvement of an aryl cation intermediate from the arylidiazonium salt can also be discounted by the fact that electron withdrawing arylazidoniums react more readily than their electron rich counterparts (Table 2).

Conclusions

In conclusion, we have developed the first dual gold/photoredox method for aryl-aryl cross coupling via direct C-H activation of arenes under mild conditions. The use of dual catalysis has allowed us to address and overcome a major limitation encountered with gold-catalysed C-H activations: the requirement for stoichiometric oxidants and its corresponding waste. As is the case with current gold-catalysed C-H activation reactions, the arene substrate scope for the intermolecular coupling still has its limitations (although the intramolecular version shows great promise) and addressing this issue remains a future challenge for the field. Nevertheless, we envisage that the development of the first fully catalytic system constitutes significant progress for the field of gold-catalysed C-H activation and functionalisation of arenes. In addition, control experiments show that exploiting dual gold and photoredox catalysis confers regioselectivity via the crucial gold-catalysed C-H activation step, which is not present in the unselective photocatalysis-only counterpart.

Acknowledgements

We gratefully acknowledge the Leverhulme Trust (RPG-2014-345) for funding and Heriot-Watt University for a James Watt Scholarship (DRS). Mass spectrometry data was acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University.

Notes and references

19
20
26
18
790
30
31
Reducive elimination steps involving Au(III) can be extremely fast, see: W. J. Wolf, M. S. Winston and F. D. Toste, Nature Chem., 2014, 6, 159.
32
33

Please do not adjust margins